Single‐subject morphological brain networks: connectivity mapping, topological characterization and test–retest reliability
Introduction Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual‐level morphological brain networks and systematic...
Uložené v:
| Vydané v: | Brain and behavior Ročník 6; číslo 4; s. e00448 - n/a |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
John Wiley & Sons, Inc
01.04.2016
John Wiley and Sons Inc |
| Predmet: | |
| ISSN: | 2162-3279, 2162-3279 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Introduction
Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual‐level morphological brain networks and systematically examined their topological organization and long‐term test–retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type.
Methods
This study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback–Leibler divergence measure. Graph‐based global and nodal network measures were then calculated, followed by the statistical comparison and intra‐class correlation analysis.
Results
The morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph‐based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small‐worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long‐term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree and efficiency outperformed nodal betweenness with respect to reliability.
Conclusions
Our findings support single‐subject morphological network analysis as a meaningful and reliable method to characterize structural organization of the human brain; this method thus opens a new avenue toward understanding the substrate of intersubject variability in behavior and function and establishing morphological network biomarkers in brain disorders.
We proposed a method to construct individual‐level morphological brain networks from structural MRI data. We demonstrated that morphological brain networks derived from this method were specifically organized, test–retest reliable and dependent on different analytic strategies of data preprocessing and network construction methods. |
|---|---|
| AbstractList | Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual-level morphological brain networks and systematically examined their topological organization and long-term test-retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type.INTRODUCTIONStructural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual-level morphological brain networks and systematically examined their topological organization and long-term test-retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type.This study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback-Leibler divergence measure. Graph-based global and nodal network measures were then calculated, followed by the statistical comparison and intra-class correlation analysis.METHODSThis study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback-Leibler divergence measure. Graph-based global and nodal network measures were then calculated, followed by the statistical comparison and intra-class correlation analysis.The morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph-based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small-worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long-term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree and efficiency outperformed nodal betweenness with respect to reliability.RESULTSThe morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph-based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small-worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long-term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree and efficiency outperformed nodal betweenness with respect to reliability.Our findings support single-subject morphological network analysis as a meaningful and reliable method to characterize structural organization of the human brain; this method thus opens a new avenue toward understanding the substrate of intersubject variability in behavior and function and establishing morphological network biomarkers in brain disorders.CONCLUSIONSOur findings support single-subject morphological network analysis as a meaningful and reliable method to characterize structural organization of the human brain; this method thus opens a new avenue toward understanding the substrate of intersubject variability in behavior and function and establishing morphological network biomarkers in brain disorders. Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual-level morphological brain networks and systematically examined their topological organization and long-term test-retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type. This study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback-Leibler divergence measure. Graph-based global and nodal network measures were then calculated, followed by the statistical comparison and intra-class correlation analysis. The morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph-based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small-worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long-term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree and efficiency outperformed nodal betweenness with respect to reliability. Our findings support single-subject morphological network analysis as a meaningful and reliable method to characterize structural organization of the human brain; this method thus opens a new avenue toward understanding the substrate of intersubject variability in behavior and function and establishing morphological network biomarkers in brain disorders. IntroductionStructural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual‐level morphological brain networks and systematically examined their topological organization and long‐term test–retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type.MethodsThis study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback–Leibler divergence measure. Graph‐based global and nodal network measures were then calculated, followed by the statistical comparison and intra‐class correlation analysis.ResultsThe morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph‐based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small‐worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long‐term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree and efficiency outperformed nodal betweenness with respect to reliability.ConclusionsOur findings support single‐subject morphological network analysis as a meaningful and reliable method to characterize structural organization of the human brain; this method thus opens a new avenue toward understanding the substrate of intersubject variability in behavior and function and establishing morphological network biomarkers in brain disorders. Introduction Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual‐level morphological brain networks and systematically examined their topological organization and long‐term test–retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type. Methods This study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback–Leibler divergence measure. Graph‐based global and nodal network measures were then calculated, followed by the statistical comparison and intra‐class correlation analysis. Results The morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph‐based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small‐worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long‐term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree and efficiency outperformed nodal betweenness with respect to reliability. Conclusions Our findings support single‐subject morphological network analysis as a meaningful and reliable method to characterize structural organization of the human brain; this method thus opens a new avenue toward understanding the substrate of intersubject variability in behavior and function and establishing morphological network biomarkers in brain disorders. We proposed a method to construct individual‐level morphological brain networks from structural MRI data. We demonstrated that morphological brain networks derived from this method were specifically organized, test–retest reliable and dependent on different analytic strategies of data preprocessing and network construction methods. |
| Author | Jin, Xiaoqing Zhang, Ye Wang, Hao Wang, Jinhui |
| AuthorAffiliation | 1 Department of Psychology Hangzhou Normal University Hangzhou 311121 China 2 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou 311121 China 3 Department of Acupuncture and Moxibustion Zhejiang Hospital Hangzhou 310030 China |
| AuthorAffiliation_xml | – name: 3 Department of Acupuncture and Moxibustion Zhejiang Hospital Hangzhou 310030 China – name: 1 Department of Psychology Hangzhou Normal University Hangzhou 311121 China – name: 2 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou 311121 China |
| Author_xml | – sequence: 1 givenname: Hao surname: Wang fullname: Wang, Hao organization: Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments – sequence: 2 givenname: Xiaoqing surname: Jin fullname: Jin, Xiaoqing organization: Zhejiang Hospital – sequence: 3 givenname: Ye surname: Zhang fullname: Zhang, Ye organization: Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments – sequence: 4 givenname: Jinhui surname: Wang fullname: Wang, Jinhui organization: Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27088054$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kd1u1DAQhS1UREupxBOgSNxwQRbHdhKHCyRa8SdVQuLn2nKcya4Xx05tp9VyQx8BiTfsk-Cw7VIQ-MYjzTdHZ-bcR3vWWUDoYYEXBcbkWetbumCM30EHpKhITknd7N2q99FRCGucXlkwwvA9tE9qzDku2QH69lHbpYGry-9hategYjY4P66ccUutpMlaL7XNLMQL57-E55ly1iZKn-u4yQY5jmn8aRbduJtQK-mliuD1Vxm1s5m0XRYhxKvLHx7mIvNgtGy1SRoP0N1emgBH1_8h-vz61aeTt_np-zfvTl6e5qrEjOeSN6pkuKooMEl433cVIZL0ddXhXhaScoCuwyWmoKAiXdWkg9R90UNZVkXZ00P0Yqs7Tu0AnQIbvTRi9HqQfiOc1OLPjtUrsXTngtWcENYkgSfXAt6dTWkLMeigwBhpwU1BFDUva1ZROqOP_0LXbvI2rScI4bxsCsrqRD267Whn5SabBCy2gPIuBA-9UDr-OmkyqI0osJjzF3P-Iq372-Ju4EbzH2i-RS-0gc1_OXH84ZjO_E-ed8QD |
| CitedBy_id | crossref_primary_10_3389_fneur_2022_763305 crossref_primary_10_1016_j_neulet_2018_07_029 crossref_primary_10_1002_hbm_25434 crossref_primary_10_1007_s00429_025_02909_5 crossref_primary_10_3389_fneur_2022_834277 crossref_primary_10_1016_j_neuroimage_2022_119009 crossref_primary_10_1007_s11682_022_00747_1 crossref_primary_10_1007_s00234_021_02653_7 crossref_primary_10_1016_j_ebr_2024_100676 crossref_primary_10_1016_j_psychres_2023_115557 crossref_primary_10_1111_cns_70479 crossref_primary_10_1016_j_brainres_2024_148986 crossref_primary_10_3389_fcell_2021_803800 crossref_primary_10_1093_cercor_bhac217 crossref_primary_10_1016_j_tins_2023_11_011 crossref_primary_10_1038_s41593_023_01376_7 crossref_primary_10_1016_j_jad_2022_11_029 crossref_primary_10_1016_j_neuroscience_2024_09_004 crossref_primary_10_1111_eip_13245 crossref_primary_10_1007_s00330_021_08080_9 crossref_primary_10_1038_s41398_020_00873_8 crossref_primary_10_3389_fnins_2023_1089134 crossref_primary_10_1007_s10548_023_00962_z crossref_primary_10_1002_jmri_28318 crossref_primary_10_1016_j_brainresbull_2023_110714 crossref_primary_10_1016_j_bbr_2025_115787 crossref_primary_10_1016_j_mri_2019_11_003 crossref_primary_10_3389_fnins_2021_630278 crossref_primary_10_1093_cercor_bhad439 crossref_primary_10_1007_s00259_020_04814_x crossref_primary_10_1186_s12967_023_04164_w crossref_primary_10_1002_jmri_27499 crossref_primary_10_1016_j_jpsychires_2021_06_019 crossref_primary_10_1002_advs_202400061 crossref_primary_10_1017_S003329172300168X crossref_primary_10_3389_fnins_2022_952067 crossref_primary_10_1002_sta4_119 crossref_primary_10_1093_psyrad_kkad017 crossref_primary_10_1177_13872877251316794 crossref_primary_10_3389_fnins_2023_1140801 crossref_primary_10_1186_s10194_024_01861_9 crossref_primary_10_1111_cns_14384 crossref_primary_10_1016_j_neuroimage_2024_120688 crossref_primary_10_1002_hbm_25606 crossref_primary_10_1093_cercor_bhae016 crossref_primary_10_1007_s10278_024_01230_7 crossref_primary_10_1093_cercor_bhad450 crossref_primary_10_1093_cercor_bhad178 crossref_primary_10_1093_cercor_bhad211 crossref_primary_10_3390_jcm11185362 crossref_primary_10_3390_brainsci13050803 crossref_primary_10_1007_s11042_024_18817_5 crossref_primary_10_1016_j_neuroimage_2023_120265 crossref_primary_10_3389_fneur_2024_1519397 crossref_primary_10_1002_brb3_3103 crossref_primary_10_3389_fpsyt_2021_777447 crossref_primary_10_1016_j_schres_2019_01_025 crossref_primary_10_3389_fnagi_2021_688113 crossref_primary_10_1007_s12264_024_01262_7 crossref_primary_10_1016_j_jad_2022_02_052 crossref_primary_10_1038_s41531_025_01028_6 crossref_primary_10_3389_fnhum_2018_00204 crossref_primary_10_1038_s41598_022_22387_7 crossref_primary_10_3389_fnhum_2019_00399 crossref_primary_10_1155_2020_3560259 crossref_primary_10_1002_hbm_24863 crossref_primary_10_1016_j_neuroimage_2024_120673 crossref_primary_10_1016_j_neuroimage_2025_121402 crossref_primary_10_1038_s41386_019_0322_y crossref_primary_10_1002_alz_70095 crossref_primary_10_1002_hbm_25230 crossref_primary_10_1093_brain_awaf151 crossref_primary_10_1016_j_parkreldis_2024_106985 crossref_primary_10_3389_fnins_2021_785595 crossref_primary_10_1016_j_brainresbull_2025_111228 crossref_primary_10_3389_fnins_2021_756868 crossref_primary_10_1093_schbul_sbae069 crossref_primary_10_1007_s11682_025_01026_5 crossref_primary_10_1111_cns_13632 crossref_primary_10_1002_mp_17568 crossref_primary_10_1016_j_ijchp_2025_100564 crossref_primary_10_1007_s00429_023_02616_z crossref_primary_10_1016_j_heliyon_2024_e28874 crossref_primary_10_1097_QAD_0000000000003759 crossref_primary_10_3389_fcell_2021_631864 crossref_primary_10_1016_j_parkreldis_2020_10_044 crossref_primary_10_1002_mco2_305 crossref_primary_10_1192_bjp_2024_41 crossref_primary_10_1016_j_jpsychires_2024_12_032 crossref_primary_10_3389_fneur_2025_1561555 crossref_primary_10_1093_cercor_bhae039 crossref_primary_10_1007_s00429_020_02200_9 crossref_primary_10_1371_journal_pone_0201243 crossref_primary_10_1016_j_jad_2024_01_173 crossref_primary_10_1093_cercor_bhad231 crossref_primary_10_2337_db21_0600 crossref_primary_10_1002_jmri_27544 crossref_primary_10_1002_hbm_25344 crossref_primary_10_1177_13872877251360259 crossref_primary_10_1007_s10548_023_00964_x crossref_primary_10_1093_schbul_sbae218 crossref_primary_10_1177_1756286419838673 crossref_primary_10_7717_peerj_3533 crossref_primary_10_3389_fnins_2018_01055 crossref_primary_10_1016_j_neuroscience_2017_10_033 crossref_primary_10_1016_j_neuroimage_2023_120434 crossref_primary_10_1016_j_neuroimage_2024_120893 crossref_primary_10_3389_fonc_2023_1098748 crossref_primary_10_1016_j_bspc_2024_106592 crossref_primary_10_3389_fnagi_2022_873148 crossref_primary_10_1007_s10803_023_06160_x crossref_primary_10_1016_j_neuroimage_2025_121069 crossref_primary_10_3389_fnins_2024_1381385 crossref_primary_10_1007_s11682_021_00571_z crossref_primary_10_1186_s13195_024_01448_1 crossref_primary_10_1007_s40846_021_00676_2 crossref_primary_10_1038_s41386_022_01328_y crossref_primary_10_1002_hbm_24954 crossref_primary_10_1093_nsr_nwaa029 crossref_primary_10_1016_j_neuroscience_2025_07_033 crossref_primary_10_1155_da_6885509 crossref_primary_10_1093_cercor_bhae337 crossref_primary_10_1093_schbul_sbz062 crossref_primary_10_3389_fnhum_2020_00172 crossref_primary_10_1080_10255842_2025_2515477 crossref_primary_10_1016_j_neuroimage_2024_120762 crossref_primary_10_1002_hbm_26450 crossref_primary_10_1002_jnr_25178 crossref_primary_10_1016_j_biopsych_2023_12_025 crossref_primary_10_1093_cercor_bhad372 crossref_primary_10_1016_j_nicl_2020_102552 crossref_primary_10_1162_netn_a_00458 crossref_primary_10_3389_fnins_2020_00344 crossref_primary_10_3389_fnagi_2022_1091829 crossref_primary_10_3389_fnagi_2022_834145 crossref_primary_10_1093_schbul_sbae110 crossref_primary_10_1038_s41598_021_01915_x crossref_primary_10_1371_journal_pone_0187281 crossref_primary_10_1016_j_neurad_2023_09_007 crossref_primary_10_1016_j_neuroscience_2021_02_008 crossref_primary_10_3389_fimmu_2024_1345843 crossref_primary_10_1007_s11060_016_2328_1 crossref_primary_10_1093_cercor_bhad410 crossref_primary_10_1038_s41398_024_02861_8 |
| Cites_doi | 10.1016/j.neuroimage.2007.09.031 10.1093/brain/awp089 10.1016/j.tics.2013.09.012 10.1016/j.neuroimage.2008.09.062 10.1037/0033-2909.86.2.420 10.1016/j.tics.2013.09.004 10.1002/hbm.460030304 10.1146/annurev-clinpsy-040510-143934 10.1523/JNEUROSCI.1929-08.2008 10.1214/aoms/1177704472 10.1007/s00429-005-0041-5 10.1016/j.neuroimage.2013.05.054 10.1093/cercor/8.4.372 10.1038/nrn3801 10.1038/nrn3465 10.1073/pnas.0911855107 10.1016/j.neurobiolaging.2010.06.022 10.1523/JNEUROSCI.3874-05.2006 10.1016/S0169-7439(99)00047-7 10.1038/385313a0 10.1016/j.neuroimage.2006.01.021 10.1111/jcpp.12365 10.1523/JNEUROSCI.3554-12.2013 10.1177/1073858414537560 10.1371/journal.pone.0021935 10.1523/JNEUROSCI.0141-08.2008 10.1016/j.tics.2012.02.001 10.1371/journal.pone.0005226 10.1016/j.neuroimage.2009.11.001 10.1002/mrm.1910340409 10.1038/nmeth.2482 10.1016/j.euroneuro.2014.02.011 10.1016/j.neuroimage.2010.05.045 10.1016/j.neuroimage.2013.09.054 10.1038/nrn3214 10.1016/j.neuroimage.2010.07.025 10.1016/j.neuroimage.2009.12.027 10.1371/journal.pone.0000597 10.1002/hbm.21232 10.1093/cercor/bhn102 10.1002/hbm.20623 10.1214/10-AOS799 10.1016/j.tics.2004.07.008 10.1093/cercor/bhi016 10.1093/cercor/bhr221 10.1371/journal.pone.0141840 10.3389/fnhum.2015.00059 10.1093/brain/awu132 10.1016/j.neuroimage.2007.02.012 10.1016/j.neuroimage.2013.03.023 10.1038/nn.3690 10.1006/nimg.2001.0978 10.1038/nrn2575 10.1016/j.neuroimage.2011.01.010 10.1109/TPAMI.2003.1195991 10.1523/JNEUROSCI.17-08-02859.1997 10.1371/journal.pcbi.0010042 10.1098/rsif.2014.0881 10.1016/j.neuroimage.2013.07.045 10.1016/j.neuroimage.2013.03.053 10.1038/30918 10.1214/aoms/1177728190 10.1016/j.neuroimage.2010.09.006 10.1093/cercor/bhl149 10.1016/j.conb.2014.10.014 10.1523/JNEUROSCI.3539-11.2011 10.1016/j.neuroimage.2009.10.003 10.1016/j.schres.2012.08.021 10.1016/j.neuroimage.2010.01.028 10.1371/journal.pbio.0060159 10.1371/journal.pone.0032766 10.1097/WCO.0b013e32833aa567 10.1006/nimg.1998.0384 10.1146/annurev-clinpsy-050212-185608 10.1016/j.neuron.2009.03.024 10.1093/cercor/bhg087 10.1016/j.neuron.2014.05.014 10.1371/journal.pone.0021976 10.1016/j.neuroimage.2007.07.007 10.1137/S003614450342480 10.1093/cercor/bhn003 10.1016/j.jneumeth.2014.09.003 10.1073/pnas.1003109107 10.1214/aoms/1177729694 10.1073/pnas.1001414107 10.1142/S0218195995000064 10.1523/JNEUROSCI.5062-08.2009 10.1126/science.1065103 10.1109/TPAMI.2006.120 |
| ContentType | Journal Article |
| Copyright | 2016 The Authors. published by Wiley Periodicals, Inc. 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2016 The Authors. published by Wiley Periodicals, Inc. – notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88G 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M2M M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM |
| DOI | 10.1002/brb3.448 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Psychology Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Psychology Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | H. Wang et al |
| EISSN | 2162-3279 |
| EndPage | n/a |
| ExternalDocumentID | PMC4782249 27088054 10_1002_brb3_448 BRB3448 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LZ13C090001 – fundername: National Natural Science Foundation of China funderid: 81301284 – fundername: National Natural Science Foundation of China grantid: 81301284 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ13C090001 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X7 8-0 8-1 8FI 8FJ 8G5 AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFO ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AENEX AEQDE AFKRA AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU D-8 D-9 DIK DWQXO EBS EJD ESX FYUFA GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 HMCUK HYE IAO IHR ITC KQ8 M2M M2O M48 M~E OK1 PIMPY PQQKQ PROAC PSYQQ RNS RPM SUPJJ TUS UKHRP WIN AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c5048-a89c540663e4a28ffd622a2f76d0fa1a38eedd0503ece62d694487f1fe55615f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 154 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374761900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-3279 |
| IngestDate | Tue Nov 04 01:58:39 EST 2025 Sun Nov 09 09:00:47 EST 2025 Sat Nov 29 14:55:27 EST 2025 Mon Jul 21 06:03:53 EDT 2025 Tue Nov 18 20:12:32 EST 2025 Sat Nov 29 03:27:19 EST 2025 Wed Jan 22 16:34:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | gray matter volume structural MRI hub Brain network reliability |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5048-a89c540663e4a28ffd622a2f76d0fa1a38eedd0503ece62d694487f1fe55615f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2288591347?pq-origsite=%requestingapplication% |
| PMID | 27088054 |
| PQID | 2288591347 |
| PQPubID | 976341 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4782249 proquest_miscellaneous_1785746339 proquest_journals_2288591347 pubmed_primary_27088054 crossref_citationtrail_10_1002_brb3_448 crossref_primary_10_1002_brb3_448 wiley_primary_10_1002_brb3_448_BRB3448 |
| PublicationCentury | 2000 |
| PublicationDate | April 2016 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Los Angeles – name: Hoboken |
| PublicationTitle | Brain and behavior |
| PublicationTitleAlternate | Brain Behav |
| PublicationYear | 2016 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2009; 44 2002; 15 2006; 31 2010; 107 2013a; 14 2005; 210 2015; 31 2004; 8 1995; 34 2008; 39 2000; 50 1951; 22 2011; 54 2011; 56 2008; 6 2012; 16 1962; 33 2013; 7 2012; 13 2015b; 21 1998; 393 2014; 137 2007; 36 2013; 9 2007; 38 2010; 23 2013; 17 2009; 10 2013; 10 1997; 385 2006; 28 2015a; 9 2006; 26 2008; 28 2014; 15 1997; 17 2007; 2 2014; 17 2009; 19 2010; 4 2012; 22 2003; 45 2007; 17 2015; 12 2015; 56 2014; 237 2012; 141 2010; 38 2009; 62 2002; 296 2013b; 33 2008; 18 2009a; 132 2013; 83 2015; 10 2011; 31 2002 2015; 9 2014; 83 2011; 6 1995; 3 2012; 33 1995; 5 2011; 7 2009; 29 2014; 86 1999; 9 2015; 25 2010; 49 2009; 30 2009b; 4 2004; 14 2013; 80 2003; 25 1956; 27 2005; 1 2005; 15 1979; 86 2012; 7 2010; 52 2010; 50 1998; 8 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 Fornito A. (e_1_2_9_37_1) 2010; 4 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Burnham K. P. (e_1_2_9_22_1) 2002 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Wang J. (e_1_2_9_84_1) 2015; 9 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 Velazquez J. L. P. (e_1_2_9_80_1) 2013; 7 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 137 start-page: 2382 year: 2014 end-page: 2395 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain – volume: 7 start-page: e32766 year: 2012 article-title: Effects of different correlation metrics and preprocessing factors on small‐world brain functional networks: a resting‐state functional MRI study publication-title: PLoS One – volume: 50 start-page: 1 year: 2000 end-page: 18 article-title: The mahalanobis distance publication-title: Chemometr. Intell. Lab. Syst. – volume: 80 start-page: 53 year: 2013 end-page: 61 article-title: The human connectome: origins and challenges publication-title: NeuroImage – volume: 33 start-page: 2889 year: 2013b end-page: 2899 article-title: The convergence of maturational change and structural covariance in human cortical networks publication-title: J. Neurosci. – volume: 83 start-page: 238 year: 2014 end-page: 251 article-title: Intrinsic and task‐evoked network architectures of the human brain publication-title: Neuron – volume: 54 start-page: 1262 year: 2011 end-page: 1279 article-title: Conserved and variable architecture of human white matter connectivity publication-title: NeuroImage – volume: 7 start-page: 113 year: 2011 end-page: 140 article-title: Brain graphs: graphical models of the human brain connectome publication-title: Annu. Rev. Clin. Psychol. – volume: 17 start-page: 652 year: 2014 end-page: 660 article-title: Contributions and challenges for network models in cognitive neuroscience publication-title: Nat. Neurosci. – volume: 17 start-page: 603 year: 2013 end-page: 605 article-title: Brain network interactions in health and disease publication-title: Trends Cogn. Sci. – volume: 86 start-page: 231 year: 2014 end-page: 243 article-title: Test–retest reliability of structural brain networks from diffusion MRI publication-title: NeuroImage – volume: 15 start-page: 683 year: 2014 end-page: 695 article-title: Modern network science of neurological disorders publication-title: Nat. Rev. Neurosci. – volume: 45 start-page: 167 year: 2003 end-page: 256 article-title: The structure and function of complex networks publication-title: SIAM Rev. – volume: 17 start-page: 2407 year: 2007 end-page: 2419 article-title: Small‐world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb. Cortex – volume: 21 start-page: 290 year: 2015b end-page: 305 article-title: Understanding structural‐functional relationships in the human brain: a large‐scale network perspective publication-title: Neuroscientist – volume: 6 start-page: e159 year: 2008 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 28 start-page: 917 year: 2006 end-page: 929 article-title: From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel Hilbert space publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 3 start-page: 190 year: 1995 end-page: 208 article-title: Automatic 3‐D model‐based neuroanatomical segmentation publication-title: Hum. Brain Mapp. – volume: 4 start-page: e5226 year: 2009b article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans publication-title: PLoS One – volume: 10 start-page: 186 year: 2009 end-page: 198 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. – volume: 54 start-page: 1862 year: 2011 end-page: 1871 article-title: Brain anatomical networks in early human brain development publication-title: NeuroImage – volume: 16 start-page: 181 year: 2012 end-page: 188 article-title: Characterizing variation in the functional connectome: promise and pitfalls publication-title: Trends Cogn Sci. – volume: 237 start-page: 103 year: 2014 end-page: 107 article-title: Measuring individual morphological relationship of cortical regions publication-title: J. Neurosci. Methods – volume: 107 start-page: 18191 year: 2010 end-page: 18196 article-title: Network‐level structural covariance in the developing brain publication-title: Proc. Natl Acad. Sci. USA – volume: 49 start-page: 3132 year: 2010 end-page: 3148 article-title: Identifying the brain's most globally connected regions publication-title: NeuroImage – volume: 52 start-page: 1302 year: 2010 end-page: 1313 article-title: Network‐level analysis of cortical thickness of the epileptic brain publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: NeuroImage – volume: 38 start-page: 95 year: 2007 end-page: 113 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage – volume: 17 start-page: 683 year: 2013 end-page: 696 article-title: Network hubs in the human brain publication-title: Trends Cogn. Sci. – volume: 80 start-page: 489 year: 2013 end-page: 504 article-title: Networks of anatomical covariance publication-title: NeuroImage – volume: 19 start-page: 524 year: 2009 end-page: 536 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cereb. Cortex – volume: 80 start-page: 397 year: 2013 end-page: 404 article-title: The parcellation‐based connectome: limitations and extensions publication-title: NeuroImage – volume: 9 start-page: 386 year: 2015a article-title: GRETNA: a graph theoretical network analysis toolbox for imaging connectomics publication-title: Front. Hum. Neurosci. – volume: 39 start-page: 1064 year: 2008 end-page: 1080 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: NeuroImage – volume: 50 start-page: 1497 year: 2010 end-page: 1510 article-title: Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks publication-title: NeuroImage – volume: 18 start-page: 2374 year: 2008 end-page: 2381 article-title: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI publication-title: Cereb. Cortex – volume: 56 start-page: 299 year: 2015 end-page: 320 article-title: Annual research review: growth connectomics–the organization and reorganization of brain networks during normal and abnormal development publication-title: J. Child Psychol. Psychiatry – volume: 210 start-page: 411 year: 2005 end-page: 417 article-title: Developmental mechanics of the primate cerebral cortex publication-title: Anat. Embryol. (Berl) – volume: 30 start-page: 1511 year: 2009 end-page: 1523 article-title: Parcellation‐dependent small‐world brain functional networks: a resting‐state fMRI study publication-title: Hum. Brain Mapp. – volume: 141 start-page: 109 year: 2012 end-page: 118 article-title: Abnormal topological organization of structural brain networks in schizophrenia publication-title: Schizophr. Res. – volume: 15 start-page: 1332 year: 2005 end-page: 1342 article-title: Neurophysiological architecture of functional magnetic resonance images of human brain publication-title: Cereb. Cortex – volume: 296 start-page: 910 year: 2002 end-page: 913 article-title: Specificity and stability in topology of protein networks publication-title: Science – volume: 8 start-page: 418 year: 2004 end-page: 425 article-title: Organization, development and function of complex brain networks publication-title: Trends Cogn. Sci. – volume: 6 start-page: e21935 year: 2011 article-title: Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures publication-title: PLoS One – volume: 31 start-page: 164 year: 2015 end-page: 172 article-title: The heavy tail of the human brain publication-title: Curr. Opin. Neurobiol. – volume: 83 start-page: 901 year: 2013 end-page: 911 article-title: Normalization of similarity‐based individual brain networks from gray matter MRI and its association with neurodevelopment in infants with intrauterine growth restriction publication-title: NeuroImage – volume: 31 start-page: 968 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 107 start-page: 9885 year: 2010 end-page: 9890 article-title: Functional connectivity density mapping publication-title: Proc. Natl Acad. Sci. USA – volume: 28 start-page: 9239 year: 2008 end-page: 9248 article-title: Hierarchical organization of human cortical networks in health and schizophrenia publication-title: J. Neurosci. – volume: 44 start-page: 715 year: 2009 end-page: 723 article-title: Age‐related changes in modular organization of human brain functional networks publication-title: NeuroImage – volume: 33 start-page: 1065 year: 1962 end-page: 1076 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. – volume: 52 start-page: 1059 year: 2010 end-page: 1069 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: NeuroImage – volume: 62 start-page: 42 year: 2009 end-page: 52 article-title: Neurodegenerative diseases target large‐scale human brain networks publication-title: Neuron – volume: 5 start-page: 75 year: 1995 end-page: 91 article-title: Computing the Fréchet distance between two polygonal curves publication-title: Int. J. Comput. Geom. Appl. – volume: 38 start-page: 2916 year: 2010 end-page: 2957 article-title: Kernel density estimation via diffusion publication-title: Ann. Stat. – volume: 86 start-page: 420 year: 1979 end-page: 428 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. – volume: 9 start-page: 59 year: 2015 article-title: Test‐retest reliability of white matter structural brain networks: a multiband diffusion MRI study publication-title: Front. Hum. Neurosci. – volume: 9 start-page: 18 year: 1999 end-page: 45 article-title: MRI‐Based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity publication-title: NeuroImage – volume: 33 start-page: 899 year: 2012 end-page: 913 article-title: Changing topological patterns in normal aging using large‐scale structural networks publication-title: Neurobiol. Aging – volume: 29 start-page: 1860 year: 2009 end-page: 1873 article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease publication-title: J. Neurosci. – volume: 33 start-page: 552 year: 2012 end-page: 568 article-title: Age‐related changes in topological organization of structural brain networks in healthy individuals publication-title: Hum. Brain Mapp. – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magn. Reson. Med. – volume: 50 start-page: 970 year: 2010 end-page: 983 article-title: Whole‐brain anatomical networks: does the choice of nodes matter? publication-title: NeuroImage – volume: 385 start-page: 313 year: 1997 end-page: 318 article-title: A tension‐based theory of morphogenesis and compact wiring in the central nervous system publication-title: Nature – volume: 132 start-page: 3366 year: 2009a end-page: 3379 article-title: Impaired small‐world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load publication-title: Brain – volume: 1 start-page: e42 year: 2005 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – volume: 2 start-page: e597 year: 2007 article-title: Mapping human whole‐brain structural networks with diffusion MRI publication-title: PLoS One – volume: 25 start-page: 564 year: 2003 end-page: 577 article-title: Kernel‐based object tracking publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. – volume: 6 start-page: e21976 year: 2011 article-title: Graph theoretical analysis of functional brain networks: test‐retest evaluation on short‐ and long‐term resting‐state functional MRI data publication-title: PLoS One – volume: 23 start-page: 341 year: 2010 end-page: 350 article-title: Graph theoretical modeling of brain connectivity publication-title: Curr. Opin. Neurol. – volume: 56 start-page: 235 year: 2011 end-page: 245 article-title: Age‐related alterations in the modular organization of structural cortical network by using cortical thickness from MRI publication-title: NeuroImage – volume: 12 start-page: 20140881 year: 2015 article-title: Network morphospace publication-title: J. R. Soc. Interface – volume: 27 start-page: 832 year: 1956 end-page: 837 article-title: Remarks on some nonparametric estimates of a density function publication-title: Ann. Math. Stat. – volume: 10 start-page: 524 year: 2013 end-page: 539 article-title: Imaging human connectomes at the macroscale publication-title: Nat. Methods – volume: 22 start-page: 79 year: 1951 end-page: 86 article-title: On information and sufficiency publication-title: Ann. Math. Stat. – volume: 28 start-page: 4756 year: 2008 end-page: 4766 article-title: Structural insights into aberrant topological patterns of large‐scale cortical networks in Alzheimer's disease publication-title: J. Neurosci. – volume: 14 start-page: 11 year: 2004 end-page: 22 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex – volume: 8 start-page: 372 year: 1998 end-page: 384 article-title: Gyri of the human neocortex: an MRI‐based analysis of volume and variance publication-title: Cereb. Cortex – volume: 17 start-page: 2859 year: 1997 end-page: 2868 article-title: Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract publication-title: J. Neurosci. – volume: 31 start-page: 15775 year: 2011 end-page: 15786 article-title: Rich‐club organization of the human connectome publication-title: J. Neurosci. – volume: 36 start-page: 645 year: 2007 end-page: 660 article-title: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory publication-title: NeuroImage – volume: 10 start-page: e0141840 year: 2015 article-title: Mapping individual brain networks using statistical similarity in regional morphology from MRI publication-title: PLoS One – volume: 107 start-page: 4734 year: 2010 end-page: 4739 article-title: Toward discovery science of human brain function publication-title: Proc. Natl Acad. Sci. USA – volume: 13 start-page: 336 year: 2012 end-page: 349 article-title: The economy of brain network organization publication-title: Nat. Rev. Neurosci. – volume: 14 start-page: 322 year: 2013a end-page: 336 article-title: Imaging structural co‐variance between human brain regions publication-title: Nat. Rev. Neurosci. – year: 2002 – volume: 4 start-page: 22 year: 2010 article-title: Network scaling effects in graph analytic studies of human resting‐state FMRI data publication-title: Front. Syst. Neurosci. – volume: 7 start-page: 37 year: 2013 article-title: Information gain in the brain's resting state: a new perspective on autism publication-title: Front. Neuroinform. – volume: 9 start-page: 91 year: 2013 end-page: 121 article-title: Network analysis: an integrative approach to the structure of psychopathology publication-title: Annu. Rev. Clin. Psychol. – volume: 26 start-page: 63 year: 2006 end-page: 72 article-title: A resilient, low‐frequency, small‐world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci. – volume: 25 start-page: 733 year: 2015 end-page: 748 article-title: Connectomics: a new paradigm for understanding brain disease publication-title: Eur. Neuropsychopharmacol. – volume: 22 start-page: 1530 year: 2012 end-page: 1541 article-title: Similarity‐based extraction of individual networks from gray matter MRI scans publication-title: Cereb. Cortex – volume: 393 start-page: 440 year: 1998 end-page: 442 article-title: Collective dynamics of ‘small‐world'networks publication-title: Nature – ident: e_1_2_9_69_1 doi: 10.1016/j.neuroimage.2007.09.031 – ident: e_1_2_9_44_1 doi: 10.1093/brain/awp089 – ident: e_1_2_9_47_1 doi: 10.1016/j.tics.2013.09.012 – ident: e_1_2_9_58_1 doi: 10.1016/j.neuroimage.2008.09.062 – ident: e_1_2_9_70_1 doi: 10.1037/0033-2909.86.2.420 – ident: e_1_2_9_9_1 doi: 10.1016/j.tics.2013.09.004 – ident: e_1_2_9_27_1 doi: 10.1002/hbm.460030304 – ident: e_1_2_9_19_1 doi: 10.1146/annurev-clinpsy-040510-143934 – volume: 9 start-page: 386 year: 2015 ident: e_1_2_9_84_1 article-title: GRETNA: a graph theoretical network analysis toolbox for imaging connectomics publication-title: Front. Hum. Neurosci. – ident: e_1_2_9_10_1 doi: 10.1523/JNEUROSCI.1929-08.2008 – ident: e_1_2_9_60_1 doi: 10.1214/aoms/1177704472 – volume: 4 start-page: 22 year: 2010 ident: e_1_2_9_37_1 article-title: Network scaling effects in graph analytic studies of human resting‐state FMRI data publication-title: Front. Syst. Neurosci. – ident: e_1_2_9_48_1 doi: 10.1007/s00429-005-0041-5 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuroimage.2013.05.054 – ident: e_1_2_9_51_1 doi: 10.1093/cercor/8.4.372 – ident: e_1_2_9_75_1 doi: 10.1038/nrn3801 – ident: e_1_2_9_3_1 doi: 10.1038/nrn3465 – ident: e_1_2_9_14_1 doi: 10.1073/pnas.0911855107 – ident: e_1_2_9_93_1 doi: 10.1016/j.neurobiolaging.2010.06.022 – ident: e_1_2_9_2_1 doi: 10.1523/JNEUROSCI.3874-05.2006 – ident: e_1_2_9_31_1 doi: 10.1016/S0169-7439(99)00047-7 – ident: e_1_2_9_79_1 doi: 10.1038/385313a0 – ident: e_1_2_9_32_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_9_81_1 doi: 10.1111/jcpp.12365 – ident: e_1_2_9_4_1 doi: 10.1523/JNEUROSCI.3554-12.2013 – ident: e_1_2_9_85_1 doi: 10.1177/1073858414537560 – ident: e_1_2_9_92_1 doi: 10.1371/journal.pone.0021935 – ident: e_1_2_9_43_1 doi: 10.1523/JNEUROSCI.0141-08.2008 – ident: e_1_2_9_50_1 doi: 10.1016/j.tics.2012.02.001 – ident: e_1_2_9_45_1 doi: 10.1371/journal.pone.0005226 – ident: e_1_2_9_25_1 doi: 10.1016/j.neuroimage.2009.11.001 – ident: e_1_2_9_13_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_9_29_1 doi: 10.1038/nmeth.2482 – ident: e_1_2_9_36_1 doi: 10.1016/j.euroneuro.2014.02.011 – volume-title: Model selection and multimodel inference: a practical information‐theoretic approach year: 2002 ident: e_1_2_9_22_1 – ident: e_1_2_9_61_1 doi: 10.1016/j.neuroimage.2010.05.045 – ident: e_1_2_9_17_1 doi: 10.1016/j.neuroimage.2013.09.054 – ident: e_1_2_9_21_1 doi: 10.1038/nrn3214 – ident: e_1_2_9_34_1 doi: 10.1016/j.neuroimage.2010.07.025 – ident: e_1_2_9_88_1 doi: 10.1016/j.neuroimage.2009.12.027 – ident: e_1_2_9_39_1 doi: 10.1371/journal.pone.0000597 – ident: e_1_2_9_87_1 doi: 10.1002/hbm.21232 – ident: e_1_2_9_38_1 doi: 10.1093/cercor/bhn102 – ident: e_1_2_9_82_1 doi: 10.1002/hbm.20623 – ident: e_1_2_9_16_1 doi: 10.1214/10-AOS799 – ident: e_1_2_9_73_1 doi: 10.1016/j.tics.2004.07.008 – ident: e_1_2_9_66_1 doi: 10.1093/cercor/bhi016 – ident: e_1_2_9_76_1 doi: 10.1093/cercor/bhr221 – ident: e_1_2_9_53_1 doi: 10.1371/journal.pone.0141840 – ident: e_1_2_9_90_1 doi: 10.3389/fnhum.2015.00059 – ident: e_1_2_9_30_1 doi: 10.1093/brain/awu132 – ident: e_1_2_9_49_1 doi: 10.1016/j.neuroimage.2007.02.012 – ident: e_1_2_9_71_1 doi: 10.1016/j.neuroimage.2013.03.023 – ident: e_1_2_9_72_1 doi: 10.1038/nn.3690 – ident: e_1_2_9_78_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_9_20_1 doi: 10.1038/nrn2575 – ident: e_1_2_9_24_1 doi: 10.1016/j.neuroimage.2011.01.010 – ident: e_1_2_9_28_1 doi: 10.1109/TPAMI.2003.1195991 – ident: e_1_2_9_6_1 doi: 10.1523/JNEUROSCI.17-08-02859.1997 – ident: e_1_2_9_74_1 doi: 10.1371/journal.pcbi.0010042 – ident: e_1_2_9_8_1 doi: 10.1098/rsif.2014.0881 – ident: e_1_2_9_12_1 doi: 10.1016/j.neuroimage.2013.07.045 – ident: e_1_2_9_62_1 doi: 10.1016/j.neuroimage.2013.03.053 – ident: e_1_2_9_86_1 doi: 10.1038/30918 – ident: e_1_2_9_64_1 doi: 10.1214/aoms/1177728190 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2010.09.006 – ident: e_1_2_9_42_1 doi: 10.1093/cercor/bhl149 – ident: e_1_2_9_63_1 doi: 10.1016/j.conb.2014.10.014 – ident: e_1_2_9_46_1 doi: 10.1523/JNEUROSCI.3539-11.2011 – volume: 7 start-page: 37 year: 2013 ident: e_1_2_9_80_1 article-title: Information gain in the brain's resting state: a new perspective on autism publication-title: Front. Neuroinform. – ident: e_1_2_9_65_1 doi: 10.1016/j.neuroimage.2009.10.003 – ident: e_1_2_9_89_1 doi: 10.1016/j.schres.2012.08.021 – ident: e_1_2_9_67_1 doi: 10.1016/j.neuroimage.2010.01.028 – ident: e_1_2_9_40_1 doi: 10.1371/journal.pbio.0060159 – ident: e_1_2_9_55_1 doi: 10.1371/journal.pone.0032766 – ident: e_1_2_9_41_1 doi: 10.1097/WCO.0b013e32833aa567 – ident: e_1_2_9_56_1 doi: 10.1006/nimg.1998.0384 – ident: e_1_2_9_15_1 doi: 10.1146/annurev-clinpsy-050212-185608 – ident: e_1_2_9_68_1 doi: 10.1016/j.neuron.2009.03.024 – ident: e_1_2_9_35_1 doi: 10.1093/cercor/bhg087 – ident: e_1_2_9_26_1 doi: 10.1016/j.neuron.2014.05.014 – ident: e_1_2_9_83_1 doi: 10.1371/journal.pone.0021976 – ident: e_1_2_9_7_1 doi: 10.1016/j.neuroimage.2007.07.007 – ident: e_1_2_9_59_1 doi: 10.1137/S003614450342480 – ident: e_1_2_9_23_1 doi: 10.1093/cercor/bhn003 – ident: e_1_2_9_52_1 doi: 10.1016/j.jneumeth.2014.09.003 – ident: e_1_2_9_94_1 doi: 10.1073/pnas.1003109107 – ident: e_1_2_9_54_1 doi: 10.1214/aoms/1177729694 – ident: e_1_2_9_77_1 doi: 10.1073/pnas.1001414107 – ident: e_1_2_9_5_1 doi: 10.1142/S0218195995000064 – ident: e_1_2_9_18_1 doi: 10.1523/JNEUROSCI.5062-08.2009 – ident: e_1_2_9_57_1 doi: 10.1126/science.1065103 – ident: e_1_2_9_91_1 doi: 10.1109/TPAMI.2006.120 |
| SSID | ssj0000514240 |
| Score | 2.4535046 |
| Snippet | Introduction
Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local... Structural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features... IntroductionStructural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e00448 |
| SubjectTerms | Adult Brain - anatomy & histology Brain - diagnostic imaging Brain network Brain research Female Gray Matter - anatomy & histology Gray Matter - diagnostic imaging gray matter volume hub Humans Labeling Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Male Medical imaging Morphology Nerve Net - anatomy & histology Nerve Net - diagnostic imaging Original Research Probability distribution reliability Reproducibility of Results structural MRI Studies Young Adult |
| SummonAdditionalLinks | – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELVoQYgNb-iFgoyEYEPU-HFjmx1FVGyoKh5Sd9HEcdpKbS5Kciuxop-AxB_2S5iJk8BVQULqygs_Yscz9vF4fIax57oA4YxSiXaFSbTxkLg0LZMU_Ny4MpUh832wCbO7a_f33d7gVUlvYSI_xGRwI83o12tScCjard-koUWDx0A8XKyxq0IoS2EbpN6b7CvE6y3795BSZDJR0riRezaVW2Pl1d3oAsS86Cn5J4Ltt6CdW5fp_G12cwCe_E2UlDvsSqjvsusfhqv1e-z7J9zEjsP52Y92WZBxhp8scA7GtZEXFEuC19FrvH3NPXnI-Bh7gp8A0TwcvOJdjLnQ1_ATF3R86smhLjki2-787GdD9t6ONziMSBT-7T77svPu89v3yRCdIfFzVPsErPMI9xCxBA3SVlWZSQmyMlmZViBAWdx-S6KbCT5ksswcjtdUogoUkXNeqQdsvV7UYYNxq2WJC4NRIaTaA1iReigwAXBOizBjL8dZyv1AXU4RNI7zSLosc_qfObY_Y8-mkl8jXcdfymyOE50PCtvmUlpi8lPaYBNTNqoa3Z9AHRbLNhfGzo3OlHIz9jDKxfQRaXC5Rvg7Y2ZFYqYCROO9mlMfHfZ03ppAmsY2X_QS889-59sftxWmj_634GN2A-FdFv2MNtl61yzDE3bNn3ZHbfO0V5dfZtseZg priority: 102 providerName: Wiley-Blackwell |
| Title | Single‐subject morphological brain networks: connectivity mapping, topological characterization and test–retest reliability |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbrb3.448 https://www.ncbi.nlm.nih.gov/pubmed/27088054 https://www.proquest.com/docview/2288591347 https://www.proquest.com/docview/1785746339 https://pubmed.ncbi.nlm.nih.gov/PMC4782249 |
| Volume | 6 |
| WOSCitedRecordID | wos000374761900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: 7X7 dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: BENPR dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: M2M dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: PIMPY dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: M2O dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: WIN dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2162-3279 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000514240 issn: 2162-3279 databaseCode: 24P dateStart: 20110101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZYh9Au_N4ojMpICC5ESxw3jrkgijaxQ0s0QJRT5DgOVOrSkaRInNifgMR_uL-E92InbBpw4eKosutaffZ7X59fv4-QxzxTgRRh6HGZCY8LrTzp-7nnKz0WMveZiXQrNiFms3g-l4lLuNWurLLzia2jzlcac-R7jMVItRZy8eLki4eqUXi76iQ0NsgmMpXxAdmc7M-Soz7LguzeELM61lmf7WUV_HrkKPdzPg5dApeXayTPY9c2-Bzc-N9l3yTXHeykL-0-uUWumPI2uTZ1F-t3yPe3EMKW5uz0R73OMDVDj1dggc4z0gyVJGhpa8br51RjfYy2yhP0WCHJw6dntLGKC-07dM8Ebf_oSVWZU8C1zdnpzwqzvQ2tzHJhacK_3SXvD_bfvXrtOW0GT4_h0HsqlhrAHuAVwxWLiyKPGFOsEFHuFypQYQzBN0eyGaNNxPJIwncuiqAwqMc5LsJtMihXpblHaMxZDm5BhMb4XCsVB75WGTyUkpIHZkiedpZKtSMuR_2MZWopl1mKNk1h_iF51I88sWQdfxiz2xkqdce1Tn9bCabou-Gg4e2JKs1qXaeBiMeCR2Eoh2TH7o3-Q5gAZw3gd0jEhV3TD0AS74s95eJzS-bNEaJxmPNJu7_-uu50cjQJ4Xn_3-t_QLYA0kW2tmiXDJpqbR6Sq_prs6irEdlgPIFWzEXbxiN3YEZtLgLaKZu27RvoSQ6nyUd49eFw9gsjmino |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgoAL_z8LBYzEz4WoieONYySEKFC1aneFoEi9BcdxYKVttiRZUE_0EZB4Dx6qT8JMnIRWBW49cMrBjuMkn2fG9vj7AB6IVAdKhqEnVCo9IY32lO9nnq_NUKrM5zYyjdiEHI_j7W31ZgF-dmdhKK2ys4mNoc5mhtbIlzmPiWotFPL57mePVKNod7WT0HCw2LB7X3HKVj1bf4X_9yHnq6-3Xq55raqAZ4YIV0_HymCYgp7WCs3jPM8izjXPZZT5uQ50GKPbyIgmxRob8SxSOIOReZBbUpIc5iG2ewpOC5wJkVTEiI_6NR3iEkcP2XHc-nw5LXGuKkhc6LDXOxbKHs_IPBwpN65u9eL_9pEuwYU2qGYv3Ci4DAu2uAJnR23awFX49g4d9NQe7H-v5iktPLGdGeKrs_ssJZ0MVriM-OopM5T9Y5yuBtvRRGHx8QmrnZ5Ec4fpea7dMVami4xh1F4f7P8oaS27ZqWdThwJ-t41eH8ir38dFotZYW8CiwXP0OjJ0FpfGK3jwDc6xYvWSonADuBxh4zEtLTspA4yTRyhNE8IQwm2P4D7fc1dR0XyhzpLHTCS1hhVyW9UYBN9MZoR2hvShZ3NqySQ8VCKKAzVAG44LPYP4RJdEYb2A5BHUNpXIIryoyXF5FNDVS4oABXY5qMGz3_td7LydiXE661_9_8enFvbGm0mm-vjjdtwHoPXyGVRLcFiXc7tHThjvtSTqrzbDEwGH04a5L8AEJl84Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6Vgiou_P8sFDASPxeiTRwnTpAQopQVVdlVBVTqLTiOAyttsyXJgnqij4DE2_A4fRJm4iS0KnDrgVMOdhwn-TwztsffB_BApMqLpe87Ik6lI6RWTuy6meMqHcg4c7kJdSM2ISeTaGcn3lqCn91ZGEqr7GxiY6izuaY18iHnEVGt-UIO8zYtYmt99Hzvs0MKUrTT2slpWIhsmv2vOH2rnm2s479-yPno1fuXr51WYcDRAULXUVGsMWRBr2uE4lGeZyHniucyzNxcecqP0IVkRJlitAl5FsY4m5G5lxtSlQxyH9s9A2elCAJSTxjzcb--Q7zi6C07vluXD9MS562ChIaOesATYe3J7MyjUXPj9kYX_-cPdgkutME2e2FHx2VYMsUVWBm36QRX4ds7dNwzc3jwvVqktCDFdueIu84fsJT0M1hhM-Wrp0xTVpC2ehtsVxG1xccnrLY6E80duue_tsdbmSoyhtF8fXjwo6Q17pqVZja15Oj712D7VF7_OiwX88LcBBYJnqExlL4xrtBKRZ6rVYoXpeJYeGYAjzuUJLqlayfVkFliiaZ5QnhKsP0B3O9r7lmKkj_UWe1AkrRGqkp-IwSb6IvRvNCekSrMfFElnowCKULfjwdww-KyfwiX6KIw5B-APIbYvgJRlx8vKaafGgpzQYGpwDYfNdj-a7-TtbdrPl5v_bv_92AFsZ282Zhs3obzGNOGNrlqFZbrcmHuwDn9pZ5W5d1mjDL4cNoY_wW4HoWn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90subject+morphological+brain+networks%3A+connectivity+mapping%2C+topological+characterization+and+test%E2%80%93retest+reliability&rft.jtitle=Brain+and+behavior&rft.au=Wang%2C+Hao&rft.au=Jin%2C+Xiaoqing&rft.au=Zhang%2C+Ye&rft.au=Wang%2C+Jinhui&rft.date=2016-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2162-3279&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1002%2Fbrb3.448&rft_id=info%3Apmid%2F27088054&rft.externalDocID=PMC4782249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-3279&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-3279&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-3279&client=summon |