Clever Support: Efficient Support Structure Generation for Digital Fabrication

We introduce an optimization framework for the reduction of support structures required by 3D printers based on Fused Deposition Modeling (FDM) technology. The printers need to connect overhangs with the lower parts of the object or the ground in order to print them. Since the support material needs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 33; H. 5; S. 117 - 125
Hauptverfasser: Vanek, J., Galicia, J. A. G., Benes, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.08.2014
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We introduce an optimization framework for the reduction of support structures required by 3D printers based on Fused Deposition Modeling (FDM) technology. The printers need to connect overhangs with the lower parts of the object or the ground in order to print them. Since the support material needs to be printed first and discarded later, optimizing its volume can lead to material and printing time savings. We present a novel, geometry‐based approach that minimizes the support material while providing sufficient support. Using our approach, the input 3D model is first oriented into a position with minimal area that requires support. Then the points in this area that require support are detected. For these points the supporting structure is progressively built while attempting to minimize the overall length of the support structure. The resulting structure has a tree‐like shape that effectively supports the overhangs. We have tested our algorithm on the MakerBot® Replicator™ 2 printer and we compared our solution to the embedded software solution in this printer and to Autodesk® Meshmixer™ software. Our solution reduced printing time by an average of 29.4% (ranging from 13.9% to 49.5%) and the amount of material by 40.5% (ranging from 24.5% to 68.1%).
AbstractList We introduce an optimization framework for the reduction of support structures required by 3D printers based on Fused Deposition Modeling (FDM) technology. The printers need to connect overhangs with the lower parts of the object or the ground in order to print them. Since the support material needs to be printed first and discarded later, optimizing its volume can lead to material and printing time savings. We present a novel, geometry-based approach that minimizes the support material while providing sufficient support. Using our approach, the input 3D model is first oriented into a position with minimal area that requires support. Then the points in this area that require support are detected. For these points the supporting structure is progressively built while attempting to minimize the overall length of the support structure. The resulting structure has a tree-like shape that effectively supports the overhangs. We have tested our algorithm on the MakerBot Replicator(TM) 2 printer and we compared our solution to the embedded software solution in this printer and to Autodesk Meshmixer(TM) software. Our solution reduced printing time by an average of 29.4% (ranging from 13.9% to 49.5%) and the amount of material by 40.5% (ranging from 24.5% to 68.1%). [PUBLICATION ABSTRACT]
We introduce an optimization framework for the reduction of support structures required by 3D printers based on Fused Deposition Modeling (FDM) technology. The printers need to connect overhangs with the lower parts of the object or the ground in order to print them. Since the support material needs to be printed first and discarded later, optimizing its volume can lead to material and printing time savings. We present a novel, geometry‐based approach that minimizes the support material while providing sufficient support. Using our approach, the input 3D model is first oriented into a position with minimal area that requires support. Then the points in this area that require support are detected. For these points the supporting structure is progressively built while attempting to minimize the overall length of the support structure. The resulting structure has a tree‐like shape that effectively supports the overhangs. We have tested our algorithm on the MakerBot® Replicator™ 2 printer and we compared our solution to the embedded software solution in this printer and to Autodesk® Meshmixer™ software. Our solution reduced printing time by an average of 29.4% (ranging from 13.9% to 49.5%) and the amount of material by 40.5% (ranging from 24.5% to 68.1%).
We introduce an optimization framework for the reduction of support structures required by 3D printers based on Fused Deposition Modeling (FDM) technology. The printers need to connect overhangs with the lower parts of the object or the ground in order to print them. Since the support material needs to be printed first and discarded later, optimizing its volume can lead to material and printing time savings. We present a novel, geometry-based approach that minimizes the support material while providing sufficient support. Using our approach, the input 3D model is first oriented into a position with minimal area that requires support. Then the points in this area that require support are detected. For these points the supporting structure is progressively built while attempting to minimize the overall length of the support structure. The resulting structure has a tree-like shape that effectively supports the overhangs. We have tested our algorithm on the MakerBot registered Replicator(TM) 2 printer and we compared our solution to the embedded software solution in this printer and to Autodesk registered Meshmixer(TM) software. Our solution reduced printing time by an average of 29.4% (ranging from 13.9% to 49.5%) and the amount of material by 40.5% (ranging from 24.5% to 68.1%).
Author Benes, B.
Galicia, J. A. G.
Vanek, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Vanek
  fullname: Vanek, J.
  organization: Purdue University
– sequence: 2
  givenname: J. A. G.
  surname: Galicia
  fullname: Galicia, J. A. G.
  organization: Purdue University
– sequence: 3
  givenname: B.
  surname: Benes
  fullname: Benes, B.
  organization: Purdue University
BookMark eNp1kE1PGzEQhq0KJALtgX-wEpf2sMFfY-_2VgUSkNCiiqJws7yuHRmW3dT2tuTf4xDoAbW-2Bo9z4znPUR7_dBbhI4JnpJ8Ts3KTQnlTH5AE8KFLCsB9R6aYJLfEgMcoMMY7zHGXAqYoGbW2d82FDfjej2E9LU4d84bb_v0VipuUhhNGoMtFra3QSc_9IUbQnHmVz7prpjrNnjzUv-I9p3uov30eh-h2_n5j9lFeXW9uJx9uyoN5MElFU62orVghJBgaEUplsBwCzVUPzl3LWaCyJrRuuY0K1piTjlgSlrmpGFH6POu7zoMv0Ybk3r00diu070dxqiIlBWmkgLL6Mk79H4YQ59_pwgAcEygIpk63VEmDDEG65TJu21XSkH7ThGstvmqnK96yTcbX94Z6-Afddj8k33t_sd3dvN_UM0W8zej3Bk-Jvv019DhQQnJJKhls1CyWX5vlk2j7tgzO26Ykw
CitedBy_id crossref_primary_10_1016_j_gmod_2018_04_002
crossref_primary_10_1145_3658212
crossref_primary_10_1007_s00158_022_03465_w
crossref_primary_10_1007_s10878_021_00808_z
crossref_primary_10_1108_RPJ_11_2020_0292
crossref_primary_10_1007_s00158_016_1522_2
crossref_primary_10_1007_s00170_017_1261_6
crossref_primary_10_1007_s11081_020_09541_8
crossref_primary_10_1016_j_cag_2021_01_003
crossref_primary_10_1016_j_cag_2017_07_005
crossref_primary_10_1002_adem_202200091
crossref_primary_10_1007_s00371_018_1493_y
crossref_primary_10_20965_ijat_2019_p0361
crossref_primary_10_1016_j_cad_2016_07_006
crossref_primary_10_1007_s00158_022_03454_z
crossref_primary_10_1016_j_ijmecsci_2017_09_033
crossref_primary_10_1007_s00371_017_1386_5
crossref_primary_10_1108_RPJ_05_2020_0102
crossref_primary_10_1007_s00170_019_03792_1
crossref_primary_10_1016_j_mtcomm_2022_103739
crossref_primary_10_1016_j_cma_2018_04_040
crossref_primary_10_1016_j_matdes_2019_108164
crossref_primary_10_1016_j_cag_2015_05_009
crossref_primary_10_1093_jcde_qwac106
crossref_primary_10_1016_j_apm_2017_02_004
crossref_primary_10_1007_s00170_017_0572_y
crossref_primary_10_1016_j_procir_2019_04_047
crossref_primary_10_1016_j_msea_2023_145375
crossref_primary_10_3390_jmmp2040064
crossref_primary_10_1016_j_gmod_2018_12_003
crossref_primary_10_1080_17452759_2025_2466189
crossref_primary_10_3390_ma17040950
crossref_primary_10_1016_j_addma_2021_102341
crossref_primary_10_1016_j_cad_2025_103967
crossref_primary_10_1007_s40964_023_00419_6
crossref_primary_10_1145_2816795_2818121
crossref_primary_10_1016_j_addma_2024_104329
crossref_primary_10_1080_14484846_2024_2424052
crossref_primary_10_1007_s00170_021_07504_6
crossref_primary_10_1016_j_addma_2018_04_009
crossref_primary_10_1016_j_aei_2018_12_004
crossref_primary_10_1007_s40964_025_01154_w
crossref_primary_10_1038_s44359_025_00047_z
crossref_primary_10_1088_2631_8695_ad3613
crossref_primary_10_1007_s00158_017_1743_z
crossref_primary_10_3390_ma12010027
crossref_primary_10_1111_jopr_13668
crossref_primary_10_1109_TASE_2019_2938219
crossref_primary_10_1016_j_matdes_2018_07_044
crossref_primary_10_1080_17452759_2025_2499452
crossref_primary_10_1016_j_jmatprotec_2019_04_007
crossref_primary_10_1111_cgf_142660
crossref_primary_10_1007_s00170_021_08252_3
crossref_primary_10_1109_LRA_2020_3011369
crossref_primary_10_1016_j_asej_2025_103601
crossref_primary_10_1016_j_addma_2015_06_002
crossref_primary_10_3390_s20020470
crossref_primary_10_7736_JKSPE_024_124
crossref_primary_10_1016_j_gmod_2025_101280
crossref_primary_10_1515_zwf_2023_1156
crossref_primary_10_1007_s00158_021_03077_w
crossref_primary_10_1016_j_cag_2022_08_004
crossref_primary_10_1111_cgf_13750
crossref_primary_10_1007_s00158_018_1994_3
crossref_primary_10_1016_j_coco_2025_102316
crossref_primary_10_1007_s00371_021_02068_8
crossref_primary_10_1007_s13319_016_0098_3
crossref_primary_10_1007_s11831_019_09331_1
crossref_primary_10_1007_s00245_022_09939_z
crossref_primary_10_1111_cgf_13639
crossref_primary_10_1016_j_cad_2024_103771
crossref_primary_10_1109_TASE_2018_2867230
crossref_primary_10_1016_j_matdes_2022_111499
crossref_primary_10_1016_j_gmod_2019_101034
crossref_primary_10_1016_j_cad_2019_06_004
crossref_primary_10_1080_0951192X_2018_1466398
crossref_primary_10_1016_j_jmsy_2021_06_007
crossref_primary_10_1089_3dp_2017_0124
crossref_primary_10_1080_17452759_2022_2090015
crossref_primary_10_1007_s40964_021_00231_0
crossref_primary_10_1007_s00371_015_1109_8
crossref_primary_10_1007_s11837_017_2657_3
crossref_primary_10_1145_2766984
crossref_primary_10_1145_3355089_3356509
crossref_primary_10_1016_j_cad_2016_08_006
crossref_primary_10_1007_s00170_019_03964_z
crossref_primary_10_3390_su12197936
crossref_primary_10_1109_TVCG_2017_2764462
crossref_primary_10_1080_16864360_2017_1397889
crossref_primary_10_1016_j_cad_2018_12_007
crossref_primary_10_1016_j_cad_2018_12_006
crossref_primary_10_1016_j_cad_2024_103834
crossref_primary_10_1016_j_addma_2020_101422
crossref_primary_10_1016_j_addma_2021_101840
crossref_primary_10_3390_met9121293
crossref_primary_10_1145_2897824_2925958
crossref_primary_10_1007_s00158_018_2125_x
crossref_primary_10_3390_polym13162809
crossref_primary_10_1016_j_jmapro_2024_11_068
crossref_primary_10_1016_j_addma_2018_04_016
crossref_primary_10_1016_j_jmbbm_2023_105844
crossref_primary_10_1088_1742_6596_2770_1_012023
crossref_primary_10_1007_s00170_023_11205_7
crossref_primary_10_1080_17452759_2021_1985334
crossref_primary_10_1007_s00158_020_02551_1
crossref_primary_10_1007_s00158_017_1877_z
crossref_primary_10_1016_j_jmapro_2022_12_015
crossref_primary_10_1007_s00158_019_02261_3
crossref_primary_10_1007_s10898_025_01482_9
crossref_primary_10_1016_j_addma_2018_03_008
crossref_primary_10_1080_17452759_2019_1585555
crossref_primary_10_1016_j_cirp_2020_04_091
crossref_primary_10_1121_10_0003922
crossref_primary_10_3390_computation13090208
crossref_primary_10_1016_j_prosdent_2025_03_003
crossref_primary_10_1111_cgf_13146
crossref_primary_10_1111_cgf_13267
crossref_primary_10_1111_cgf_13147
crossref_primary_10_1007_s00170_016_9239_3
crossref_primary_10_1108_RPJ_10_2017_0213
crossref_primary_10_1109_TASE_2021_3069742
crossref_primary_10_1016_j_ifacol_2019_10_066
crossref_primary_10_1016_j_procir_2017_12_093
crossref_primary_10_1016_j_rcim_2020_101972
crossref_primary_10_1016_j_compstruc_2018_10_011
crossref_primary_10_1016_j_cad_2018_03_007
crossref_primary_10_1108_RPJ_12_2020_0317
crossref_primary_10_1145_3414685_3417834
crossref_primary_10_1016_j_mtcomm_2025_111615
crossref_primary_10_3390_su142013017
crossref_primary_10_1007_s00158_022_03284_z
crossref_primary_10_1111_jiec_12660
crossref_primary_10_1007_s00170_020_05299_6
crossref_primary_10_3390_app9183868
crossref_primary_10_1108_RPJ_06_2018_0156
crossref_primary_10_1016_j_cad_2019_05_030
crossref_primary_10_1007_s00170_021_06724_0
crossref_primary_10_1177_09544054211053616
crossref_primary_10_1108_RPJ_01_2022_0038
crossref_primary_10_1016_j_matpr_2021_11_046
crossref_primary_10_3139_104_112172
crossref_primary_10_3390_ma13092023
crossref_primary_10_1007_s00158_020_02590_8
crossref_primary_10_1109_TVCG_2020_2995556
crossref_primary_10_3390_jfb14070334
crossref_primary_10_3390_ma13194379
crossref_primary_10_1016_j_addma_2020_101254
crossref_primary_10_1109_TVCG_2017_2767047
crossref_primary_10_1145_2816795_2818060
Cites_doi 10.1007/BF01742589
10.1016/S0010-4485(97)00083-3
10.1145/2542355.2542361
10.1002/net.3230220105
10.1145/2366145.2366148
10.1007/s00371-002-0189-4
10.1145/2185520.2185544
10.1137/0116001
10.1016/j.cag.2013.05.011
10.1145/2461912.2461967
10.1007/s10898-005-8466-1
10.1111/cgf.12353
10.1145/2461912.2461957
10.1007/978-3-642-21569-8_34
10.1007/s10852-004-6390-x
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12437
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 125
ExternalDocumentID 3410909741
10_1111_cgf_12437
CGF12437
ark_67375_WNG_7NWQNWNN_X
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c5047-26f7b6be5c6675c282207530b5958d44fb036179329942504a704245021b3f7c3
IEDL.DBID DRFUL
ISICitedReferencesCount 218
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341128900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 11:50:45 EST 2025
Fri Jul 25 23:46:04 EDT 2025
Sat Nov 29 03:41:11 EST 2025
Tue Nov 18 22:18:22 EST 2025
Wed Jan 22 16:25:45 EST 2025
Sun Sep 21 06:20:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5047-26f7b6be5c6675c282207530b5958d44fb036179329942504a704245021b3f7c3
Notes ark:/67375/WNG-7NWQNWNN-X
Supporting Information
ArticleID:CGF12437
istex:8E30376855E560420BD51D22843A6AB422240AAC
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1555401581
PQPubID 30877
PageCount 9
ParticipantIDs proquest_miscellaneous_1778027253
proquest_journals_1555401581
crossref_citationtrail_10_1111_cgf_12437
crossref_primary_10_1111_cgf_12437
wiley_primary_10_1111_cgf_12437_CGF12437
istex_primary_ark_67375_WNG_7NWQNWNN_X
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Min M., Du H., Jia X., Huang C., Huang S.-H., Wu W.: Improving construction for connected dominating set with steiner tree in wireless sensor networks. Journal of Global Optimization 35, 1 (2006), 111-119. 3
Toppur B., Smith J.: A sausage heuristic for steiner minimal trees in three-dimensional euclidean space. Journal of Mathematical Modelling and Algorithms 4, 2 (2005), 199-217. 3, 5
Cheng G.: Some aspects of truss topology optimization. Structural optimization 10, 3-4 (1995), 173-179. 3
Hart J.C., Baker B., Michaelraj J.: Structural simulation of tree growth and response. The Visual Computer 19, 2 (2003), 151-163. 7
Luo L., Baran I., Rusinkiewicz S., Matusik W.: Chopper: partitioning models into 3d-printable parts. ACM Transactions on Graphics 31, 6 (Nov. 2012), 129:1-129:9. 2
Wang W., Wang T.Y., Yang Z., Liu L., Tong X., Tong W., Deng J., Chen F., Liu X.: Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. on Grap. 32, 5 (2013). 3
Bendsoe M.P.: Topology optimization: theory, methods and applications. Springer, 2003. 3
Prévost R., Whiting E., Lefebvre S., Sorkine-Hornung O.: Make it stand: balancing shapes for 3d fabrication. ACM Trans. on Graph. 32, 4 (2013), 81:1-81:10. 2
Stava O., Vanek J., Benes B., Carr N., Měch R.: Stress relief: improving structural strength of 3d printable objects. ACM Trans. on Graph. 31, 4 (2012), 48:1-48:11. 2, 8
Gilbert E., Pollak H.: Steiner minimal trees. SIAM Journal on Applied Mathematics 16, 1 (1968), 1-29.
Hildebrand K., Bickel B., Alexa M.: Orthogonal slicing for additive manufacturing. Computers & Graphics 37, 6 (2013), 669-675. Shape Model. Intl. (SMI) Conf. 2
Alexander P., Allen S., Dutta D.: Part orientation and build cost determination in layered manufacturing. Computer-Aided Design 30, 5 (1998), 343-356. 2, 3
Zhou Q., Panetta J., Zorin D.: Worst-case structural analysis. ACM Trans. on Graph. 32, 4 (2013), 137:1-137:12. 2
Hwang F.K., Richards D.S.: Steiner tree problems. Networks 22, 1 (1992), 55-89. 3, 5
2013; 37
1968; 16
2006; 35
2013; 32
2011
1995; 10
2008
2005; 4
2005
2014
2003
2003; 19
2013
1998; 30
1992; 22
2012; 31
e_1_2_9_20_2
e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_22_2
e_1_2_9_7_2
e_1_2_9_5_2
Hart J.C. (e_1_2_9_10_2) 2003; 19
e_1_2_9_3_2
e_1_2_9_2_2
Chu C. (e_1_2_9_6_2) 2005
Wang W. (e_1_2_9_21_2) 2013; 32
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_15_2
Bendsoe M.P. (e_1_2_9_4_2) 2003
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
References_xml – reference: Toppur B., Smith J.: A sausage heuristic for steiner minimal trees in three-dimensional euclidean space. Journal of Mathematical Modelling and Algorithms 4, 2 (2005), 199-217. 3, 5
– reference: Zhou Q., Panetta J., Zorin D.: Worst-case structural analysis. ACM Trans. on Graph. 32, 4 (2013), 137:1-137:12. 2
– reference: Hart J.C., Baker B., Michaelraj J.: Structural simulation of tree growth and response. The Visual Computer 19, 2 (2003), 151-163. 7
– reference: Wang W., Wang T.Y., Yang Z., Liu L., Tong X., Tong W., Deng J., Chen F., Liu X.: Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. on Grap. 32, 5 (2013). 3
– reference: Luo L., Baran I., Rusinkiewicz S., Matusik W.: Chopper: partitioning models into 3d-printable parts. ACM Transactions on Graphics 31, 6 (Nov. 2012), 129:1-129:9. 2
– reference: Hwang F.K., Richards D.S.: Steiner tree problems. Networks 22, 1 (1992), 55-89. 3, 5
– reference: Alexander P., Allen S., Dutta D.: Part orientation and build cost determination in layered manufacturing. Computer-Aided Design 30, 5 (1998), 343-356. 2, 3
– reference: Min M., Du H., Jia X., Huang C., Huang S.-H., Wu W.: Improving construction for connected dominating set with steiner tree in wireless sensor networks. Journal of Global Optimization 35, 1 (2006), 111-119. 3
– reference: Bendsoe M.P.: Topology optimization: theory, methods and applications. Springer, 2003. 3
– reference: Gilbert E., Pollak H.: Steiner minimal trees. SIAM Journal on Applied Mathematics 16, 1 (1968), 1-29.
– reference: Prévost R., Whiting E., Lefebvre S., Sorkine-Hornung O.: Make it stand: balancing shapes for 3d fabrication. ACM Trans. on Graph. 32, 4 (2013), 81:1-81:10. 2
– reference: Hildebrand K., Bickel B., Alexa M.: Orthogonal slicing for additive manufacturing. Computers & Graphics 37, 6 (2013), 669-675. Shape Model. Intl. (SMI) Conf. 2
– reference: Stava O., Vanek J., Benes B., Carr N., Měch R.: Stress relief: improving structural strength of 3d printable objects. ACM Trans. on Graph. 31, 4 (2012), 48:1-48:11. 2, 8
– reference: Cheng G.: Some aspects of truss topology optimization. Structural optimization 10, 3-4 (1995), 173-179. 3
– start-page: 28
  year: 2005
  end-page: 35
– volume: 31
  start-page: 48:1
  issue: 4
  year: 2012
  end-page: 48:11
  article-title: Stress relief: improving structural strength of 3d printable objects
  publication-title: ACM Trans. on Graph
– volume: 16
  start-page: 1
  issue: 1
  year: 1968
  end-page: 29
  article-title: Steiner minimal trees
  publication-title: SIAM Journal on Applied Mathematics
– volume: 30
  start-page: 343
  issue: 5
  year: 1998
  end-page: 356
  article-title: Part orientation and build cost determination in layered manufacturing
  publication-title: Computer‐Aided Design
– volume: 31
  start-page: 129:1
  issue: 6
  year: 2012
  end-page: 129:9
  article-title: Chopper: partitioning models into 3d‐printable parts
  publication-title: ACM Transactions on Graphics
– volume: 4
  start-page: 199
  issue: 2
  year: 2005
  end-page: 217
  article-title: A sausage heuristic for steiner minimal trees in three‐dimensional euclidean space
  publication-title: Journal of Mathematical Modelling and Algorithms
– volume: 10
  start-page: 173
  issue: 3
  year: 1995
  end-page: 4 179
  article-title: Some aspects of truss topology optimization
  publication-title: Structural optimization
– volume: 32
  start-page: 81:1
  issue: 4
  year: 2013
  end-page: 81:10
  article-title: Make it stand: balancing shapes for 3d fabrication
  publication-title: ACM Trans. on Graph
– start-page: 393
  year: 2011
  end-page: 404
– year: 2008
– year: 2003
– volume: 22
  start-page: 55
  issue: 1
  year: 1992
  end-page: 89
  article-title: Steiner tree problems
  publication-title: Networks
– volume: 37
  start-page: 669
  issue: 6
  year: 2013
  end-page: 675
  article-title: Orthogonal slicing for additive manufacturing
  publication-title: Computers & Graphics
– volume: 19
  start-page: 151
  issue: 2
  year: 2003
  end-page: 163
  article-title: Structural simulation of tree growth and response
  publication-title: The Visual Computer
– volume: 32
  start-page: 137:1
  issue: 4
  year: 2013
  end-page: 137:12
  article-title: Worst‐case structural analysis
  publication-title: ACM Trans. on Graph
– volume: 35
  start-page: 111
  issue: 1
  year: 2006
  end-page: 119
  article-title: Improving construction for connected dominating set with steiner tree in wireless sensor networks
  publication-title: Journal of Global Optimization
– volume: 32
  issue: 5
  year: 2013
  article-title: Cost‐effective printing of 3d objects with skin‐frame structures
  publication-title: ACM Trans. on Grap
– year: 2014
– year: 2013
– ident: e_1_2_9_5_2
  doi: 10.1007/BF01742589
– ident: e_1_2_9_2_2
  doi: 10.1016/S0010-4485(97)00083-3
– ident: e_1_2_9_19_2
  doi: 10.1145/2542355.2542361
– ident: e_1_2_9_3_2
– ident: e_1_2_9_11_2
  doi: 10.1002/net.3230220105
– ident: e_1_2_9_12_2
  doi: 10.1145/2366145.2366148
– volume: 19
  start-page: 151
  issue: 2
  year: 2003
  ident: e_1_2_9_10_2
  article-title: Structural simulation of tree growth and response
  publication-title: The Visual Computer
  doi: 10.1007/s00371-002-0189-4
– ident: e_1_2_9_16_2
  doi: 10.1145/2185520.2185544
– volume-title: Topology optimization: theory, methods and applications
  year: 2003
  ident: e_1_2_9_4_2
– start-page: 28
  volume-title: Proc. of the Intl. Symp. on Physical Design
  year: 2005
  ident: e_1_2_9_6_2
– ident: e_1_2_9_8_2
  doi: 10.1137/0116001
– ident: e_1_2_9_9_2
  doi: 10.1016/j.cag.2013.05.011
– ident: e_1_2_9_7_2
– volume: 32
  issue: 5
  year: 2013
  ident: e_1_2_9_21_2
  article-title: Cost‐effective printing of 3d objects with skin‐frame structures
  publication-title: ACM Trans. on Grap
– ident: e_1_2_9_22_2
  doi: 10.1145/2461912.2461967
– ident: e_1_2_9_14_2
  doi: 10.1007/s10898-005-8466-1
– ident: e_1_2_9_20_2
  doi: 10.1111/cgf.12353
– ident: e_1_2_9_13_2
– ident: e_1_2_9_15_2
  doi: 10.1145/2461912.2461957
– ident: e_1_2_9_17_2
  doi: 10.1007/978-3-642-21569-8_34
– ident: e_1_2_9_18_2
  doi: 10.1007/s10852-004-6390-x
SSID ssj0004765
Score 2.5238583
Snippet We introduce an optimization framework for the reduction of support structures required by 3D printers based on Fused Deposition Modeling (FDM) technology. The...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms 3-D graphics
3-D printers
Additive manufacturing
Algorithms
Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer programs
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling
I.3.8 [Computer Graphics]: Applications
Mathematical models
Optimization
Overhang
Printers
Printing
Studies
Supports
Title Clever Support: Efficient Support Structure Generation for Digital Fabrication
URI https://api.istex.fr/ark:/67375/WNG-7NWQNWNN-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12437
https://www.proquest.com/docview/1555401581
https://www.proquest.com/docview/1778027253
Volume 33
WOSCitedRecordID wos000341128900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xLYflACwsomxZeVcIcckqbew4XU6oEDigaF-ovVmxYyMEKqiliJ_PjPOgSCAh7S1KJpE1j8xne_wNwF6SO8ejRAea913AdcyDxOQ2sAPB-cDQKqGnzD-XWZaMx4NfS3BYn4Up-SGaBTeKDP-_pgDP9WwhyM2l-9EjOr0P0O6j34oWtI__pBfnz8ciZSxqam8ijamIhaiQp3n5RTpqk2YfX2DNRcTqU0669l-DXYfVCmmyo9I1PsGSnWzAygL_4CZkwxuLrsyotSfC8J_sxBNKYB6qb7G_nl92PrWsJKgmOzIEuuz46pL6jbA019Nq3e8zXKQn_4ZnQdVgITDCMzTETupYW2FinDcYqihFBBGFWgxEUnDuNOY3imDMWZy4znLpd0oRF-jISRNtQWtyO7HbwHQRFoiFnEPr8iIKkyKXURHSN0ONf9wOHNR6VqZiH6cmGDeqnoWgipRXUQe-N6J3JeXGa0L73liNRD69pho1KdQoO1UyG_3ORlmmxh3o1tZUVXjOFIIoRKo9kfQ68K15jIFFuyX5xN7OUUbKBOfsfRHh2L1t3x6NGp6m_mLn_aJf4COCL14WE3ahhea0u7BsHu6vZtOvlS8_ATVl9MU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-sJ7R9aP1o6VVbo0jxZcuem2z2ii9yuiqeQVvl7i1ssolI5SxnLf3zncl-9IQWCr4tu7NLmI-dX5LJbwC2ssJ7nmQmMnzHR9ykPMps4SLXF5z3La0SBsr8oVQqG4_7Z3Ow25yFqfgh2gU3iozwv6YApwXpmSi3V_5zj_j0nkGHoxuhf3f2v-aXwz_nImUqGm5vYo2pmYWokqd9-VE-6pBqfz8Cm7OQNeSc_PXTRrsIr2qsyfYq51iCOTdZhpczDIQroAY3Dp2ZUXNPBOJf2EGglMBM1Nxi3wLD7P3UsYqimizJEOqy_esr6jjC8sJM65W_N3CZH1wMjqK6xUJkReBoSL00qXHCpjhzsFRTihgiiY3oi6zk3BvMcBTDmLU4sZ0VMuyVIjIwiZc2eQvzk9uJewfMlHGJaMh7tC8vkzgrC5mUMX0zNvjP7cJ2o2hta_5xaoNxo5t5CKpIBxV1YbMV_VGRbvxN6FOwVitRTL9TlZoUeqQOtVSjczVSSo-7sNaYU9cBeqcRRiFW7Yms14WN9jGGFu2XFBN3e48yUmY4a98RCY49GPffo9GDwzxcvP9_0XV4fnRxOtTDY3WyCi8QivGqtHAN5tG07gMs2F8_r--mH2vHfgDkofi1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_au1LaB22t0tNqo4j4smWvm2z2xBe5u63iEc6PcvcWNtmklJZruVrxz3cm--EVFAq-LbuTJcxkMr8kk98AvM4K73mSmcjwYx9xk_Ios4WL3EBwPrC0Sxgo8ydSqWw-H0zX4H1zF6bih2g33MgzwnxNDu6uS7_i5fbMH_WJT28dupyKyHSgO_qan07-3IuUqWi4vYk1pmYWokyetvGdeNQl1f66AzZXIWuIOfnD_-vtDjyosSb7UA2OXVhzi0ewvcJAuAdqeOlwMDMq7olA_B0bB0oJjETNK_YtMMzeLh2rKKrJkgyhLhudn1HFEZYXZlnv_D2G03z8ffgxqkssRFYEjobUS5MaJ2yKKwdLOaWIIZLYiIHISs69wQhHPoxRixPbWSHDWSkiA5N4aZMn0FlcLdw-MFPGJaIh79G-vEzirCxkUsb0z9jgnNuDt42ita35x6kMxqVu1iGoIh1U1INXreh1RbrxN6E3wVqtRLG8oCw1KfRMnWipZl_UTCk978FBY05dO-iNRhiFWLUvsn4PXraf0bXovKRYuKtblJEyw1X7sUiw78G4_-6NHp7k4eHp_UUPYXM6yvXkk_r8DLYQifEqs_AAOmhZ9xw27M8f5zfLF_W4_g15mPgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clever+Support%3A+Efficient+Support+Structure+Generation+for+Digital+Fabrication&rft.jtitle=Computer+graphics+forum&rft.au=Vanek%2C+J.&rft.au=Galicia%2C+J.+A.+G.&rft.au=Benes%2C+B.&rft.date=2014-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=5&rft.spage=117&rft.epage=125&rft_id=info:doi/10.1111%2Fcgf.12437&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_7NWQNWNN_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon