Nonlinear modal interactions in parity-time (PT) symmetric lasers

Parity-time symmetric lasers have attracted considerable attention lately due to their promising applications and intriguing properties, such as free spectral range doubling and single-mode lasing. In this work we discuss nonlinear modal interactions in these laser systems under steady state conditi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 6; no. 1; p. 24889
Main Authors: Ge, Li, El-Ganainy, Ramy
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 04.05.2016
Nature Publishing Group
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parity-time symmetric lasers have attracted considerable attention lately due to their promising applications and intriguing properties, such as free spectral range doubling and single-mode lasing. In this work we discuss nonlinear modal interactions in these laser systems under steady state conditions and we demonstrate that several gain clamping scenarios can occur for lasing operation in the -symmetric and -broken phases. In particular, we show that, depending on the system’s design and the external pump profile, its operation in the nonlinear regime falls into two different categories: in one the system is frozen in the phase space as the applied gain increases, while in the other the system is pulled towards its exceptional point. These features are first illustrated by a coupled mode formalism and later verified by employing the Steady-state Ab-initio Laser Theory (SALT). Our findings shine light on the robustness of single-mode operation against saturation nonlinearity in -symmetric lasers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/srep24889