Supervised learning of bag-of-features shape descriptors using sparse coding

We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content‐based shape retrieval approaches follow the bag‐of‐features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 5; pp. 127 - 136
Main Authors: Litman, Roee, Bronstein, Alex, Bronstein, Michael, Castellani, Umberto
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.08.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content‐based shape retrieval approaches follow the bag‐of‐features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a ‘geometric dictionary’ using vector quantization. A major drawback of such approaches is that the dictionary is constructed in an unsupervised manner using clustering, unaware of the last stage of the process (pooling of the local descriptors into a BoF, and comparison of the latter using some metric). In this paper, we replace the clustering with dictionary learning, where every atom acts as a feature, followed by sparse coding and pooling to get the final BoF descriptor. Both the dictionary and the sparse codes can be learned in the supervised regime via bi‐level optimization using a task‐specific objective that promotes invariance desired in the specific application. We show significant performance improvement on several standard shape retrieval benchmarks.
AbstractList We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content‐based shape retrieval approaches follow the bag‐of‐features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a ‘geometric dictionary’ using vector quantization. A major drawback of such approaches is that the dictionary is constructed in an unsupervised manner using clustering, unaware of the last stage of the process (pooling of the local descriptors into a BoF, and comparison of the latter using some metric). In this paper, we replace the clustering with dictionary learning, where every atom acts as a feature, followed by sparse coding and pooling to get the final BoF descriptor. Both the dictionary and the sparse codes can be learned in the supervised regime via bi‐level optimization using a task‐specific objective that promotes invariance desired in the specific application. We show significant performance improvement on several standard shape retrieval benchmarks.
We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content-based shape retrieval approaches follow the bag-of-features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a 'geometric dictionary' using vector quantization. A major drawback of such approaches is that the dictionary is constructed in an unsupervised manner using clustering, unaware of the last stage of the process (pooling of the local descriptors into a BoF, and comparison of the latter using some metric). In this paper, we replace the clustering with dictionary learning, where every atom acts as a feature, followed by sparse coding and pooling to get the final BoF descriptor. Both the dictionary and the sparse codes can be learned in the supervised regime via bi-level optimization using a task-specific objective that promotes invariance desired in the specific application. We show significant performance improvement on several standard shape retrieval benchmarks. [PUBLICATION ABSTRACT]
Author Bronstein, Alex
Castellani, Umberto
Bronstein, Michael
Litman, Roee
Author_xml – sequence: 1
  givenname: Roee
  surname: Litman
  fullname: Litman, Roee
  organization: School of Electrical Engineering, Tel-Aviv University
– sequence: 2
  givenname: Alex
  surname: Bronstein
  fullname: Bronstein, Alex
  organization: School of Electrical Engineering, Tel-Aviv University
– sequence: 3
  givenname: Michael
  surname: Bronstein
  fullname: Bronstein, Michael
  organization: Faculty of Informatics, University of Lugano
– sequence: 4
  givenname: Umberto
  surname: Castellani
  fullname: Castellani, Umberto
  organization: Department of Computer Science, University of Verona
BookMark eNp9kEtP6zAQRi0EEuWx4B9EupvLImA3duwsUUULooIFINhZrjMuhhDnehIe_x5DuSyQYDYzI51vNDpbZL0NLRCyx-gBS3Vol-6AjXmh1siI8VLmqhTVOhlRlmZJhdgkW4j3lFIuSzEi88uhg_jkEeqsARNb3y6z4LKFWebB5Q5MP0TADO9MB1kNaKPv-hAxG_Adxc5EhMyGOm07ZMOZBmH3s2-T6-nx1eQkn1_MTidH89wKylXOLGcLKxyzpZMcnLCUM1VKsMospFsox51UrjLUFIbKQlSg6nFdgWOVFcoW2-Tv6m4Xw78BsNePHi00jWkhDKiZlIqOVdKQ0D_f0PswxDZ9p5kQgicvTCVqf0XZGBAjON1F_2jiq2ZUv3vVyav-8JrYw2-s9b3pfWj7aHzzW-LZN_D682k9mU3_J_JVwmMPL18JEx90KQsp9M35TJ_dcjG_OZlqVbwBaRiajg
CitedBy_id crossref_primary_10_1109_TIP_2020_2967579
crossref_primary_10_1145_3144454
crossref_primary_10_1109_TIP_2018_2817042
crossref_primary_10_1109_TMECH_2020_2992573
crossref_primary_10_1109_TIP_2020_3008970
crossref_primary_10_1109_JSEN_2021_3094122
crossref_primary_10_1111_cgf_12703
crossref_primary_10_1007_s00371_016_1293_1
crossref_primary_10_1111_cgf_12844
crossref_primary_10_1016_j_patrec_2016_05_028
crossref_primary_10_1109_TMM_2017_2652071
crossref_primary_10_1016_j_cad_2020_102913
crossref_primary_10_1109_ACCESS_2018_2882711
crossref_primary_10_1016_j_cagd_2020_101910
crossref_primary_10_1145_2866570
crossref_primary_10_1145_3092817
crossref_primary_10_1109_ACCESS_2020_2998468
crossref_primary_10_1007_s11263_016_0903_8
crossref_primary_10_1007_s11063_018_9858_9
crossref_primary_10_1109_TPAMI_2016_2596722
crossref_primary_10_1007_s10489_016_0880_1
crossref_primary_10_1109_TVCG_2018_2839685
crossref_primary_10_1007_s00371_015_1071_5
crossref_primary_10_1007_s13735_016_0103_x
crossref_primary_10_1007_s00371_016_1301_5
crossref_primary_10_1111_cgf_13272
crossref_primary_10_1111_cgf_13273
crossref_primary_10_1145_3137609
crossref_primary_10_1016_j_cag_2018_12_003
crossref_primary_10_1109_TVCG_2017_2719024
crossref_primary_10_1145_2816795_2818116
crossref_primary_10_1145_2980179_2982409
crossref_primary_10_1016_j_knosys_2020_106443
crossref_primary_10_1111_cgf_12734
crossref_primary_10_1109_TIP_2017_2651408
crossref_primary_10_1007_s11042_019_7670_9
crossref_primary_10_1111_cgf_13536
crossref_primary_10_1145_3272127_3275006
crossref_primary_10_1111_cgf_12693
crossref_primary_10_1016_j_csbj_2023_05_022
crossref_primary_10_1016_j_neucom_2015_12_130
crossref_primary_10_1111_cgf_12790
crossref_primary_10_1007_s00371_016_1234_z
crossref_primary_10_1007_s11042_020_09764_y
crossref_primary_10_1016_j_knosys_2015_10_019
crossref_primary_10_1145_3072959_3092817
crossref_primary_10_1109_TCYB_2016_2638924
crossref_primary_10_1109_TMM_2017_2698200
Cites_doi 10.1007/s10479-007-0176-2
10.1162/jmlr.2003.3.4-5.993
10.1080/10586458.1993.10504266
10.1007/s11263-009-0298-x
10.1145/1553374.1553463
10.1016/j.cag.2013.04.003
10.1109/TIP.2012.2183142
10.1007/s00138-013-0501-5
10.1155/ASP/2006/52561
10.1109/TPAMI.2011.156
10.1145/2461466.2461488
10.1007/s00371-013-0815-3
10.1109/CVPR.2008.4587652
10.1007/s00371-010-0519-x
10.1109/ICCV.2003.1238663
10.1145/1064830.1064859
10.1145/2508363.2508364
10.1145/1899404.1899405
10.1109/TPAMI.2008.138
10.1007/s13735-013-0041-9
10.1016/j.patcog.2012.07.014
10.1023/A:1007617005950
10.1109/ICCV.2013.215
10.1002/cpa.20042
10.1007/s11263-009-0294-1
10.1109/CVPR.2010.5539838
10.1109/ICCV.2005.239
10.1109/ICCV.2013.154
10.1111/j.1467-8659.2012.03175.x
10.1109/TMM.2012.2231059
10.1145/2010324.1964928
10.1111/j.1467-8659.2012.03172.x
10.1109/TSP.2006.881199
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12438
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 136
ExternalDocumentID 3410909671
10_1111_cgf_12438
CGF12438
ark_67375_WNG_KX45LWHF_8
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c5048-1c41bc5f1c6f74ef5c041867ec8ab7fb8f4f78f9a0a3a07359e8d2d9ef19c58c3
IEDL.DBID DRFUL
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341128900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Sep 05 13:01:30 EDT 2025
Mon Jul 14 09:01:15 EDT 2025
Sat Nov 29 03:41:11 EST 2025
Tue Nov 18 21:25:40 EST 2025
Wed Jan 22 16:25:45 EST 2025
Tue Nov 11 03:33:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5048-1c41bc5f1c6f74ef5c041867ec8ab7fb8f4f78f9a0a3a07359e8d2d9ef19c58c3
Notes ark:/67375/WNG-KX45LWHF-8
istex:268207A2F34DE46B771C812EE41B0B27DA1F0B82
ArticleID:CGF12438
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1555401618
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1778028243
proquest_journals_1555401618
crossref_primary_10_1111_cgf_12438
crossref_citationtrail_10_1111_cgf_12438
wiley_primary_10_1111_cgf_12438_CGF12438
istex_primary_ark_67375_WNG_KX45LWHF_8
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Lavoue G.: Combination of bag-of-words descriptors for robust partial shape retrieval. The Visual Computer 26 (2012), 1257-1268. 1
Li C., Hamza A.: Intrinsic spatial pyramid matching for deformable 3d shape retrieval. J. Multimedia Information Retrieval 2, 4 (2013), 261-271. 1, 7, 8
Aharon M., Elad M., Bruckstein A.: k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. Trans. Signal Processing 54, 11 (2006), 4311-4322. 2, 4
Hofmann T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42, 1-2 (2001), 177-196. 2
Ovsjanikov M., Li W., Guibas L., Mitra N.J.: Exploration of continuous variability in collections of 3D shapes. TOG 30, 4 (2011), 33. 1
Engan K., Aase S.O., Hakon Husoy J.: Method of optimal directions for frame design. In Proc. ICASSP (1999), vol. 5. 4
Lian Z., et al.: A Comparison of Methods for Non-rigid 3D Shape Retrieval. Pattern Recognition 46, 1 (2013), 449-461. 1
Liu Y., Wang X.-L., Wang H.-Y., Zha H., Qin H.: Learning robust similarity measures for 3d partial shape retrieval. International Journal of Computer Vision 89, 2-3 (2010), 408-431. 1
Bronstein A.M., Bronstein M.M., Guibas L.J., Ovsjanikov M.: Shape google: Geometric words and expressions for invariant shape retrieval. TOG 30, 1 (2011), 1-20. 1, 2, 7, 8
López-Sastre R.J., García-Fuertes A., Redondo-Cabrera C., Acevedo-Rodríguez F.J., Maldonado-Bascón S.: Evaluating 3d spatial pyramids for classifying 3d shapes. Computers and Graphics 37, 5 (2013), 473-483. 1
Funkhouser T., Kazhdan M., Min P., Shilane P.: Shape-based retrieval and analysis of 3D models. Comm. ACM 48 (2005), 58-64. 1
Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15-36. 2
GONG B., LIU J., Wang X., TANG X.: Learning semantic signatures for 3d object retrieval. Trans. on Multimedia 15, 2 (2013), 369-377. 1
Giachetti A., Lovato C.: Radial symmetry detection and shape characterization with the multiscale area projection transform. Computer Graphics Forum 31, 5 (2012), 1669-1678. 7, 8
Sun J., Ovsjanikov M., Guibas L.: A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. vol. 28, pp. 1383-1392. 1, 2, 7
Weinberger K.Q., Saul L.K.: Distance metric learning for large margin nearest neighbor classification. JMLR 10 (2009), 207-244. 4
Blei D.M., Ng A.Y., Jordan M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993-1022. 2
Mairal J., Bach F., Ponce J.: Task-driven dictionary learning. Trans. PAMI 34, 4 (2012), 791-804. 2, 5, 6
Colson B., Marcotte P., Savard G.: An overview of bilevel optimization. Ann. Oper. Res. 153, 1 (2007), 235-256. 5
Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure and Applied Mathematics 57, 11 (2004), 1413-1457. 9
Li C., Hamza A.B.: A multiresolution descriptor for deformable 3d shape retrieval. The Visual Computer 29, 6-8 (2013), 513-524. 7, 8
Vapnik V.: Statistical Learning Theory. Wiley, New York, 1998. 2
Lian Z., Godil A., Sun X., Xiao J.: CM-BOF: visual similarity-based 3D shape retrieval using clock matching and bag-of-features. Machine Vision and Applications 24, 8 (2013), 1685-1704. 1
Lazebnik S., Raginsky M.: Supervised learning of quantizer codebooks by information loss minimization. Trans. PAMI 31, 7 (July 2009), 1294-1309. 2
Hu R., Fan L., Liu L.: Co-segmentation of 3d shapes via subspace clustering. Computer Graphics Forum 31, 5 (2012), 1703-1713. 2
Akgül C.B., Sankur B., Yemez Y., Schmitt F.: Similarity learning for 3d object retrieval using relevance feedback and risk minimization. IJCV 89, 2-3 (2010), 392-407. 1
Toldo R., Castellani U., Fusiello A.: The bag of words approach for retrieval and categorization of 3D objects. The Visual Computer 26 (2010), 1257-1268. 1
Duda R., Hart P., Stork D.: Pattern Classification, second ed. John Wiley & Sons, 2001. 2
Huang Q.-X., Su H., Guibas L.: Fine-grained semi-supervised labeling of large shape collections. TOG 32, 6 (2013), 190. 1, 8
Darom T., Keller Y.: Scale-Invariant Features for 3-D Mesh Models. Trans. Image Processing 21, 5 (2012), 2758-2769. 1
2013; 29
28
2013; 2
2012
2006; 54
2010
2013; 46
2013; 24
2009
1998
2011; 30
2008
2006
2005
2004
2003
2005; 48
2012; 34
1999; 5
1993; 2
2012; 31
2001; 42
2010; 89
2013; 15
2013; 37
2010; 26
2009; 10
2009; 31
2001
2013; 32
2007; 153
2004; 57
2003; 3
2014
2013
2012; 26
2012; 21
e_1_2_8_28_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Mitra N. (e_1_2_8_40_2) 2013
Sun J. (e_1_2_8_46_2); 28
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_34_2
Weinberger K.Q. (e_1_2_8_50_2) 2009; 10
e_1_2_8_15_2
e_1_2_8_36_2
Engan K. (e_1_2_8_13_2) 1999; 5
e_1_2_8_30_2
e_1_2_8_32_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_25_2
e_1_2_8_48_2
Lavoue G. (e_1_2_8_24_2) 2012; 26
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
Vapnik V. (e_1_2_8_49_2) 1998
Duda R. (e_1_2_8_11_2) 2001
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
References_xml – reference: Hu R., Fan L., Liu L.: Co-segmentation of 3d shapes via subspace clustering. Computer Graphics Forum 31, 5 (2012), 1703-1713. 2
– reference: Li C., Hamza A.B.: A multiresolution descriptor for deformable 3d shape retrieval. The Visual Computer 29, 6-8 (2013), 513-524. 7, 8
– reference: Aharon M., Elad M., Bruckstein A.: k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. Trans. Signal Processing 54, 11 (2006), 4311-4322. 2, 4
– reference: Darom T., Keller Y.: Scale-Invariant Features for 3-D Mesh Models. Trans. Image Processing 21, 5 (2012), 2758-2769. 1
– reference: Colson B., Marcotte P., Savard G.: An overview of bilevel optimization. Ann. Oper. Res. 153, 1 (2007), 235-256. 5
– reference: Funkhouser T., Kazhdan M., Min P., Shilane P.: Shape-based retrieval and analysis of 3D models. Comm. ACM 48 (2005), 58-64. 1
– reference: Duda R., Hart P., Stork D.: Pattern Classification, second ed. John Wiley & Sons, 2001. 2
– reference: Lavoue G.: Combination of bag-of-words descriptors for robust partial shape retrieval. The Visual Computer 26 (2012), 1257-1268. 1
– reference: Toldo R., Castellani U., Fusiello A.: The bag of words approach for retrieval and categorization of 3D objects. The Visual Computer 26 (2010), 1257-1268. 1
– reference: Liu Y., Wang X.-L., Wang H.-Y., Zha H., Qin H.: Learning robust similarity measures for 3d partial shape retrieval. International Journal of Computer Vision 89, 2-3 (2010), 408-431. 1
– reference: Sun J., Ovsjanikov M., Guibas L.: A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. vol. 28, pp. 1383-1392. 1, 2, 7
– reference: Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15-36. 2
– reference: GONG B., LIU J., Wang X., TANG X.: Learning semantic signatures for 3d object retrieval. Trans. on Multimedia 15, 2 (2013), 369-377. 1
– reference: Lian Z., et al.: A Comparison of Methods for Non-rigid 3D Shape Retrieval. Pattern Recognition 46, 1 (2013), 449-461. 1
– reference: Lazebnik S., Raginsky M.: Supervised learning of quantizer codebooks by information loss minimization. Trans. PAMI 31, 7 (July 2009), 1294-1309. 2
– reference: Blei D.M., Ng A.Y., Jordan M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993-1022. 2
– reference: Huang Q.-X., Su H., Guibas L.: Fine-grained semi-supervised labeling of large shape collections. TOG 32, 6 (2013), 190. 1, 8
– reference: Bronstein A.M., Bronstein M.M., Guibas L.J., Ovsjanikov M.: Shape google: Geometric words and expressions for invariant shape retrieval. TOG 30, 1 (2011), 1-20. 1, 2, 7, 8
– reference: Giachetti A., Lovato C.: Radial symmetry detection and shape characterization with the multiscale area projection transform. Computer Graphics Forum 31, 5 (2012), 1669-1678. 7, 8
– reference: Engan K., Aase S.O., Hakon Husoy J.: Method of optimal directions for frame design. In Proc. ICASSP (1999), vol. 5. 4
– reference: Weinberger K.Q., Saul L.K.: Distance metric learning for large margin nearest neighbor classification. JMLR 10 (2009), 207-244. 4
– reference: López-Sastre R.J., García-Fuertes A., Redondo-Cabrera C., Acevedo-Rodríguez F.J., Maldonado-Bascón S.: Evaluating 3d spatial pyramids for classifying 3d shapes. Computers and Graphics 37, 5 (2013), 473-483. 1
– reference: Ovsjanikov M., Li W., Guibas L., Mitra N.J.: Exploration of continuous variability in collections of 3D shapes. TOG 30, 4 (2011), 33. 1
– reference: Akgül C.B., Sankur B., Yemez Y., Schmitt F.: Similarity learning for 3d object retrieval using relevance feedback and risk minimization. IJCV 89, 2-3 (2010), 392-407. 1
– reference: Vapnik V.: Statistical Learning Theory. Wiley, New York, 1998. 2
– reference: Li C., Hamza A.: Intrinsic spatial pyramid matching for deformable 3d shape retrieval. J. Multimedia Information Retrieval 2, 4 (2013), 261-271. 1, 7, 8
– reference: Mairal J., Bach F., Ponce J.: Task-driven dictionary learning. Trans. PAMI 34, 4 (2012), 791-804. 2, 5, 6
– reference: Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure and Applied Mathematics 57, 11 (2004), 1413-1457. 9
– reference: Hofmann T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42, 1-2 (2001), 177-196. 2
– reference: Lian Z., Godil A., Sun X., Xiao J.: CM-BOF: visual similarity-based 3D shape retrieval using clock matching and bag-of-features. Machine Vision and Applications 24, 8 (2013), 1685-1704. 1
– volume: 21
  start-page: 2758
  issue: 5
  year: 2012
  end-page: 2769
  article-title: Scale‐Invariant Features for 3-D Mesh Models
  publication-title: Trans. Image Processing
– year: 2009
– volume: 29
  start-page: 513
  issue: 6
  year: 2013
  end-page: 8 524
  article-title: A multiresolution descriptor for deformable 3d shape retrieval
  publication-title: The Visual Computer
– volume: 30
  start-page: 33
  issue: 4
  year: 2011
  article-title: Exploration of continuous variability in collections of 3D shapes
  publication-title: TOG
– year: 2005
– year: 2001
– year: 2003
– volume: 26
  start-page: 1257
  year: 2010
  end-page: 1268
  article-title: The bag of words approach for retrieval and categorization of 3D objects
  publication-title: The Visual Computer
– volume: 89
  start-page: 392
  issue: 2
  year: 2010
  end-page: 3 407
  article-title: Similarity learning for 3d object retrieval using relevance feedback and risk minimization
  publication-title: IJCV
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  article-title: k‐SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: Trans. Signal Processing
– volume: 31
  start-page: 1669
  issue: 5
  year: 2012
  end-page: 1678
  article-title: Radial symmetry detection and shape characterization with the multiscale area projection transform
  publication-title: Computer Graphics Forum
– volume: 5
  start-page: 4
  year: 1999
  article-title: Method of optimal directions for frame design
  publication-title: Proc. ICASSP
– volume: 24
  start-page: 1685
  issue: 8
  year: 2013
  end-page: 1704
  article-title: CM‐BOF: visual similarity‐based 3D shape retrieval using clock matching and bag‐of‐features
  publication-title: Machine Vision and Applications
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  end-page: 1457
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm. Pure and Applied Mathematics
– year: 2014
– volume: 46
  start-page: 449
  issue: 1
  year: 2013
  end-page: 461
  article-title: A Comparison of Methods for Non‐rigid 3D Shape Retrieval
  publication-title: Pattern Recognition
– volume: 89
  start-page: 408
  issue: 2
  year: 2010
  end-page: 3 431
  article-title: Learning robust similarity measures for 3d partial shape retrieval
  publication-title: International Journal of Computer Vision
– year: 2010
– volume: 42
  start-page: 177
  issue: 1
  year: 2001
  end-page: 2 196
  article-title: Unsupervised learning by probabilistic latent semantic analysis
  publication-title: Mach. Learn
– year: 1998
– year: 2012
– start-page: 102
  year: 2006
  end-page: 102
– start-page: 121
  year: 2013
  end-page: 126
– volume: 2
  start-page: 15
  issue: 1
  year: 1993
  end-page: 36
  article-title: Computing discrete minimal surfaces and their conjugates
  publication-title: Experimental mathematics
– volume: 28
  start-page: 1383
  end-page: 1392
  publication-title: A Concise and Provably Informative Multi‐Scale Signature Based on Heat Diffusion
– volume: 153
  start-page: 235
  issue: 1
  year: 2007
  end-page: 256
  article-title: An overview of bilevel optimization
  publication-title: Ann. Oper. Res
– volume: 31
  start-page: 1294
  issue: 7
  year: 2009
  end-page: 1309
  article-title: Supervised learning of quantizer codebooks by information loss minimization
  publication-title: Trans. PAMI
– volume: 30
  start-page: 1
  issue: 1
  year: 2011
  end-page: 20
  article-title: Shape google: Geometric words and expressions for invariant shape retrieval
  publication-title: TOG
– volume: 26
  start-page: 1257
  year: 2012
  end-page: 1268
  article-title: Combination of bag‐of‐words descriptors for robust partial shape retrieval
  publication-title: The Visual Computer
– volume: 15
  start-page: 369
  issue: 2
  year: 2013
  end-page: 377
  article-title: Learning semantic signatures for 3d object retrieval
  publication-title: Trans. on Multimedia
– year: 2008
– volume: 48
  start-page: 58
  year: 2005
  end-page: 64
  article-title: Shape‐based retrieval and analysis of 3D models
  publication-title: Comm. ACM
– year: 2006
– year: 2004
– volume: 31
  start-page: 1703
  issue: 5
  year: 2012
  end-page: 1713
  article-title: Co‐segmentation of 3d shapes via subspace clustering
  publication-title: Computer Graphics Forum
– volume: 32
  start-page: 190
  issue: 6
  year: 2013
  article-title: Fine‐grained semi‐supervised labeling of large shape collections
  publication-title: TOG
– volume: 34
  start-page: 791
  issue: 4
  year: 2012
  end-page: 804
  article-title: Task‐driven dictionary learning
  publication-title: Trans. PAMI
– volume: 37
  start-page: 473
  issue: 5
  year: 2013
  end-page: 483
  article-title: Evaluating 3d spatial pyramids for classifying 3d shapes
  publication-title: Computers and Graphics
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res
– volume: 2
  start-page: 261
  issue: 4
  year: 2013
  end-page: 271
  article-title: Intrinsic spatial pyramid matching for deformable 3d shape retrieval
  publication-title: J. Multimedia Information Retrieval
– volume: 10
  start-page: 207
  year: 2009
  end-page: 244
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: JMLR
– year: 2013
– ident: e_1_2_8_9_2
  doi: 10.1007/s10479-007-0176-2
– ident: e_1_2_8_7_2
  doi: 10.1162/jmlr.2003.3.4-5.993
– ident: e_1_2_8_43_2
  doi: 10.1080/10586458.1993.10504266
– volume-title: Statistical Learning Theory
  year: 1998
  ident: e_1_2_8_49_2
– ident: e_1_2_8_35_2
– ident: e_1_2_8_8_2
– ident: e_1_2_8_34_2
  doi: 10.1007/s11263-009-0298-x
– ident: e_1_2_8_39_2
  doi: 10.1145/1553374.1553463
– ident: e_1_2_8_30_2
– ident: e_1_2_8_32_2
  doi: 10.1016/j.cag.2013.04.003
– ident: e_1_2_8_12_2
  doi: 10.1109/TIP.2012.2183142
– ident: e_1_2_8_27_2
  doi: 10.1007/s00138-013-0501-5
– ident: e_1_2_8_45_2
  doi: 10.1155/ASP/2006/52561
– volume: 28
  start-page: 1383
  ident: e_1_2_8_46_2
  publication-title: A Concise and Provably Informative Multi‐Scale Signature Based on Heat Diffusion
– volume: 26
  start-page: 1257
  year: 2012
  ident: e_1_2_8_24_2
  article-title: Combination of bag‐of‐words descriptors for robust partial shape retrieval
  publication-title: The Visual Computer
– ident: e_1_2_8_38_2
  doi: 10.1109/TPAMI.2011.156
– ident: e_1_2_8_52_2
  doi: 10.1145/2461466.2461488
– ident: e_1_2_8_17_2
– ident: e_1_2_8_25_2
– ident: e_1_2_8_29_2
  doi: 10.1007/s00371-013-0815-3
– ident: e_1_2_8_37_2
  doi: 10.1109/CVPR.2008.4587652
– ident: e_1_2_8_36_2
– ident: e_1_2_8_33_2
– ident: e_1_2_8_48_2
  doi: 10.1007/s00371-010-0519-x
– ident: e_1_2_8_44_2
– ident: e_1_2_8_47_2
  doi: 10.1109/ICCV.2003.1238663
– volume: 5
  start-page: 4
  year: 1999
  ident: e_1_2_8_13_2
  article-title: Method of optimal directions for frame design
  publication-title: Proc. ICASSP
– ident: e_1_2_8_14_2
  doi: 10.1145/1064830.1064859
– ident: e_1_2_8_22_2
  doi: 10.1145/2508363.2508364
– ident: e_1_2_8_4_2
  doi: 10.1145/1899404.1899405
– ident: e_1_2_8_31_2
  doi: 10.1109/TPAMI.2008.138
– ident: e_1_2_8_28_2
  doi: 10.1007/s13735-013-0041-9
– ident: e_1_2_8_5_2
– ident: e_1_2_8_26_2
  doi: 10.1016/j.patcog.2012.07.014
– ident: e_1_2_8_21_2
  doi: 10.1023/A:1007617005950
– ident: e_1_2_8_23_2
– ident: e_1_2_8_16_2
  doi: 10.1109/ICCV.2013.215
– ident: e_1_2_8_42_2
– ident: e_1_2_8_10_2
  doi: 10.1002/cpa.20042
– ident: e_1_2_8_3_2
  doi: 10.1007/s11263-009-0294-1
– ident: e_1_2_8_6_2
  doi: 10.1109/CVPR.2010.5539838
– volume-title: Pattern Classification
  year: 2001
  ident: e_1_2_8_11_2
– ident: e_1_2_8_15_2
  doi: 10.1109/ICCV.2005.239
– volume: 10
  start-page: 207
  year: 2009
  ident: e_1_2_8_50_2
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: JMLR
– ident: e_1_2_8_51_2
  doi: 10.1109/ICCV.2013.154
– ident: e_1_2_8_20_2
  doi: 10.1111/j.1467-8659.2012.03175.x
– volume-title: Proc. SIGGRAPH Asia
  year: 2013
  ident: e_1_2_8_40_2
– ident: e_1_2_8_19_2
  doi: 10.1109/TMM.2012.2231059
– ident: e_1_2_8_41_2
  doi: 10.1145/2010324.1964928
– ident: e_1_2_8_18_2
  doi: 10.1111/j.1467-8659.2012.03172.x
– ident: e_1_2_8_2_2
  doi: 10.1109/TSP.2006.881199
SSID ssj0004765
Score 2.4136863
Snippet We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content‐based shape retrieval approaches follow the...
We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content-based shape retrieval approaches follow the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Analysis
Artificial intelligence
Clustering
Coding
Computer graphics
Computer programming
Dictionaries
Image retrieval
Learning
Optimization
Retrieval
Studies
Texts
Vector quantization
Title Supervised learning of bag-of-features shape descriptors using sparse coding
URI https://api.istex.fr/ark:/67375/WNG-KX45LWHF-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12438
https://www.proquest.com/docview/1555401618
https://www.proquest.com/docview/1778028243
Volume 33
WOSCitedRecordID wos000341128900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UXR_0QesNV9syiogvkVxmkgl9KtW0YFmKWrpvw1zOrKWyWZKu-OhP6G_sL3Emt25BodCXEMgJHM79JGe-A_AOExvFxrDAumQWUO0a1lyiDOJcMacTE4Yom2UT2XTKZ7P8eAN2-7MwLT7E8MHNe0YTr72DS1WvObme248uOSX8HoxjZ7dsBONPX4uTo-tjkVnKemhvDxrTAQv5QZ7h5RvpaOwl-_tGrblesTYpp3h8J2Y34VFXaZK91jSewAYunsLDNfzBZ3D8bbX0saJGQ7r1EXNSWqLk_OrPZWndxWKD_FmT-odcIjHYhpmyqokfmZ8TF5GqGokufRJ8DifF5-_7h0G3YiHQzPluEGkaKc1spFObUbRMh9RD3KHmUmVWcUttxm0uQ5lIFw1YjtzEJkcb5ZpxnbyA0aJc4Esg1iDLTapCTg1VjCnGExPbWNPUGKrTCXzoJS10hz_u12D8FH0f4oQkGiFN4O1AumxBN_5F9L5R10Ahq3M_pZYxcTo9EF9mlB2dHhbCEW71-hSdg9bClVGuVvXbAibwZnjsXMv_L5ELLFeOJsu4b0lp4nhvtPt_bsT-QdHcvLo96Wt44Mov2o4TbsHoolrhNtzXvy7O6mqns-a_1L36Kg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD60XaH1od5aXFt1FBFfUnKZSSbgi9SmK12Xoi3dt2Eyl1WUzZJ0xUd_Qn9jf4lncnMLFQRfQiAncDj3mTnzHYBXJrJBqDXzLCYzjypcsKbSSC9Mc4Y60b5vZD1sIplM-HSanq7B2-4uTIMP0W-4Oc-o47VzcLchveLlamYPMDtFfB0GFM0I7Xvw_lN2Pv5zLzKJWYft7VBjWmQh18nT_3wjHw2caH_eKDZXS9Y652T3_o_b-7Dd1prkXWMcD2DNzB_C3RUEwkdw-nm5cNGiMpq0AyRmpLAkl7PrX1eFxYc1NfZnRaovcmGINk2gKcqKuKb5GcGYVFaGqMKlwR04z47ODkdeO2TBUwy91wsUDXLFbKBim1BjmfKpA7kziss8sTm31CbcptKXkcR4wFLDdahTY4NUMa6iXdiYF3PzGIjVhqU6zn1ONc0ZyxmPdGhDRWOtqYqH8KYTtVAtArkbhPFddCsRFJKohTSElz3pooHduI3oda2vnkKW31yfWsLExeRYnEwpG1-MMoGE-51CReuilcBCCqtVNy9gCC_6z-hc7sREzk2xRJok4W5RSiPkvVbv37kRh8dZ_fLk30mfw-bo7ONYjD9MTvZgC4sx2jQX7sPGZbk0T-GO-nH5tSqftab9G8YO_ho
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UXRF9aKtWXFt1FBFfUnKZSSbgi7RNW7osi1q6b8Nk5sy2VDZL0hUf_Qn-Rn-JM7m5BQXBlxDIFzicM-cyyZnvALzByASh1swzNpl5VNkNaypRemGaM2sT7fso62ETyWTCZ7N0ugHvu7MwDT9E_8HNeUYdr52D41KbNS9Xc7Nvs1PE78CQuiEyAxgefszOx7_PRSYx67i9HWtMyyzkOnn6l2_lo6FT7bdbxeZ6yVrnnGzr_6Tdhs221iQfmsXxEDZw8QgerDEQPobpp9XSRYsKNWkHSMxJYUgu5z-__yiMvRisuT8rUl3KJRKNTaApyoq4pvk5sTGprJCowqXBHTjPjj4fnHjtkAVPMeu9XqBokCtmAhWbhKJhyqeO5A4Vl3licm6oSbhJpS8jaeMBS5HrUKdoglQxrqInMFgUC3wKxGhkqY5zn1NNc8ZyxiMdmlDRWGuq4hG861QtVMtA7gZhfBHdTsQqSdRKGsHrHrpsaDf-BHpb26tHyPLa9aklTFxMjsXZjLLxxUkmLHCvM6hoXbQStpCy1aqbFzCCV_1j61zuj4lcYLGymCThblNKIyt7bd6_SyMOjrP65tm_Q1_CvelhJsank7NduG9rMdr0Fu7B4KZc4XO4q77eXFXli3Zl_wJVTv2V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+learning+of+bag-of-features+shape+descriptors+using+sparse+coding&rft.jtitle=Computer+graphics+forum&rft.au=Litman%2C+Roee&rft.au=Bronstein%2C+Alex&rft.au=Bronstein%2C+Michael&rft.au=Castellani%2C+Umberto&rft.date=2014-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=5&rft.spage=127&rft.epage=136&rft_id=info:doi/10.1111%2Fcgf.12438&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon