Individual participant data meta‐analysis to examine interactions between treatment effect and participant‐level covariates: Statistical recommendations for conduct and planning
Precision medicine research often searches for treatment‐covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant‐level covariate (eg, age, gender, biomarker). Single trials do not usually hav...
Uložené v:
| Vydané v: | Statistics in medicine Ročník 39; číslo 15; s. 2115 - 2137 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
10.07.2020
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0277-6715, 1097-0258, 1097-0258 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Precision medicine research often searches for treatment‐covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant‐level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment‐covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta‐analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta‐analysis of randomized trials to examine treatment‐covariate interactions. For conduct, two‐stage and one‐stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta‐analysis results for subgroups; (ii) interaction estimates should be based solely on within‐study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta‐analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta‐analysis project should not be based on between‐study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta‐analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta‐analysis projects are used for illustration throughout. |
|---|---|
| AbstractList | Precision medicine research often searches for treatment‐covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant‐level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment‐covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta‐analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta‐analysis of randomized trials to examine treatment‐covariate interactions. For conduct, two‐stage and one‐stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta‐analysis results for subgroups; (ii) interaction estimates should be based solely on within‐study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta‐analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta‐analysis project should not be based on between‐study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta‐analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta‐analysis projects are used for illustration throughout. Precision medicine research often searches for treatment-covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant-level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment-covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta-analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta-analysis of randomized trials to examine treatment-covariate interactions. For conduct, two-stage and one-stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta-analysis results for subgroups; (ii) interaction estimates should be based solely on within-study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta-analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta-analysis project should not be based on between-study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta-analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta-analysis projects are used for illustration throughout.Precision medicine research often searches for treatment-covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant-level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment-covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta-analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta-analysis of randomized trials to examine treatment-covariate interactions. For conduct, two-stage and one-stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta-analysis results for subgroups; (ii) interaction estimates should be based solely on within-study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta-analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta-analysis project should not be based on between-study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta-analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta-analysis projects are used for illustration throughout. |
| Author | Staessen, Jan A. Debray, Thomas P.A. Marlin, Nadine Gueyffier, Francois Moons, Karel G.M. Ensor, Joie Fisher, David Riley, Richard D. Hoogland, Jeroen Wang, Jiguang Hattle, Miriam Reitsma, Johannes B. |
| AuthorAffiliation | 3 MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, Faculty of Population Health Sciences University College London London UK 6 Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology, Studies Coordinating Centre KU Leuven Leuven Belgium 1 Centre for Prognosis Research, School of Primary, Community and Social Care Keele University Staffordshire UK 2 Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht The Netherlands 5 Inserm Lyon France 7 Centre for Epidemiological Studies and Clinical Trials, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China 4 Blizard Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK |
| AuthorAffiliation_xml | – name: 2 Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht The Netherlands – name: 4 Blizard Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK – name: 3 MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, Faculty of Population Health Sciences University College London London UK – name: 5 Inserm Lyon France – name: 6 Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology, Studies Coordinating Centre KU Leuven Leuven Belgium – name: 1 Centre for Prognosis Research, School of Primary, Community and Social Care Keele University Staffordshire UK – name: 7 Centre for Epidemiological Studies and Clinical Trials, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China |
| Author_xml | – sequence: 1 givenname: Richard D. orcidid: 0000-0001-8699-0735 surname: Riley fullname: Riley, Richard D. email: r.riley@keele.ac.uk organization: Keele University – sequence: 2 givenname: Thomas P.A. orcidid: 0000-0002-1790-2719 surname: Debray fullname: Debray, Thomas P.A. organization: University Medical Center Utrecht – sequence: 3 givenname: David surname: Fisher fullname: Fisher, David organization: University College London – sequence: 4 givenname: Miriam surname: Hattle fullname: Hattle, Miriam organization: Keele University – sequence: 5 givenname: Nadine surname: Marlin fullname: Marlin, Nadine organization: Queen Mary University of London – sequence: 6 givenname: Jeroen orcidid: 0000-0002-2397-6052 surname: Hoogland fullname: Hoogland, Jeroen organization: University Medical Center Utrecht – sequence: 7 givenname: Francois surname: Gueyffier fullname: Gueyffier, Francois organization: Inserm – sequence: 8 givenname: Jan A. surname: Staessen fullname: Staessen, Jan A. organization: KU Leuven – sequence: 9 givenname: Jiguang surname: Wang fullname: Wang, Jiguang organization: Shanghai Jiaotong University School of Medicine – sequence: 10 givenname: Karel G.M. surname: Moons fullname: Moons, Karel G.M. organization: University Medical Center Utrecht – sequence: 11 givenname: Johannes B. surname: Reitsma fullname: Reitsma, Johannes B. organization: University Medical Center Utrecht – sequence: 12 givenname: Joie orcidid: 0000-0001-7481-0282 surname: Ensor fullname: Ensor, Joie organization: Keele University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32350891$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks9u1DAQhy1URLcLEk-AInHhksVO4jjhgIQq_qxUxKFwtmbtcXGV2IvtbNkbj8DL8EI8Ce5utxQEJx_8zeffjOeEHDnvkJDHjC4YpdXzaMdFx1l7j8wY7UVJK94dkRmthChbwfgxOYnxklLGeCUekOO6qjntejYjP5ZO243VEwzFGkKyyq7BpUJDgmLEBD-_fQcHwzbaWCRf4FcYrcPCuoQBVLLexWKF6QrRFSkgpBFzORqDKhXg9F1rdg24waFQfgPBQsL4ojhPkGzMSE4QUPkxC_LrO7HxIbNOTwfXAM5Zd_GQ3DcwRHx0c87JpzevP56-K88-vF2evjorFadNW_b9ymjWsKrGWjHojdZt1RkQqkNuWmx5vWpq0yna1ox2QmsKrW6F0WrF-4bVc_Jy711PqxG1yq0FGOQ62BHCVnqw8s8bZz_LC7-RoqGM5inPybMbQfBfJoxJjjYqHHIf6Kcoq7pvO96Jvsno07_QSz-FPPpMNbRrRM0rnqkndxPdRjn8aAYWe0AFH2NAI5VNu3HmgHaQjMrrlZF5ZeT1yvyOeFtwcP4DLffolR1w-19Oni_f7_hf_C7YMg |
| CitedBy_id | crossref_primary_10_1002_jrsm_1674 crossref_primary_10_1002_jrsm_1434 crossref_primary_10_1016_S2213_2600_24_00292_3 crossref_primary_10_1016_j_jclinepi_2021_05_006 crossref_primary_10_1183_13993003_00190_2023 crossref_primary_10_1093_jncics_pkaf078 crossref_primary_10_1097_PR9_0000000000001038 crossref_primary_10_1093_humupd_dmae032 crossref_primary_10_1177_09622802231163330 crossref_primary_10_1136_bmj_2022_073538 crossref_primary_10_1371_journal_pmed_1004616 crossref_primary_10_1136_bmjopen_2021_058976 crossref_primary_10_1136_bmjopen_2022_064504 crossref_primary_10_1038_s41440_023_01191_4 crossref_primary_10_3390_cancers13040693 crossref_primary_10_1136_bmjebm_2022_112024 crossref_primary_10_1136_bmjopen_2023_074679 crossref_primary_10_1177_09622802241298703 crossref_primary_10_1016_j_jaac_2025_01_017 crossref_primary_10_1093_humupd_dmac021 crossref_primary_10_1186_s12874_024_02202_9 crossref_primary_10_1186_s12916_024_03284_4 crossref_primary_10_1192_bjo_2022_560 crossref_primary_10_1016_j_chest_2022_02_041 crossref_primary_10_1002_sim_9154 crossref_primary_10_1136_bjsports_2022_106568 crossref_primary_10_15626_MP_2020_2741 crossref_primary_10_1183_13993003_02400_2024 crossref_primary_10_1016_j_jbi_2022_104097 crossref_primary_10_1002_jac5_1439 crossref_primary_10_1016_j_jad_2024_08_199 crossref_primary_10_1017_rsm_2025_10010 crossref_primary_10_1017_rsm_2025_10017 crossref_primary_10_1016_S2213_2600_24_00405_3 crossref_primary_10_1136_bmjopen_2022_065538 crossref_primary_10_1186_s12916_021_01995_6 crossref_primary_10_1016_S2352_4642_23_00253_5 crossref_primary_10_1002_jrsm_1625 crossref_primary_10_3389_fpsyg_2022_793962 crossref_primary_10_1136_bmj_2024_082440 crossref_primary_10_1093_eurheartj_ehaf220 crossref_primary_10_3389_fonc_2024_1391724 crossref_primary_10_1002_jrsm_1584 crossref_primary_10_1136_bmjopen_2020_048166 crossref_primary_10_1016_j_jphys_2021_04_001 crossref_primary_10_1002_sim_9697 crossref_primary_10_3390_app15010141 crossref_primary_10_1002_cncr_33838 crossref_primary_10_1177_17474930221097477 crossref_primary_10_1016_S0140_6736_24_00864_X crossref_primary_10_1111_hex_13951 crossref_primary_10_1007_s40279_024_02149_3 crossref_primary_10_1164_rccm_202403_0612RL crossref_primary_10_1002_jrsm_1590 crossref_primary_10_1093_eurheartj_ehae049 crossref_primary_10_1136_bmj_2024_082974 crossref_primary_10_1002_jrsm_1592 crossref_primary_10_1136_bmjopen_2021_060183 crossref_primary_10_1093_eurheartj_ehae683 crossref_primary_10_2337_dc23_0696 crossref_primary_10_1002_jrsm_1750 crossref_primary_10_1093_eurjpc_zwab125 crossref_primary_10_1093_humupd_dmad014 crossref_primary_10_1016_j_joca_2024_12_001 crossref_primary_10_1136_bmj_2022_072249 crossref_primary_10_1136_bmj_n189 crossref_primary_10_1136_bmj_2022_072883 crossref_primary_10_1371_journal_pmed_1004411 crossref_primary_10_1136_bmjebm_2022_111931 crossref_primary_10_1017_S0033291724000527 crossref_primary_10_1136_bjsports_2022_106409 crossref_primary_10_1136_bmjopen_2021_049255 crossref_primary_10_1186_s12874_022_01516_w crossref_primary_10_1186_s13643_022_02086_0 crossref_primary_10_1093_eurheartj_ehaf002 crossref_primary_10_1016_j_jclinepi_2023_04_014 crossref_primary_10_1186_s12916_024_03410_2 crossref_primary_10_1056_EVIDoa2400359 crossref_primary_10_1016_j_cmi_2025_02_002 crossref_primary_10_1016_j_jclinepi_2023_04_013 crossref_primary_10_1212_WNL_0000000000207078 crossref_primary_10_1177_09622802251348800 crossref_primary_10_1148_radiol_220370 crossref_primary_10_1136_bmjopen_2020_048119 crossref_primary_10_1093_humupd_dmad038 crossref_primary_10_1002_jrsm_1650 crossref_primary_10_1371_journal_pone_0322124 crossref_primary_10_1002_cam4_5197 crossref_primary_10_1007_s11523_024_01124_2 crossref_primary_10_1016_j_brat_2022_104048 crossref_primary_10_1186_s41512_023_00154_0 crossref_primary_10_1111_aogs_14617 crossref_primary_10_1002_jrsm_1546 crossref_primary_10_1016_j_jclinepi_2021_06_019 crossref_primary_10_1016_S2665_9913_23_00122_4 crossref_primary_10_1136_bmjopen_2022_065206 crossref_primary_10_1162_opmi_a_00048 crossref_primary_10_1002_sim_9538 crossref_primary_10_1002_jrsm_1661 crossref_primary_10_1016_S1470_2045_23_00230_9 crossref_primary_10_1007_s10654_023_01086_1 crossref_primary_10_1136_bmjopen_2022_062578 crossref_primary_10_1016_j_ajcnut_2023_05_028 crossref_primary_10_1038_s41467_022_29160_4 crossref_primary_10_1136_bmjopen_2021_058101 crossref_primary_10_1038_s44220_023_00081_5 |
| Cites_doi | 10.1016/j.jclinepi.2014.12.012 10.1017/S0266462308080471 10.1186/s12874-018-0492-z 10.1002/sim.4333 10.1002/sim.7609 10.1136/bmj.j573 10.1136/bmj.332.7549.1080 10.1136/bmj.329.7472.966 10.1002/sim.5471 10.1002/jrsm.1356 10.1177/1536867X0200200201 10.1002/sim.1844 10.1002/sim.7974 10.1200/JCO.2007.14.8981 10.1002/jrsm.4 10.1002/sim.3165 10.1177/1536867X0900900103 10.1002/sim.2768 10.1002/sim.1009 10.1002/sim.7171 10.1136/bmjopen-2013-004188 10.1016/j.jclinepi.2003.08.009 10.1177/096228029700600206 10.1161/01.HYP.0000165020.14745.79 10.1016/j.jclinepi.2019.05.029 10.1001/jama.298.10.1209 10.1002/sim.6739 10.1002/sim.4172 10.1371/journal.pone.0060650 10.1136/bmj.j3932 10.1016/S0895-4356(01)00341-9 10.1177/0962280212439578 10.2307/2986270 10.1002/sim.7930 10.1371/journal.pmed.1001855 10.1001/jamainternmed.2016.9125 10.2307/3002019 10.1186/2046-4053-3-46 10.1002/sim.1815 10.1111/j.1467-985X.2008.00552.x 10.1002/9780470770771 10.1093/jnci/86.11.829 10.1136/bmj.k4245 10.1186/1471-2288-11-94 10.1016/j.jclinepi.2007.01.018 10.1136/bmjopen-2016-011148 10.1177/1536867X1101100206 10.1111/1467-985X.00122 10.1002/jrsm.1331 10.1002/jrsm.1129 10.1289/ehp.93101s459 10.1002/sim.1524 10.1136/bmj.d549 10.1177/1536867X1501500203 10.1007/978-3-319-19425-7 10.1093/ije/dyy239 10.1002/bimj.201100167 10.1371/journal.pmed.1001886 10.1136/bmj.e5793 10.1016/S0140-6736(05)70200-2 10.1186/s12874-019-0817-6 10.1002/sim.7064 10.1136/bmj.326.7382.219 10.1002/sim.4040 10.1038/d41586-018-07535-2 10.1016/j.jclinepi.2010.11.016 10.1002/sim.2331 10.1056/NEJMra043186 10.1007/978-0-387-77244-8 10.1136/bmj.c117 10.1002/sim.6191 10.7326/0003-4819-154-10-201105170-00008 10.1371/journal.pone.0046042 10.1002/sim.7141 10.1093/med/9780198796619.001.0001 10.1002/sim.918 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by John Wiley & Sons, Ltd. 2020 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons, Ltd. – notice: 2020 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
| DOI | 10.1002/sim.8516 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| DocumentTitleAlternate | Riley et al |
| EISSN | 1097-0258 |
| EndPage | 2137 |
| ExternalDocumentID | PMC7401032 32350891 10_1002_sim_8516 SIM8516 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: TOP grant of the Netherlands Organisation for Health Research and Development (ZonMw) funderid: 91215058 – fundername: National Institute for Health Research (NIHR) Clinical Trials Unit Support Funding – fundername: Netherlands Organisation for Health Research and Development – fundername: NIHR Doctoral Fellowship funderid: DRF‐2018‐11‐ST2‐077 – fundername: NIHR Health Technology Assessment Programme funderid: programme 12/01 – fundername: Keele University – fundername: Department of Health grantid: DRF-2018-11-ST2-077 – fundername: Medical Research Council grantid: MC_UU_12023/21 – fundername: ; – fundername: ; grantid: programme 12/01 – fundername: NIHR Doctoral Fellowship grantid: DRF‐2018‐11‐ST2‐077 – fundername: ; grantid: 91215058 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION O8X CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c5046-99bfd14123e3c1a9fdd628fa7c8e5f6e653b43f8c0631087dd0a6d67fdcb59413 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529664600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Tue Nov 04 01:57:28 EST 2025 Thu Oct 02 05:43:24 EDT 2025 Tue Oct 07 05:31:29 EDT 2025 Mon Jul 21 06:06:25 EDT 2025 Tue Nov 18 20:42:55 EST 2025 Sat Nov 29 05:32:45 EST 2025 Wed Jan 22 16:35:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | individual participant data (IPD) meta-analysis treatment-covariate interaction subgroup effect effect modifier |
| Language | English |
| License | Attribution 2020 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5046-99bfd14123e3c1a9fdd628fa7c8e5f6e653b43f8c0631087dd0a6d67fdcb59413 |
| Notes | Funding information NIHR Health Technology Assessment Programme, programme 12/01; National Institute for Health Research (NIHR) Clinical Trials Unit Support Funding, TOP grant of the Netherlands Organisation for Health Research and Development (ZonMw), 91215058; NIHR Doctoral Fellowship, DRF‐2018‐11‐ST2‐077; Netherlands Organisation for Health Research and Development, Keele University ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Funding information NIHR Health Technology Assessment Programme, programme 12/01; National Institute for Health Research (NIHR) Clinical Trials Unit Support Funding, TOP grant of the Netherlands Organisation for Health Research and Development (ZonMw), 91215058; NIHR Doctoral Fellowship, DRF‐2018‐11‐ST2‐077; Netherlands Organisation for Health Research and Development, Keele University |
| ORCID | 0000-0002-1790-2719 0000-0002-2397-6052 0000-0001-7481-0282 0000-0001-8699-0735 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8516 |
| PMID | 32350891 |
| PQID | 2408473525 |
| PQPubID | 48361 |
| PageCount | 23 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7401032 proquest_miscellaneous_2396858794 proquest_journals_2408473525 pubmed_primary_32350891 crossref_citationtrail_10_1002_sim_8516 crossref_primary_10_1002_sim_8516 wiley_primary_10_1002_sim_8516_SIM8516 |
| PublicationCentury | 2000 |
| PublicationDate | 10 July 2020 |
| PublicationDateYYYYMMDD | 2020-07-10 |
| PublicationDate_xml | – month: 07 year: 2020 text: 10 July 2020 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2018; 363 2013; 22 2019; 10 2018; 563 2004; 23 2019; 19 2011; 11 1999; 162 2010; 340 2004; 329 2013; 8 1997; 6 2017; 356 2006; 332 2012; 54 2017; 358 2016; 35 2011; 154 2014; 4 2010; 1 2003; 326 2014; 3 2017; 36 2010; 29 2007; 298 2008; 27 2006; 25 2011; 64 2008; 26 2008; 24 2019; 114 2007; 60 2018; 37 2007; 26 2016; 45 2001; 54 2015; 12 2015; 15 2015; 6 2013; 346 2009 2011; 30 2019; 38 2008 2002; 2 2009; 172 2017; 177 2005; 45 2012; 31 2001; 20 1994; 43 1993; 101 1994; 86 2015; 68 2007; 357 2018; 18 2016; 6 1946; 2 2005; 365 2019; 48 2004; 57 2019 2009; 9 2015 2012; 7 2011; 342 2014; 33 2003; 22 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_15_1 e_1_2_9_38_1 Browne WJ (e_1_2_9_70_1) 2009 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 Kent DM (e_1_2_9_63_1) 2016; 45 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_3_1 VanderWeele Tyler J (e_1_2_9_78_1) 2014; 3 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 Royston P (e_1_2_9_54_1) 2008 e_1_2_9_29_1 |
| References_xml | – volume: 26 start-page: 1397 issue: 9 year: 2008 end-page: 1399 article-title: Interactions between treatment and continuous covariates: a step toward individualizing therapy publication-title: J Clin Oncol – year: 2009 – volume: 2 start-page: 107 issue: 2 year: 2002 end-page: 124 article-title: Power by simulation publication-title: Stata J – volume: 12 issue: 10 year: 2015 article-title: Individual Participant Data (IPD) meta‐analyses of diagnostic and prognostic modeling studies: guidance on their use publication-title: PLoS Med – volume: 356 start-page: j573 year: 2017 article-title: Meta‐analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach? publication-title: BMJ – volume: 45 start-page: 2075 issue: 6 year: 2016 end-page: 2088 article-title: Risk and treatment effect heterogeneity: re‐analysis of individual participant data from 32 large clinical trials publication-title: Int J Epidemiol – volume: 11 start-page: 94 year: 2011 article-title: Simulation methods to estimate design power: an overview for applied research publication-title: BMC Med Res Methodol – volume: 4 issue: 1 year: 2014 article-title: Stratified medicine in European Medicines Agency licensing: a systematic review of predictive biomarkers publication-title: BMJ Open – volume: 340 start-page: c117 year: 2010 article-title: Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses publication-title: BMJ – volume: 45 start-page: 907 issue: 5 year: 2005 end-page: 913 article-title: Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome publication-title: Hypertension – volume: 43 start-page: 429 issue: 3 year: 1994 end-page: 467 article-title: Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling publication-title: J R Stat Soc Ser C Appl Stat – volume: 35 start-page: 966 issue: 7 year: 2016 end-page: 977 article-title: Mastering variation: variance components and personalised medicine publication-title: Stat Med – volume: 19 start-page: 183 issue: 1 year: 2019 article-title: Statistical approaches to identify subgroups in meta‐analysis of individual participant data: a simulation study publication-title: BMC Med Res Methodol – volume: 38 start-page: 326 issue: 3 year: 2019 end-page: 38 article-title: Meta‐analysis of non‐linear exposure‐outcome relationships using individual participant data: a comparison of two methods publication-title: Stat Med – volume: 29 start-page: 3046 year: 2010 end-page: 3067 article-title: Random effects meta‐analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data publication-title: Stat Med – volume: 6 start-page: 157 year: 2015 end-page: 174 article-title: Multivariate meta‐analysis using individual participant data publication-title: Res Synth Methods – volume: 365 start-page: 341 issue: 9456 year: 2005 end-page: 346 article-title: Treating individuals 4: can meta‐analysis help target interventions at individuals most likely to benefit? publication-title: Lancet – volume: 6 issue: 9 year: 2016 article-title: Multivariable fractional polynomial interaction to investigate continuous effect modifiers in a meta‐analysis on higher versus lower PEEP for patients with ARDS publication-title: BMJ Open – volume: 162 start-page: 71 year: 1999 end-page: 94 article-title: Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials publication-title: J R Stat Soc Ser A – volume: 363 year: 2018 article-title: Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects publication-title: BMJ – volume: 154 start-page: 680 issue: 10 year: 2011 end-page: 683 article-title: Interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions publication-title: Ann Intern Med – volume: 24 start-page: 358 issue: 3 year: 2008 end-page: 361 article-title: Empirical comparison of subgroup effects in conventional and individual patient data meta‐analyses publication-title: Int J Technol Assess Health Care – volume: 9 start-page: 40 year: 2009 end-page: 56 article-title: Multivariate meta‐analysis publication-title: Stata J – volume: 1 start-page: 2 year: 2010 end-page: 9 article-title: Meta‐analysis of a binary outcome using individual participant data and aggregate data publication-title: Res Synth Methods – volume: 33 start-page: 3844 issue: 22 year: 2014 end-page: 3858 article-title: Multilevel mixed effects parametric survival models using adaptive Gauss‐Hermite quadrature with application to recurrent events and individual participant data meta‐analysis publication-title: Stat Med – volume: 25 start-page: 127 issue: 1 year: 2006 end-page: 141 article-title: Dichotomizing continuous predictors in multiple regression: a bad idea publication-title: Stat Med – volume: 48 start-page: 596 issue: 2 year: 2019 end-page: 608 article-title: How often can meta‐analyses of individual‐level data individualize treatment? A meta‐epidemiologic study publication-title: Int J Epidemiol – volume: 8 issue: 4 year: 2013 article-title: Individual participant data meta‐analysis for a binary outcome: one‐stage or two‐stage? publication-title: PLoS One – volume: 60 start-page: 1002 issue: 10 year: 2007 end-page: 1009 article-title: A systematic review of analytical methods used to study subgroups in (individual patient data) meta‐analyses publication-title: J Clin Epidemiol – volume: 20 start-page: 3875 issue: 24 year: 2001 end-page: 3889 article-title: A refined method for the meta‐analysis of controlled clinical trials with binary outcome publication-title: Stat Med – year: 2008 – volume: 64 start-page: 949 issue: 9 year: 2011 end-page: 967 article-title: A critical review of methods for the assessment of patient‐level interactions in individual participant data meta‐analysis of randomized trials, and guidance for practitioners publication-title: J Clin Epidemiol – volume: 54 start-page: 774 year: 2001 end-page: 781 article-title: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis publication-title: J Clin Epidemiol – volume: 332 start-page: 1080 year: 2006 article-title: Statistics notes: the cost of dichotomising continuous variables publication-title: BMJ – volume: 27 start-page: 1870 issue: 11 year: 2008 end-page: 1893 article-title: Meta‐analysis of continuous outcomes combining individual patient data and aggregate data publication-title: Stat Med – volume: 86 start-page: 829 issue: 11 year: 1994 end-page: 835 article-title: Dangers of using “optimal” cutpoints in the evaluation of prognostic factors publication-title: J Natl Cancer Inst – volume: 342 start-page: d549 year: 2011 article-title: Interpretation of random effects meta‐analyses publication-title: BMJ – volume: 12 issue: 7 year: 2015 article-title: Individual Participant Data (IPD) meta‐analyses of randomised controlled trials: guidance on their use publication-title: PLoS Med – volume: 36 start-page: 136 issue: 1 year: 2017 end-page: 196 article-title: Tutorial in biostatistics: data‐driven subgroup identification and analysis in clinical trials publication-title: Stat Med – year: 2019 – volume: 10 start-page: 515 issue: 4 year: 2019 end-page: 527 article-title: A new justification of the Hartung‐Knapp method for random‐effects meta‐analysis based on weighted least squares regression publication-title: Res Synth Methods – year: 2015 – volume: 18 start-page: 41 issue: 1 year: 2018 article-title: Simulation‐based power calculations for planning a two‐stage individual participant data meta‐analysis publication-title: BMC Med Res Methodol – volume: 23 start-page: 2567 issue: 16 year: 2004 end-page: 2586 article-title: Validation and updating of predictive logistic regression models: a study on sample size and shrinkage publication-title: Stat Med – volume: 68 start-page: 470 issue: 4 year: 2015 end-page: 474 article-title: Confounding, effect modification, and the odds ratio: common misinterpretations publication-title: J Clin Epidemiol – volume: 3 start-page: 33 issue: 1 year: 2014 article-title: A tutorial on interaction publication-title: Epidemiol Methods – volume: 101 start-page: 59 issue: suppl 4 year: 1993 end-page: 66 article-title: Basic problems in interaction assessment publication-title: Environ Health Perspect – volume: 6 start-page: 167 issue: 2 year: 1997 end-page: 183 article-title: Using regression models for prediction: shrinkage and regression to the mean publication-title: Stat Methods Med Res – volume: 22 start-page: 2591 issue: 16 year: 2003 end-page: 2602 article-title: Separation of individual‐level and cluster‐level covariate effects in regression analysis of correlated data publication-title: Stat Med – volume: 54 start-page: 370 issue: 3 year: 2012 end-page: 384 article-title: Using aggregate data to estimate the standard error of a treatment‐covariate interaction in an individual patient data meta‐analysis publication-title: Biom J – volume: 37 start-page: 1550 issue: 9 year: 2018 end-page: 1561 article-title: A recursive partitioning approach for subgroup identification in individual patient data meta‐analysis publication-title: Stat Med – volume: 36 start-page: 855 issue: 5 year: 2017 end-page: 875 article-title: Meta‐analysis using individual participant data: one‐stage and two‐stage approaches, and why they may differ publication-title: Stat Med – volume: 10 start-page: 360 issue: 3 year: 2019 end-page: 75 article-title: One‐stage random effects meta‐analysis using linear mixed models for aggregate continuous outcome data publication-title: Res Synth Methods – volume: 172 start-page: 137 year: 2009 end-page: 159 article-title: A re‐evaluation of random‐effects meta‐analysis publication-title: J Royal Stat Soc Ser A – volume: 2 start-page: 110 issue: 6 year: 1946 end-page: 114 article-title: An approximate distribution of estimates of variance components publication-title: Biometrics – volume: 31 start-page: 3821 year: 2012 end-page: 3839 article-title: Multivariate meta‐analysis for non‐linear and other multi‐parameter associations publication-title: Stat Med – volume: 20 start-page: 2219 issue: 15 year: 2001 end-page: 2241 article-title: Meta‐analysis of continuous outcome data from individual patients publication-title: Stat Med – volume: 326 start-page: 219 issue: 7382 year: 2003 article-title: Interaction revisited: the difference between two estimates publication-title: BMJ – volume: 298 start-page: 1209 issue: 10 year: 2007 end-page: 1212 article-title: Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification publication-title: JAMA – volume: 37 start-page: 4404 issue: 29 year: 2018 end-page: 4420 article-title: Individual participant data meta‐analysis of continuous outcomes: a comparison of approaches for specifying and estimating one‐stage models publication-title: Stat Med – volume: 177 start-page: 554 issue: 4 year: 2017 end-page: 560 article-title: Evaluation of evidence of statistical support and corroboration of subgroup claims in randomized clinical trials publication-title: JAMA Intern Med – volume: 30 start-page: 3341 issue: 28 year: 2011 end-page: 3360 article-title: A new strategy for meta‐analysis of continuous covariates in observational studies publication-title: Stat Med – volume: 57 start-page: 229 issue: 3 year: 2004 end-page: 236 article-title: Subgroup analyses in randomized trials: risks of subgroup‐specific analyses; power and sample size for the interaction test publication-title: J Clin Epidemiol – volume: 36 start-page: 772 issue: 5 year: 2017 end-page: 789 article-title: One‐stage individual participant data meta‐analysis models: estimation of treatment‐covariate interactions must avoid ecological bias by separating out within‐trial and across‐trial information publication-title: Stat Med – volume: 3 start-page: 46 year: 2014 article-title: Investigation of continuous effect modifiers in a meta‐analysis on higher versus lower PEEP in patients requiring mechanical ventilation—protocol of the ICEM study publication-title: Syst Rev – volume: 23 start-page: 2509 issue: 16 year: 2004 end-page: 2525 article-title: A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials publication-title: Stat Med – volume: 7 issue: 10 year: 2012 article-title: Statistical analysis of individual participant data meta‐analyses: a comparison of methods and recommendations for practice publication-title: PLoS One – volume: 15 start-page: 369 issue: 2 year: 2015 end-page: 396 article-title: Two‐stage individual participant data meta‐analysis and generalized forest plots publication-title: Stata J – volume: 30 start-page: 2481 year: 2011 end-page: 2498 article-title: Multivariate meta‐analysis: potential and promise publication-title: Stat Med – volume: 329 start-page: 966 issue: 7472 year: 2004 end-page: 968 article-title: Individual response to treatment: is it a valid assumption? publication-title: BMJ – volume: 26 start-page: 2982 issue: 15 year: 2007 end-page: 2999 article-title: Covariate heterogeneity in meta‐analysis: criteria for deciding between meta‐regression and individual patient data publication-title: Stat Med – volume: 358 year: 2017 article-title: Multivariate and network meta‐analysis of multiple outcomes and multiple treatments: rationale, concepts, and examples publication-title: BMJ – volume: 346 year: 2013 article-title: Prognosis research strategy (PROGRESS) 4: stratified medicine research publication-title: BMJ – volume: 357 start-page: 39 issue: 1 year: 2007 end-page: 51 article-title: Trastuzumab—mechanism of action and use in clinical practice publication-title: N Engl J Med – volume: 114 start-page: 72 year: 2019 end-page: 83 article-title: Models with interactions overestimated heterogeneity of treatment effects and were prone to treatment mistargeting publication-title: J Clin Epidemiol – volume: 22 start-page: 324 issue: 3 year: 2013 end-page: 345 article-title: Sample size and power calculations for medical studies by simulation when closed form expressions are not available publication-title: Stat Methods Med Res – volume: 11 start-page: 255 year: 2011 end-page: 270 article-title: Multivariate random‐effects meta‐regression: updates to mvmeta publication-title: Stata J – volume: 563 start-page: 619 issue: 7733 year: 2018 end-page: 621 article-title: Statistical pitfalls of personalized medicine publication-title: Nature – ident: e_1_2_9_79_1 doi: 10.1016/j.jclinepi.2014.12.012 – volume: 45 start-page: 2075 issue: 6 year: 2016 ident: e_1_2_9_63_1 article-title: Risk and treatment effect heterogeneity: re‐analysis of individual participant data from 32 large clinical trials publication-title: Int J Epidemiol – ident: e_1_2_9_14_1 doi: 10.1017/S0266462308080471 – ident: e_1_2_9_42_1 doi: 10.1186/s12874-018-0492-z – ident: e_1_2_9_56_1 doi: 10.1002/sim.4333 – ident: e_1_2_9_81_1 doi: 10.1002/sim.7609 – volume-title: MLPowSim Manual year: 2009 ident: e_1_2_9_70_1 – ident: e_1_2_9_10_1 doi: 10.1136/bmj.j573 – ident: e_1_2_9_40_1 doi: 10.1136/bmj.332.7549.1080 – ident: e_1_2_9_43_1 doi: 10.1136/bmj.329.7472.966 – ident: e_1_2_9_47_1 doi: 10.1002/sim.5471 – ident: e_1_2_9_24_1 doi: 10.1002/jrsm.1356 – ident: e_1_2_9_69_1 doi: 10.1177/1536867X0200200201 – volume: 3 start-page: 33 issue: 1 year: 2014 ident: e_1_2_9_78_1 article-title: A tutorial on interaction publication-title: Epidemiol Methods – ident: e_1_2_9_60_1 doi: 10.1002/sim.1844 – ident: e_1_2_9_52_1 doi: 10.1002/sim.7974 – ident: e_1_2_9_16_1 doi: 10.1200/JCO.2007.14.8981 – ident: e_1_2_9_30_1 doi: 10.1002/jrsm.4 – ident: e_1_2_9_9_1 doi: 10.1002/sim.3165 – ident: e_1_2_9_51_1 doi: 10.1177/1536867X0900900103 – ident: e_1_2_9_11_1 doi: 10.1002/sim.2768 – ident: e_1_2_9_23_1 doi: 10.1002/sim.1009 – ident: e_1_2_9_8_1 doi: 10.1002/sim.7171 – ident: e_1_2_9_74_1 doi: 10.1136/bmjopen-2013-004188 – ident: e_1_2_9_5_1 doi: 10.1016/j.jclinepi.2003.08.009 – ident: e_1_2_9_58_1 doi: 10.1177/096228029700600206 – ident: e_1_2_9_18_1 doi: 10.1161/01.HYP.0000165020.14745.79 – ident: e_1_2_9_62_1 doi: 10.1016/j.jclinepi.2019.05.029 – ident: e_1_2_9_64_1 doi: 10.1001/jama.298.10.1209 – ident: e_1_2_9_76_1 doi: 10.1002/sim.6739 – ident: e_1_2_9_49_1 doi: 10.1002/sim.4172 – ident: e_1_2_9_25_1 doi: 10.1371/journal.pone.0060650 – ident: e_1_2_9_48_1 doi: 10.1136/bmj.j3932 – ident: e_1_2_9_59_1 doi: 10.1016/S0895-4356(01)00341-9 – ident: e_1_2_9_68_1 doi: 10.1177/0962280212439578 – ident: e_1_2_9_55_1 doi: 10.2307/2986270 – ident: e_1_2_9_35_1 doi: 10.1002/sim.7930 – ident: e_1_2_9_71_1 doi: 10.1371/journal.pmed.1001855 – ident: e_1_2_9_12_1 doi: 10.1001/jamainternmed.2016.9125 – ident: e_1_2_9_36_1 doi: 10.2307/3002019 – ident: e_1_2_9_45_1 doi: 10.1186/2046-4053-3-46 – ident: e_1_2_9_17_1 doi: 10.1002/sim.1815 – ident: e_1_2_9_22_1 doi: 10.1111/j.1467-985X.2008.00552.x – volume-title: Multivariable Model‐Building—A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modelling Continuous Variables year: 2008 ident: e_1_2_9_54_1 doi: 10.1002/9780470770771 – ident: e_1_2_9_39_1 doi: 10.1093/jnci/86.11.829 – ident: e_1_2_9_61_1 doi: 10.1136/bmj.k4245 – ident: e_1_2_9_67_1 doi: 10.1186/1471-2288-11-94 – ident: e_1_2_9_15_1 doi: 10.1016/j.jclinepi.2007.01.018 – ident: e_1_2_9_44_1 doi: 10.1136/bmjopen-2016-011148 – ident: e_1_2_9_50_1 doi: 10.1177/1536867X1101100206 – ident: e_1_2_9_53_1 doi: 10.1111/1467-985X.00122 – ident: e_1_2_9_19_1 doi: 10.1002/jrsm.1331 – ident: e_1_2_9_65_1 doi: 10.1002/jrsm.1129 – ident: e_1_2_9_73_1 doi: 10.1289/ehp.93101s459 – ident: e_1_2_9_33_1 doi: 10.1002/sim.1524 – ident: e_1_2_9_21_1 doi: 10.1136/bmj.d549 – ident: e_1_2_9_34_1 doi: 10.1177/1536867X1501500203 – ident: e_1_2_9_46_1 doi: 10.1007/978-3-319-19425-7 – ident: e_1_2_9_75_1 doi: 10.1093/ije/dyy239 – ident: e_1_2_9_66_1 doi: 10.1002/bimj.201100167 – ident: e_1_2_9_72_1 doi: 10.1371/journal.pmed.1001886 – ident: e_1_2_9_2_1 doi: 10.1136/bmj.e5793 – ident: e_1_2_9_6_1 doi: 10.1016/S0140-6736(05)70200-2 – ident: e_1_2_9_32_1 – ident: e_1_2_9_37_1 doi: 10.1186/s12874-019-0817-6 – ident: e_1_2_9_80_1 doi: 10.1002/sim.7064 – ident: e_1_2_9_38_1 doi: 10.1136/bmj.326.7382.219 – ident: e_1_2_9_28_1 doi: 10.1002/sim.4040 – ident: e_1_2_9_77_1 doi: 10.1038/d41586-018-07535-2 – ident: e_1_2_9_7_1 doi: 10.1016/j.jclinepi.2010.11.016 – ident: e_1_2_9_41_1 doi: 10.1002/sim.2331 – ident: e_1_2_9_4_1 doi: 10.1056/NEJMra043186 – ident: e_1_2_9_57_1 doi: 10.1007/978-0-387-77244-8 – ident: e_1_2_9_13_1 doi: 10.1136/bmj.c117 – ident: e_1_2_9_27_1 doi: 10.1002/sim.6191 – ident: e_1_2_9_20_1 doi: 10.7326/0003-4819-154-10-201105170-00008 – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0046042 – ident: e_1_2_9_29_1 doi: 10.1002/sim.7141 – ident: e_1_2_9_3_1 doi: 10.1093/med/9780198796619.001.0001 – ident: e_1_2_9_31_1 doi: 10.1002/sim.918 |
| SSID | ssj0011527 |
| Score | 2.6206448 |
| Snippet | Precision medicine research often searches for treatment‐covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference,... Precision medicine research often searches for treatment-covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference,... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2115 |
| SubjectTerms | Clinical trials Data Analysis effect modifier Humans individual participant data (IPD) Medical statistics Meta-analysis Meta-Analysis as Topic Models, Statistical Precision medicine Proportional Hazards Models subgroup effect treatment‐covariate interaction Tutorial in Biostatistics |
| Title | Individual participant data meta‐analysis to examine interactions between treatment effect and participant‐level covariates: Statistical recommendations for conduct and planning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8516 https://www.ncbi.nlm.nih.gov/pubmed/32350891 https://www.proquest.com/docview/2408473525 https://www.proquest.com/docview/2396858794 https://pubmed.ncbi.nlm.nih.gov/PMC7401032 |
| Volume | 39 |
| WOSCitedRecordID | wos000529664600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 issn: 0277-6715 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RFqFKiJ_lL1AqIyE4pU2cOIm5IWBFpbaqgKK9Rf6LqNTNVpttxZFH4GV4IZ6EmdgbuipISFySgycTSx7b39gz3wA8d1LxopIuVtw16KAIGeumymPKknSJTIzps9I-75eHh9VkIo9CVCXlwnh-iOHAjWZGv17TBFe62_1NGtqdTHcQLhRrsEE5Veh4bbz9MD7eH-4QlgVb6ZKyKFOxpJ5N-O7y29XN6ArCvBooeRnA9jvQ-Pb_9P0O3Aq4k732hnIXrrl2BDcOws36CG768zvm05JGsEko1JM434Mfe0PaFjtTIRC7XTAKL2VTt1A_v31Xgd2ELWbMfVVT1MqIi2LuMyc6FiLC2BDaznwsCVOtvawVdZ1SJBMzswt05AkLv2JDb7AH5MNPUYGvBtUxhN0o2xJxrdcV6jDdh-Pxu09v3seh3kNsBLrpsZS6sWmOe6nLTKpkY23Bq0aVpnKiKVwhMp1nTWUQVqVJVVqbqMIWZWONFhJ34wew3s5a9whYnmhdcJMrqdGDFFYjzDVCIji1XAvtIni5HPjaBDJ0qslxWnsaZ17jENU0RBE8GyTPPAHIH2S2lrZThyWgq4k7juo6c4EqhmacvHQjo1o3O0eZTBL_P66JETz0pjb8JOMZgmeZRlCuGOEgQMTgqy3tyZeeIJyqLCYZj-BFb4R_7Xf9ce-A3o__VfAJbHI6byBi0WQL1hfzc_cUrpsLNIH5Nqzx_Aif5aTaDpPxFyMnP2Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qFS2If85_qVVXEH2KTTbZJFufRCw9vDsKVulb2H_BQi9X7q7FRz-CX6ZfqJ_EmWwSe1RB8CkPmUwWdnbnN7szvwF45aTiWSFdqLirMEARMtRVkYZUJekiGRnTVKV9HeWTSXF4KPfX4F1XC-P5IfoDN1oZzX5NC5wOpLd_s4YujqZvES9k1-B6ik6J8vl4ut9fIXT9WumOMstj0THPRny7-3LVF10BmFfzJC_j18YB7d79r6Hfgzst7mTvvaHchzVXD-DmuL1ZH8Btf37HfFnSADYIhXoS5wdwPuzLttiJahOx6yWj9FI2dUt18eOnatlN2HLG3Hc1Ra2MuCjmvnJiwdqMMNantjOfS8JUbS9rRV3HlMnEzOwMA3nCwjusHw2OgGL4KSrw3aAWDGE3ytZEXOt1tX2YHsKX3Y8HH_bCtt9DaASG6aGUurJxir7UJSZWsrI240WlclM4UWUuE4lOk6owCKviqMitjVRms7yyRguJ3vgRrNez2j0BlkZaZ9ykSmqMIIXVCHONkAhOLddCuwDedDNfmpYMnXpyHJeexpmXOEUlTVEAL3vJE08A8geZrc54ynYLWJTEHUd9nblAFf1rXLx0I6NqNztFmUQS_z_uiQE89rbW_yThCYJnGQeQr1hhL0DE4Ktv6qNvDUE4dVmMEh7A68YK_zru8vNwTM_NfxV8Abf2DsajcjScfHoKG5zOHohkNNqC9eX81D2DG-YMzWH-vFmLvwBXXz_6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ta9RAEB5qlVIovpwvjVZdQfRT2mSTTbL6SdTDw_Y48IV-C_sWLPRyx921-NGf4J_xD_lLnMkmsUcVBD_lQyaThZ3ZfWZ35hmAp04qnhXShYq7CgMUIUNdFWlIVZIukpExTVXa58N8PC6Oj-VkA152tTCeH6I_cCPPaNZrcnA3t9XBb9bQ5cl0H_FCdgWupiJvvJKnk_4KoevXSneUWR6Ljnk24gfdl-t70SWAeTlP8iJ-bTag4Y3_GvpNuN7iTvbKG8ot2HD1ALaO2pv1Aez48zvmy5IGsE0o1JM434Yfo75si81Vm4hdrxill7KpW6mf376rlt2ErWbMfVVT1MqIi2LhKyeWrM0IY31qO_O5JEzV9qJW1HVKmUzMzM4xkCcs_IL1o8ERUAw_RQW-G9SSIexG2ZqIa72utg_THfg0fPvx9buw7fcQGoFheiilrmyc4l7qEhMrWVmb8aJSuSmcqDKXiUSnSVUYhFVxVOTWRiqzWV5Zo4XE3fgubNaz2u0CSyOtM25SJTVGkMJqhLlGSASnlmuhXQDPu5kvTUuGTj05TktP48xLnKKSpiiAJ73k3BOA_EFmrzOesl0CliVxx1FfZy5QRf8anZduZFTtZmcok0ji_8c1MYB73tb6nyQ8QfAs4wDyNSvsBYgYfP1NffKlIQinLotRwgN41ljhX8ddfhgd0fP-vwo-hq3Jm2F5OBq_fwDbnI4eiGM02oPN1eLMPYRr5hytYfGoccVfic8_dQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+participant+data+meta%E2%80%90analysis+to+examine+interactions+between+treatment+effect+and+participant%E2%80%90level+covariates%3A+Statistical+recommendations+for+conduct+and+planning&rft.jtitle=Statistics+in+medicine&rft.au=Riley%2C+Richard+D.&rft.au=Debray%2C+Thomas+P.A.&rft.au=Fisher%2C+David&rft.au=Hattle%2C+Miriam&rft.date=2020-07-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=39&rft.issue=15&rft.spage=2115&rft.epage=2137&rft_id=info:doi/10.1002%2Fsim.8516&rft.externalDBID=10.1002%252Fsim.8516&rft.externalDocID=SIM8516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |