The effect of forcing and landscape distribution on performance and consistency of model structures

It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on lands...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes Vol. 29; no. 17; pp. 3727 - 3743
Main Authors: Euser, Tanja, Hrachowitz, Markus, Winsemius, Hessel C., Savenije, Hubert H.G.
Format: Journal Article
Language:English
Published: Chichester Blackwell Publishing Ltd 15.08.2015
Wiley Subscription Services, Inc
Subjects:
ISSN:0885-6087, 1099-1085
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall-runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency. Copyright © 2015 John Wiley & Sons, Ltd.
It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency.
Author Euser, Tanja
Savenije, Hubert H.G.
Hrachowitz, Markus
Winsemius, Hessel C.
Author_xml – sequence: 1
  givenname: Tanja
  surname: Euser
  fullname: Euser, Tanja
  email: Correspondence to: Tanja Euser, Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands., t.euser@tudelft.nl
  organization: Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands
– sequence: 2
  givenname: Markus
  surname: Hrachowitz
  fullname: Hrachowitz, Markus
  organization: Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands
– sequence: 3
  givenname: Hessel C.
  surname: Winsemius
  fullname: Winsemius, Hessel C.
  organization: Deltares, P.O. Box 177, 2600 GA, Delft, The Netherlands
– sequence: 4
  givenname: Hubert H.G.
  surname: Savenije
  fullname: Savenije, Hubert H.G.
  organization: Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands
BookMark eNqNkcFu1DAURS1UJKYtC_4gEhtYhD7HdmwvUUU7SKXtohWiG8txXqhLJg52Ipi_x-mULiqQKlm2F-c8-fruk70hDEjIGwofKEB1dLsd84Vz8YKsKGhdUlBij6xAKVHWoOQrsp_SHQBwULAi7uoWC-w6dFMRuqIL0fnhe2GHtujzlpwdsWh9mqJv5smHochrxJjBjR0c3pMuDCkjOLjtMmQTWuyLrMxumiOmQ_Kys33C1w_nAbk--XR1vC7PLk4_H388K50ALkrXUKFpo5mspYD87spBxSQwqbFmTWU7aBS6nKF1QLFuKOetsJVsm2zVLTsg73Zzxxh-zpgms_HJYZ-DYJiToZLXldZM6GegVGnGhYJnoKCpVIKpjL59gt6FOQ4580JRLSpZ8Uwd7SgXQ0oRO-P8ZJe_naL1vaFglipNrtLcV5mN90-MMfqNjdt_sg_Tf_ket_8Hzfrb5V-j3BlLhb8fDRt_mFoyKczX81ND6frm5ovUBtgfsHm9oQ
CitedBy_id crossref_primary_10_5194_hess_25_4887_2021
crossref_primary_10_1016_j_scitotenv_2018_12_206
crossref_primary_10_5194_hess_21_3953_2017
crossref_primary_10_5194_hess_28_4577_2024
crossref_primary_10_1155_2016_5173984
crossref_primary_10_5194_hess_27_2149_2023
crossref_primary_10_1007_s10980_018_0690_4
crossref_primary_10_5194_esd_12_725_2021
crossref_primary_10_1002_2015WR018115
crossref_primary_10_1002_2016WR019574
crossref_primary_10_5194_hess_29_127_2025
crossref_primary_10_1007_s12665_021_09840_y
crossref_primary_10_5194_hess_21_2817_2017
crossref_primary_10_5194_hess_22_3493_2018
crossref_primary_10_1002_hyp_11232
crossref_primary_10_5194_hess_21_3325_2017
crossref_primary_10_1080_02626667_2022_2092405
crossref_primary_10_5194_hess_25_147_2021
crossref_primary_10_2166_ws_2020_284
crossref_primary_10_2166_nh_2016_242
crossref_primary_10_5194_hess_25_1943_2021
crossref_primary_10_1016_j_jhydrol_2021_126394
crossref_primary_10_1016_j_jhydrol_2023_129404
crossref_primary_10_1029_2018WR022985
crossref_primary_10_5194_hess_20_1151_2016
crossref_primary_10_1016_j_jhydrol_2017_04_049
crossref_primary_10_1016_j_jhydrol_2025_132897
crossref_primary_10_1002_2017WR021201
crossref_primary_10_1029_2020WR028837
crossref_primary_10_5194_hess_27_3083_2023
crossref_primary_10_1007_s12665_018_8017_y
crossref_primary_10_2166_wcc_2022_273
crossref_primary_10_5194_hess_28_4011_2024
crossref_primary_10_5194_hess_24_3331_2020
crossref_primary_10_1029_2019WR026365
crossref_primary_10_1002_hyp_11224
crossref_primary_10_1007_s40808_023_01936_7
crossref_primary_10_5194_hess_20_4775_2016
crossref_primary_10_5194_hess_21_423_2017
crossref_primary_10_5194_hess_25_957_2021
crossref_primary_10_1016_j_jhydrol_2020_125588
Cites_doi 10.5194/hess-15-2007-2011
10.1029/2011WR011044
10.1002/hyp.1130
10.5194/hess-18-4861-2014
10.1016/j.jhydrol.2005.01.001
10.1061/(ASCE)1084-0699(2004)9:2(103)
10.1002/hyp.252
10.5194/hess-18-4839-2014
10.1016/0022-1694(70)90255-6
10.1080/02626667.2013.803183
10.1029/2005WR004362
10.1098/rspa.1948.0037
10.1016/S0022-1694(01)00496-6
10.1029/2004WR003693
10.1029/2007WR006386
10.5194/hess-17-533-2013
10.5194/hess-16-3419-2012
10.5194/hess-15-2205-2011
10.5194/hess-15-3275-2011
10.5194/hess-17-1893-2013
10.1016/0022-1694(89)90101-7
10.1016/j.jhydrol.2008.04.008
10.5194/hess-18-575-2014
10.1029/2006WR005563
10.1002/2014WR015484
10.1016/j.jhydrol.2011.03.051
10.1029/2004WR003291
10.1029/2002WR001404
10.1002/hyp.9264
10.5194/hess-10-139-2006
10.2478/s11600-012-0053-5
10.5194/hess-18-1895-2014
10.1002/hyp.1131
10.1029/2006WR005032
10.1016/j.jhydrol.2003.12.038
10.1002/hyp.6989
10.1016/j.jhydrol.2009.04.031
10.1029/2010WR009469
10.1002/hyp.5676
10.1002/hyp.3360090313
10.1002/hyp.7072
10.5194/hess-17-2263-2013
10.1029/2009WR007706
10.1002/hyp.7841
10.1016/j.advwatres.2007.01.005
10.1029/2010WR010174
10.1029/2003WR002854
10.1016/j.rse.2008.03.018
10.1080/02626667909491834
10.1002/hyp.7902
10.1002/hyp.7656
10.1080/02626667.2012.754987
10.1111/j.1752-1688.2001.tb00973.x
10.1016/j.jhydrol.2006.02.013
10.1002/hyp.3360090307
10.1080/02626667.2010.505572
10.1002/hyp.9988
10.5194/hess-14-2681-2010
10.1016/j.jhydrol.2005.07.007
10.1002/hyp.9726
10.1016/S0168-1923(99)00104-5
10.1029/2007WR006735
10.5194/hess-4-203-2000
10.1029/2007WR006716
10.1002/hyp.7963
10.1016/j.jhydrol.2004.03.033
10.1029/2000WR000207
10.5194/hess-1-101-1997
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
DOI 10.1002/hyp.10445
DatabaseName Istex
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 3743
ExternalDocumentID 3770101221
10_1002_hyp_10445
HYP10445
ark_67375_WNG_11HZZM79_0
Genre article
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
ALUQN
AAYXX
CITATION
O8X
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c5045-cb1591b93767501082c02370379e63b2af0b8ec087dc01e6b144d5a27db1b96d3
IEDL.DBID DRFUL
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359429500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6087
IngestDate Fri Jul 11 18:29:27 EDT 2025
Thu Oct 02 03:08:30 EDT 2025
Tue Oct 07 09:25:12 EDT 2025
Mon Jul 14 08:03:38 EDT 2025
Sat Nov 29 03:02:47 EST 2025
Tue Nov 18 22:25:48 EST 2025
Tue Sep 09 05:09:24 EDT 2025
Tue Nov 11 03:32:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5045-cb1591b93767501082c02370379e63b2af0b8ec087dc01e6b144d5a27db1b96d3
Notes ark:/67375/WNG-11HZZM79-0
ArticleID:HYP10445
istex:EFFC5695577D8B1D3E7AA9D4DDCC7E3CDD94B0A9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0508-1017
PQID 1701952724
PQPubID 2034139
PageCount 17
ParticipantIDs proquest_miscellaneous_1746299359
proquest_miscellaneous_1718934580
proquest_miscellaneous_1709178538
proquest_journals_1701952724
crossref_citationtrail_10_1002_hyp_10445
crossref_primary_10_1002_hyp_10445
wiley_primary_10_1002_hyp_10445_HYP10445
istex_primary_ark_67375_WNG_11HZZM79_0
PublicationCentury 2000
PublicationDate 15 August 2015
PublicationDateYYYYMMDD 2015-08-15
PublicationDate_xml – month: 08
  year: 2015
  text: 15 August 2015
  day: 15
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Euser T, Winsemius HC, Hrachowitz M, Fenicia F, Uhlenbrook S, Savenije HHG. 2013. A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences 17(5): 1893-1912.
Reggiani P, Rientjes THM. 2005. Flux parameterization in the representative elementary watershed approach: application to a natural basin. Water Resources Research 41(4): W04013.
Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22(18): 3802-3813.
Savenije HHG. 2010. HESS opinions "Topography driven conceptual modelling (FLEX-Topo)". Hydrology and Earth System Sciences 14(12): 2681-2692.
Seibert J, Bishop K, Rodhe A, McDonnell JJ. 2003a. Groundwater dynamics along a hillslope: a test of the steady state hypothesis. Water Resources Research 39(1): 1014. DOI: 10.1029/2002WR001404
Rakovec O, Hazenberg P, Torfs PJJF, Weerts AH, Uijlenhoet R. 2012. Generating spatial precipitation ensembles: impact of temporal correlation structure. Hydrology and Earth System Sciences 16(9): 3419-3434.
Ajami NK, Gupta H, Wagener T, Sorooshian S. 2004. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4): 112-135.
Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C. 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: a theoretical study using chimera watersheds. Water Resources Research 40(5): W05209.
Hrachowitz M, Fovet O, Ruiz L, Euser T, Gharari S, Nijzink R, Freer J, Savenije HHG, Gascuel-Odoux C. 2014. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research. URL http://doi.wiley.com/10.1002/2014WR015484
Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW. 2005. Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. Journal of Hydrology 311(1-4): 20-48.
Wagener T, Montanari A. 2011. Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resources Research 47(6): W06301.
Beven KJ. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320(1-2): 18-36.
Beven KJ. 1989. Changing ideas in hydrology-the case of physically-based models. Journal of Hydrology 105(1-2): 157-172.
Flügel W-A. 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Brol, Germany. Hydrological Processes 9(3-4): 423-436.
Gao H, Hrachowitz M, Fenicia F, Gharari S, Savenije HHG. 2014. Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the upper Heihe, China. Hydrology and Earth System Sciences 18(5): 1895-1915.
McMillan HK, Clark MP, Bowden WB, Duncan M, Woods RA. 2011. Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure. Hydrological Processes 25(4): 511-522.
Eshagh M, Lemoine J-M, Gegout P, Biancale R. 2013. On regularized time varying gravity field models based on grace data and their comparison with hydrological models. Acta Geophysica 61(1): 1-17.
Gharari S, Shafiei M, Hrachowitz M, Kumar R, Fenicia F, Gupta HV, Savenije HHG. 2014b. A constraint-based search algorithm for parameter identification of environmental models. Hydrology and Earth System Sciences 18(12): 4861-4870.URL http://www.hydrol-earth-syst-sci.net/18/4861/2014
Lobligeois F, Andréassian V, Perrin C, Tabary P, Loumagne C. 2014. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrology and Earth System Sciences 18(2): 575-594.
Andréassian V, Le Moine N, Perrin C, Ramos M-H, Oudin L, Mathevet T, Lerat J, Berthet L. 2012. All that glitters is not gold: the case of calibrating hydrological models. Hydrological Processes 26(14): 2206-2210.
Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Waterloo M, Saleska S. 2011. Height above the nearest drainage-a hydrologically relevant new terrain model. Journal of Hydrology 404(1-2): 13-29.
Scherrer S, Naef F. 2003. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrological Processes 17(2): 391-401.
Hrachowitz M, Savenije H, Blöschl G, McDonnell J, Sivapalan M, Pomeroy J, Arheimer B, Blume T, Clark M, Ehret U, Fenicia F, Freer J, Gelfan A, Gupta H, Hughes D, Hut R, Montanari A, Pande S, Tetzlaff D, Troch P, Uhlenbrook S, Wagener T, Winsemius H, Woods R, Zehe E, Cudennec C. 2013a. A decade of predictions in ungauged basins (pub)-a review. Hydrological Sciences Journal 58(6): 1198-1255.
Gharari S, Hrachowitz M, Fenicia F, Gao H, Savenije HHG. 2014a. Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences 18(12): 4839-4859. URL http://www.hydrol-earth-syst-sci.net/18/4839/2014
Winter T. 2001. The concept of hydrologic landscapes. Journal of the American Water Resources Association 37(2): 335-349.
Seibert J, Rodhe A, Bishop K. 2003b. Simulating interactions between saturated and unsaturated storage in a conceptual runoff model. Hydrological Processes 17(2): 379-390.
Kling H, Gupta H. 2009. On the development of regionalization relationships for lumped watershed models: the impact of ignoring sub-basin scale variability. Journal of Hydrology 373(3-4): 337-351.
Hrachowitz M, Savenije H, Bogaard TA, Tetzlaff D, Soulsby C. 2013b. What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrology and Earth System Sciences 17(2): 533-564.
Criss RE, Winston WE. 2008. Do Nash values have value? Discussion and alternate proposals. Hydrological Processes 22(14): 2723-2725.
Jothityangkoon C, Sivapalan M, Farmer D. 2001. Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological model development. Journal of Hydrology 254(1-4): 174-198.
Knudsen J, Thomsen A, Refsgaard J. 1986. Watbal a semi-distributed, physically based hydrological modelling system. Nordic Hydrology 17(4-5): 347-362.
Kirchner JW. 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research 42(3): W03S04.
Boyle DP, Gupta HV, Sorooshian S, Koren V, Zhang Z, Smith M. 2001. Toward improved streamflow forecasts: value of semidistributed modeling. Water Resources Research 37(11): 2749-2759.
McMillan H, Gueguen M, Grimon E, Woods R, Clark M, Rupp DE. 2013. Spatial variability of hydrological processes and model structure diagnostics in a 50 km2 catchment. Hydrological Processes 28(18): 4896-4913.
Yadav M, Wagener T, Gupta H. 2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources 30(8): 1756-1774.
Carpenter TM, Georgakakos KP. 2006. Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology 329(1-2): 174-185.
Das T, Bárdossy A, Zehe E, He Y. 2008. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology 356(1-2): 106-118.
Fenicia F, Kavetski D, Savenije HHG. 2011. Elements of a flexible approach for conceptual hydrological modeling: 1. motivation and theoretical development. Water Resources Research 47(11): W11510.
Gupta HV, Clark MP, Vrugt JA, Abramowitz G, Ye M. 2012. Towards a comprehensive assessment of model structural adequacy. Water Resources Research 48(8): W08301.
Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London 193: 120-146.
Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12): W12422.
Nash J, Sutcliffe JV. 1970. River flow forecasting through conceptual models part i-a discussion of principles. Journal of Hydrology 10(3): 282-290.
Shamir E, Imam B, Morin E, Gupta HV, Sorooshian S. 2005. The role of hydrograph indices in parameter estimation of rainfall-runoff models. Hydrological Processes 19(11): 2187-2207.
Hingray B, Schaefli B, Mezghani A, Hamdi Y. 2010. Signature-based model calibration for hydrological prediction in mesoscale alpine catchments. Hydrological Sciences Journal 55(6): 1002-1016.
Beven KJ, Freer J. 2001. A dynamic TOPMODEL. Hydrological Processes 15(10): 1993-2011.
Westerberg IK, Guerrero J-L, Younger PM, Beven KJ, Seibert J, Halldin S, Freer JE, Xu C-Y. 2011. Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences 15(7): 2205-2227.
Rodhe A, Seibert J. 1999. Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agricultural and Forest Meteorology 98-99: 325-340.
Fenicia F, McDonnell JJ, Savenije HHG. 2008a. Learning from model improvement: on the contribution of complementary data to process understanding. Water Resources Research 44(6): W06419.
Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1): 43-69.
Son K, Sivapalan ME. 2007. Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data. Water Resources Research 43(1): W01415.
Clark MP, Slater AG, Rupp DE, Woods RA, Vrugt JA, Gupta HV, Wagener T, Hay LE. 2008. Framework for understanding structural errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resources Research 44(12): W00B02.
Beven KJ. 2000. Uniqueness of place and process representations in hydrological modelling. Hydro
2009; 45
2010; 55
2013b; 17
2013; 28
2010; 14
2013a; 58
2000; 4
2013; 61
2004; 9
2003a; 39
1997; 1
2003; 17
2011; 15
2012; 16
2014; 28
2007; 30
2014a; 18
2001; 254
2004; 298
2008a; 44
1989; 105
1979; 24
2006; 329
1948; 193
2003b; 17
2013; 58
2013; 17
2011; 404
2010; 24
2004; 291
2014b; 18
2008b; 44
2001; 15
2008; 22
2008; 356
2014; 18
2012; 26
2011; 25
2008; 112
2006; 320
1995; 9
2004; 40
2006; 10
2005; 311
1986; 17
2005; 41
1970; 10
2009; 373
1999; 98–99
2005; 19
2006; 42
2001; 37
2008; 44
2014
2011; 47
2012; 48
2013
2007; 43
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Knudsen J (e_1_2_7_42_1) 1986; 17
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Gharari S, Hrachowitz M, Fenicia F, Savenije HHG. 2011. Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth System Sciences 15(11): 3275-3291.
– reference: Fenicia F, Kavetski D, Savenije HHG, Clark MP, Schoups G, Pfister L, Freer J. 2014. Catchment properties, function, and conceptual model representation: is there a correspondence? Hydrological Processes 28(4): 2451-2467.
– reference: Jothityangkoon C, Sivapalan M, Farmer D. 2001. Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological model development. Journal of Hydrology 254(1-4): 174-198.
– reference: Shamir E, Imam B, Morin E, Gupta HV, Sorooshian S. 2005. The role of hydrograph indices in parameter estimation of rainfall-runoff models. Hydrological Processes 19(11): 2187-2207.
– reference: Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Waterloo M, Saleska S. 2011. Height above the nearest drainage-a hydrologically relevant new terrain model. Journal of Hydrology 404(1-2): 13-29.
– reference: Boyle DP, Gupta HV, Sorooshian S, Koren V, Zhang Z, Smith M. 2001. Toward improved streamflow forecasts: value of semidistributed modeling. Water Resources Research 37(11): 2749-2759.
– reference: Clark MP, McMillan HK, Collins DBG, Kavetski D, Woods RA. 2011. Hydrological field data from a modeller's perspective: Part 2: process-based evaluation of model hypotheses. Hydrological Processes 25(4): 523-543.
– reference: Lamb R, Beven K. 1997. Using interactive recession curve analysis to specify a general catchment storage model. Hydrology and Earth System Sciences 1(1): 101-113.
– reference: McMillan H, Gueguen M, Grimon E, Woods R, Clark M, Rupp DE. 2013. Spatial variability of hydrological processes and model structure diagnostics in a 50 km2 catchment. Hydrological Processes 28(18): 4896-4913.
– reference: Eshagh M, Lemoine J-M, Gegout P, Biancale R. 2013. On regularized time varying gravity field models based on grace data and their comparison with hydrological models. Acta Geophysica 61(1): 1-17.
– reference: Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22(18): 3802-3813.
– reference: Kirchner JW. 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research 42(3): W03S04.
– reference: Carpenter TM, Georgakakos KP. 2006. Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology 329(1-2): 174-185.
– reference: McMillan HK, Clark MP, Bowden WB, Duncan M, Woods RA. 2011. Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure. Hydrological Processes 25(4): 511-522.
– reference: Seibert J, Rodhe A, Bishop K. 2003b. Simulating interactions between saturated and unsaturated storage in a conceptual runoff model. Hydrological Processes 17(2): 379-390.
– reference: Fenicia F, Savenije HHG, Matgen P, Pfister L. 2008b. Understanding catchment behavior through stepwise model concept improvement. Water Resources Research 44(1): W01402.
– reference: Beven KJ, Freer J. 2001. A dynamic TOPMODEL. Hydrological Processes 15(10): 1993-2011.
– reference: Lobligeois F, Andréassian V, Perrin C, Tabary P, Loumagne C. 2014. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrology and Earth System Sciences 18(2): 575-594.
– reference: Gharari S, Shafiei M, Hrachowitz M, Kumar R, Fenicia F, Gupta HV, Savenije HHG. 2014b. A constraint-based search algorithm for parameter identification of environmental models. Hydrology and Earth System Sciences 18(12): 4861-4870.URL http://www.hydrol-earth-syst-sci.net/18/4861/2014/
– reference: Hrachowitz M, Savenije H, Blöschl G, McDonnell J, Sivapalan M, Pomeroy J, Arheimer B, Blume T, Clark M, Ehret U, Fenicia F, Freer J, Gelfan A, Gupta H, Hughes D, Hut R, Montanari A, Pande S, Tetzlaff D, Troch P, Uhlenbrook S, Wagener T, Winsemius H, Woods R, Zehe E, Cudennec C. 2013a. A decade of predictions in ungauged basins (pub)-a review. Hydrological Sciences Journal 58(6): 1198-1255.
– reference: Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12): W12422.
– reference: Rakovec O, Hazenberg P, Torfs PJJF, Weerts AH, Uijlenhoet R. 2012. Generating spatial precipitation ensembles: impact of temporal correlation structure. Hydrology and Earth System Sciences 16(9): 3419-3434.
– reference: Rennó CD, Nobre AD, Cuartas LA, Soares JAV, Hodnett MG, Tomasella J, Waterloo MJ. 2008. HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in amazonia. Remote Sensing of Environment 112(9): 3469-3481.
– reference: Gao H, Hrachowitz M, Fenicia F, Gharari S, Savenije HHG. 2014. Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the upper Heihe, China. Hydrology and Earth System Sciences 18(5): 1895-1915.
– reference: Westerberg IK, Guerrero J-L, Younger PM, Beven KJ, Seibert J, Halldin S, Freer JE, Xu C-Y. 2011. Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences 15(7): 2205-2227.
– reference: Ajami NK, Gupta H, Wagener T, Sorooshian S. 2004. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4): 112-135.
– reference: Beven KJ. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320(1-2): 18-36.
– reference: Yadav M, Wagener T, Gupta H. 2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources 30(8): 1756-1774.
– reference: Wagener T, Montanari A. 2011. Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resources Research 47(6): W06301.
– reference: Hingray B, Schaefli B, Mezghani A, Hamdi Y. 2010. Signature-based model calibration for hydrological prediction in mesoscale alpine catchments. Hydrological Sciences Journal 55(6): 1002-1016.
– reference: Fenicia F, McDonnell JJ, Savenije HHG. 2008a. Learning from model improvement: on the contribution of complementary data to process understanding. Water Resources Research 44(6): W06419.
– reference: Viglione A, Parajka J, Rogger M, Salinas JL, Laaha G, Sivapalan M, Blöschl G. 2013. Comparative assessment of predictions in ungauged basins-part 3: runoff signatures in Austria. Hydrology and Earth System Sciences 17(6): 2263-2279.
– reference: Beven KJ. 1989. Changing ideas in hydrology-the case of physically-based models. Journal of Hydrology 105(1-2): 157-172.
– reference: Reggiani P, Rientjes THM. 2005. Flux parameterization in the representative elementary watershed approach: application to a natural basin. Water Resources Research 41(4): W04013.
– reference: Uhlenbrook S, Roser S, Tilch N. 2004. Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model. Journal of Hydrology 291(3-4): 278-296.
– reference: Flügel W-A. 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Brol, Germany. Hydrological Processes 9(3-4): 423-436.
– reference: Seibert J, Bishop K, Rodhe A, McDonnell JJ. 2003a. Groundwater dynamics along a hillslope: a test of the steady state hypothesis. Water Resources Research 39(1): 1014. DOI: 10.1029/2002WR001404
– reference: Beven K, Westerberg I. 2011. On red herrings and real herrings: disinformation and information in hydrological inference. Hydrological Processes 25(10): 1676-1680. URL http://doi.wiley.com/10.1002/hyp.7963
– reference: Scherrer S, Naef F. 2003. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrological Processes 17(2): 391-401.
– reference: Maneta MP, Wallender WW. 2013. Pilot-point based multi-objective calibration in a surface-subsurface distributed hydrological model. Hydrological Sciences Journal 58(2): 390-407.
– reference: Beven KJ. 2000. Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences 4(2): 203-213.
– reference: Winter T. 2001. The concept of hydrologic landscapes. Journal of the American Water Resources Association 37(2): 335-349.
– reference: Clark MP, Slater AG, Rupp DE, Woods RA, Vrugt JA, Gupta HV, Wagener T, Hay LE. 2008. Framework for understanding structural errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resources Research 44(12): W00B02.
– reference: Gharari S, Hrachowitz M, Fenicia F, Gao H, Savenije HHG. 2014a. Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences 18(12): 4839-4859. URL http://www.hydrol-earth-syst-sci.net/18/4839/2014/
– reference: Nash J, Sutcliffe JV. 1970. River flow forecasting through conceptual models part i-a discussion of principles. Journal of Hydrology 10(3): 282-290.
– reference: Euser T, Winsemius HC, Hrachowitz M, Fenicia F, Uhlenbrook S, Savenije HHG. 2013. A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences 17(5): 1893-1912.
– reference: Savenije HHG. 2010. HESS opinions "Topography driven conceptual modelling (FLEX-Topo)". Hydrology and Earth System Sciences 14(12): 2681-2692.
– reference: Oudin L, Andréassian V, Perrin C, Anctil F. 2004. Locating the sources of low-pass behavior within rainfall-runoff models. Water Resources Research 40(11): W11101.
– reference: Criss RE, Winston WE. 2008. Do Nash values have value? Discussion and alternate proposals. Hydrological Processes 22(14): 2723-2725.
– reference: Andréassian V, Le Moine N, Perrin C, Ramos M-H, Oudin L, Mathevet T, Lerat J, Berthet L. 2012. All that glitters is not gold: the case of calibrating hydrological models. Hydrological Processes 26(14): 2206-2210.
– reference: Knudsen J, Thomsen A, Refsgaard J. 1986. Watbal a semi-distributed, physically based hydrological modelling system. Nordic Hydrology 17(4-5): 347-362.
– reference: Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1): 43-69.
– reference: Detty JM, McGuire KJ. 2010. Topographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment. Hydrological Processes 24(16): 2222-2236.
– reference: Hrachowitz M, Bohte R, Mul ML, Bogaard TA, Savenije HHG, Uhlenbrook S. 2011. On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data-scarce semi-arid area. Hydrology and Earth System Sciences 15(6): 2007-2024.
– reference: Yilmaz KK, Gupta HV, Wagener T. 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research 44(9): W09417.
– reference: Das T, Bárdossy A, Zehe E, He Y. 2008. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology 356(1-2): 106-118.
– reference: Rodhe A, Seibert J. 1999. Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agricultural and Forest Meteorology 98-99: 325-340.
– reference: Blöschl G, Grayson RB, Sivapalan M. 1995. On the representative elementary area (rea) concept and its utility for distributed rainfall-runoff modelling. Hydrological Processes 9(3-4): 313-330.
– reference: Fenicia F, Kavetski D, Savenije HHG. 2011. Elements of a flexible approach for conceptual hydrological modeling: 1. motivation and theoretical development. Water Resources Research 47(11): W11510.
– reference: Gupta HV, Clark MP, Vrugt JA, Abramowitz G, Ye M. 2012. Towards a comprehensive assessment of model structural adequacy. Water Resources Research 48(8): W08301.
– reference: Fenicia F, Savenije HHG, Matgen P, Pfister L. 2006. Is the groundwater reservoir linear? Learning from data in hydrological modelling. Hydrology and Earth System Sciences 10(1): 139-150.
– reference: Hrachowitz M, Fovet O, Ruiz L, Euser T, Gharari S, Nijzink R, Freer J, Savenije HHG, Gascuel-Odoux C. 2014. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research. URL http://doi.wiley.com/10.1002/2014WR015484
– reference: Hrachowitz M, Savenije H, Bogaard TA, Tetzlaff D, Soulsby C. 2013b. What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrology and Earth System Sciences 17(2): 533-564.
– reference: Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London 193: 120-146.
– reference: Kling H, Gupta H. 2009. On the development of regionalization relationships for lumped watershed models: the impact of ignoring sub-basin scale variability. Journal of Hydrology 373(3-4): 337-351.
– reference: Zhang Z, Koren V, Smith M, Reed S, Wang D. 2004. Use of next generation weather radar data and basin disaggregation to improve continuous hydrograph simulations. Journal of Hydrologic Engineering 9(2): 103-115.
– reference: Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C. 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: a theoretical study using chimera watersheds. Water Resources Research 40(5): W05209.
– reference: Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW. 2005. Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. Journal of Hydrology 311(1-4): 20-48.
– reference: Son K, Sivapalan ME. 2007. Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data. Water Resources Research 43(1): W01415.
– volume: 4
  start-page: 203
  issue: 2
  year: 2000
  end-page: 213
  article-title: Uniqueness of place and process representations in hydrological modelling
  publication-title: Hydrology and Earth System Sciences
– volume: 9
  start-page: 313
  issue: 3–4
  year: 1995
  end-page: 330
  article-title: On the representative elementary area (rea) concept and its utility for distributed rainfall–runoff modelling
  publication-title: Hydrological Processes
– volume: 26
  start-page: 2206
  issue: 14
  year: 2012
  end-page: 2210
  article-title: All that glitters is not gold: the case of calibrating hydrological models
  publication-title: Hydrological Processes
– volume: 25
  start-page: 1676
  issue: 10
  year: 2011
  end-page: 1680
  article-title: On red herrings and real herrings: disinformation and information in hydrological inference
  publication-title: Hydrological Processes
– volume: 17
  start-page: 533
  issue: 2
  year: 2013b
  end-page: 564
  article-title: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?
  publication-title: Hydrology and Earth System Sciences
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models part i—a discussion of principles
  publication-title: Journal of Hydrology
– volume: 47
  issue: 6
  year: 2011
  article-title: Convergence of approaches toward reducing uncertainty in predictions in ungauged basins
  publication-title: Water Resources Research
– volume: 44
  issue: 12
  year: 2008
  article-title: Framework for understanding structural errors (FUSE): a modular framework to diagnose differences between hydrological models
  publication-title: Water Resources Research
– volume: 25
  start-page: 511
  issue: 4
  year: 2011
  end-page: 522
  article-title: Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure
  publication-title: Hydrological Processes
– volume: 48
  issue: 8
  year: 2012
  article-title: Towards a comprehensive assessment of model structural adequacy
  publication-title: Water Resources Research
– volume: 28
  start-page: 4896
  issue: 18
  year: 2013
  end-page: 4913
  article-title: Spatial variability of hydrological processes and model structure diagnostics in a 50 km catchment
  publication-title: Hydrological Processes
– volume: 55
  start-page: 1002
  issue: 6
  year: 2010
  end-page: 1016
  article-title: Signature‐based model calibration for hydrological prediction in mesoscale alpine catchments
  publication-title: Hydrological Sciences Journal
– volume: 39
  issue: 1
  year: 2003a
  article-title: Groundwater dynamics along a hillslope: a test of the steady state hypothesis
  publication-title: Water Resources Research
– volume: 16
  start-page: 3419
  issue: 9
  year: 2012
  end-page: 3434
  article-title: Generating spatial precipitation ensembles: impact of temporal correlation structure
  publication-title: Hydrology and Earth System Sciences
– volume: 15
  start-page: 1993
  issue: 10
  year: 2001
  end-page: 2011
  article-title: A dynamic TOPMODEL
  publication-title: Hydrological Processes
– volume: 18
  start-page: 575
  issue: 2
  year: 2014
  end-page: 594
  article-title: When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events
  publication-title: Hydrology and Earth System Sciences
– volume: 10
  start-page: 139
  issue: 1
  year: 2006
  end-page: 150
  article-title: Is the groundwater reservoir linear? Learning from data in hydrological modelling
  publication-title: Hydrology and Earth System Sciences
– volume: 9
  start-page: 103
  issue: 2
  year: 2004
  end-page: 115
  article-title: Use of next generation weather radar data and basin disaggregation to improve continuous hydrograph simulations
  publication-title: Journal of Hydrologic Engineering
– volume: 98–99
  start-page: 325
  year: 1999
  end-page: 340
  article-title: Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators
  publication-title: Agricultural and Forest Meteorology
– volume: 25
  start-page: 523
  issue: 4
  year: 2011
  end-page: 543
  article-title: Hydrological field data from a modeller's perspective: Part 2: process‐based evaluation of model hypotheses
  publication-title: Hydrological Processes
– volume: 58
  start-page: 390
  issue: 2
  year: 2013
  end-page: 407
  article-title: Pilot‐point based multi‐objective calibration in a surface‐subsurface distributed hydrological model
  publication-title: Hydrological Sciences Journal
– volume: 22
  start-page: 2723
  issue: 14
  year: 2008
  end-page: 2725
  article-title: Do Nash values have value? Discussion and alternate proposals
  publication-title: Hydrological Processes
– volume: 15
  start-page: 2205
  issue: 7
  year: 2011
  end-page: 2227
  article-title: Calibration of hydrological models using flow–duration curves
  publication-title: Hydrology and Earth System Sciences
– volume: 15
  start-page: 2007
  issue: 6
  year: 2011
  end-page: 2024
  article-title: On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data‐scarce semi‐arid area
  publication-title: Hydrology and Earth System Sciences
– volume: 356
  start-page: 106
  issue: 1–2
  year: 2008
  end-page: 118
  article-title: Comparison of conceptual model performance using different representations of spatial variability
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 4861
  issue: 12
  year: 2014b
  end-page: 4870
  article-title: A constraint‐based search algorithm for parameter identification of environmental models
  publication-title: Hydrology and Earth System Sciences
– volume: 22
  start-page: 3802
  issue: 18
  year: 2008
  end-page: 3813
  article-title: Reconciling theory with observations: elements of a diagnostic approach to model evaluation
  publication-title: Hydrological Processes
– volume: 43
  issue: 1
  year: 2007
  article-title: Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data
  publication-title: Water Resources Research
– volume: 9
  start-page: 423
  issue: 3–4
  year: 1995
  end-page: 436
  article-title: Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Brol, Germany
  publication-title: Hydrological Processes
– volume: 193
  start-page: 120
  year: 1948
  end-page: 146
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proceedings of the Royal Society of London
– volume: 19
  start-page: 2187
  issue: 11
  year: 2005
  end-page: 2207
  article-title: The role of hydrograph indices in parameter estimation of rainfall–runoff models
  publication-title: Hydrological Processes
– volume: 24
  start-page: 43
  issue: 1
  year: 1979
  end-page: 69
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrological Sciences Bulletin
– volume: 17
  start-page: 391
  issue: 2
  year: 2003
  end-page: 401
  article-title: A decision scheme to indicate dominant hydrological flow processes on temperate grassland
  publication-title: Hydrological Processes
– volume: 42
  issue: 3
  year: 2006
  article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology
  publication-title: Water Resources Research
– volume: 24
  start-page: 2222
  issue: 16
  year: 2010
  end-page: 2236
  article-title: Topographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment
  publication-title: Hydrological Processes
– volume: 61
  start-page: 1
  issue: 1
  year: 2013
  end-page: 17
  article-title: On regularized time varying gravity field models based on grace data and their comparison with hydrological models
  publication-title: Acta Geophysica
– volume: 105
  start-page: 157
  issue: 1–2
  year: 1989
  end-page: 172
  article-title: Changing ideas in hydrology—the case of physically‐based models
  publication-title: Journal of Hydrology
– volume: 291
  start-page: 278
  issue: 3–4
  year: 2004
  end-page: 296
  article-title: Hydrological process representation at the meso‐scale: the potential of a distributed, conceptual catchment model
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 1895
  issue: 5
  year: 2014
  end-page: 1915
  article-title: Testing the realism of a topography‐driven model (FLEX‐Topo) in the nested catchments of the upper Heihe, China
  publication-title: Hydrology and Earth System Sciences
– volume: 37
  start-page: 335
  issue: 2
  year: 2001
  end-page: 349
  article-title: The concept of hydrologic landscapes
  publication-title: Journal of the American Water Resources Association
– volume: 37
  start-page: 2749
  issue: 11
  year: 2001
  end-page: 2759
  article-title: Toward improved streamflow forecasts: value of semidistributed modeling
  publication-title: Water Resources Research
– volume: 47
  issue: 11
  year: 2011
  article-title: Elements of a flexible approach for conceptual hydrological modeling: 1. motivation and theoretical development
  publication-title: Water Resources Research
– volume: 44
  issue: 9
  year: 2008
  article-title: A process‐based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model
  publication-title: Water Resources Research
– volume: 28
  start-page: 2451
  issue: 4
  year: 2014
  end-page: 2467
  article-title: Catchment properties, function, and conceptual model representation: is there a correspondence?
  publication-title: Hydrological Processes
– volume: 17
  start-page: 379
  issue: 2
  year: 2003b
  end-page: 390
  article-title: Simulating interactions between saturated and unsaturated storage in a conceptual runoff model
  publication-title: Hydrological Processes
– volume: 44
  issue: 6
  year: 2008a
  article-title: Learning from model improvement: on the contribution of complementary data to process understanding
  publication-title: Water Resources Research
– volume: 15
  start-page: 3275
  issue: 11
  year: 2011
  end-page: 3291
  article-title: Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso‐scale catchment
  publication-title: Hydrology and Earth System Sciences
– volume: 404
  start-page: 13
  issue: 1–2
  year: 2011
  end-page: 29
  article-title: Height above the nearest drainage—a hydrologically relevant new terrain model
  publication-title: Journal of Hydrology
– volume: 254
  start-page: 174
  issue: 1–4
  year: 2001
  end-page: 198
  article-title: Process controls of water balance variability in a large semi‐arid catchment: downward approach to hydrological model development
  publication-title: Journal of Hydrology
– volume: 17
  start-page: 1893
  issue: 5
  year: 2013
  end-page: 1912
  article-title: A framework to assess the realism of model structures using hydrological signatures
  publication-title: Hydrology and Earth System Sciences
– volume: 41
  issue: 4
  year: 2005
  article-title: Flux parameterization in the representative elementary watershed approach: application to a natural basin
  publication-title: Water Resources Research
– volume: 44
  issue: 1
  year: 2008b
  article-title: Understanding catchment behavior through stepwise model concept improvement
  publication-title: Water Resources Research
– volume: 320
  start-page: 18
  issue: 1–2
  year: 2006
  end-page: 36
  article-title: A manifesto for the equifinality thesis
  publication-title: Journal of Hydrology
– volume: 329
  start-page: 174
  issue: 1–2
  year: 2006
  end-page: 185
  article-title: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales
  publication-title: Journal of Hydrology
– volume: 45
  issue: 12
  year: 2009
  article-title: On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information
  publication-title: Water Resources Research
– volume: 311
  start-page: 20
  issue: 1–4
  year: 2005
  end-page: 48
  article-title: Multi‐criteria optimization of a regional spatially‐distributed subsurface water flow model
  publication-title: Journal of Hydrology
– volume: 17
  start-page: 347
  issue: 4–5
  year: 1986
  end-page: 362
  article-title: Watbal a semi‐distributed, physically based hydrological modelling system
  publication-title: Nordic Hydrology
– volume: 18
  start-page: 4839
  issue: 12
  year: 2014a
  end-page: 4859
  article-title: Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration
  publication-title: Hydrology and Earth System Sciences
– volume: 14
  start-page: 2681
  issue: 12
  year: 2010
  end-page: 2692
  article-title: HESS opinions “Topography driven conceptual modelling (FLEX‐Topo)”
  publication-title: Hydrology and Earth System Sciences
– year: 2014
  article-title: Process consistency in models: The importance of system signatures, expert knowledge, and process complexity
  publication-title: Water Resources Research
– volume: 298
  start-page: 112
  issue: 1–4
  year: 2004
  end-page: 135
  article-title: Calibration of a semi‐distributed hydrologic model for streamflow estimation along a river system
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 1756
  issue: 8
  year: 2007
  end-page: 1774
  article-title: Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins
  publication-title: Advances in Water Resources
– volume: 17
  start-page: 2263
  issue: 6
  year: 2013
  end-page: 2279
  article-title: Comparative assessment of predictions in ungauged basins—part 3: runoff signatures in Austria
  publication-title: Hydrology and Earth System Sciences
– volume: 40
  issue: 11
  year: 2004
  article-title: Locating the sources of low‐pass behavior within rainfall–runoff models
  publication-title: Water Resources Research
– volume: 373
  start-page: 337
  issue: 3–4
  year: 2009
  end-page: 351
  article-title: On the development of regionalization relationships for lumped watershed models: the impact of ignoring sub‐basin scale variability
  publication-title: Journal of Hydrology
– volume: 58
  start-page: 1198
  issue: 6
  year: 2013a
  end-page: 1255
  article-title: A decade of predictions in ungauged basins (pub)—a review
  publication-title: Hydrological Sciences Journal
– volume: 40
  issue: 5
  year: 2004
  article-title: Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall‐runoff models: a theoretical study using chimera watersheds
  publication-title: Water Resources Research
– volume: 112
  start-page: 3469
  issue: 9
  year: 2008
  end-page: 3481
  article-title: HAND, a new terrain descriptor using SRTM‐DEM: mapping terra‐firme rainforest environments in amazonia
  publication-title: Remote Sensing of Environment
– year: 2013
– volume: 1
  start-page: 101
  issue: 1
  year: 1997
  end-page: 113
  article-title: Using interactive recession curve analysis to specify a general catchment storage model
  publication-title: Hydrology and Earth System Sciences
– ident: e_1_2_7_34_1
  doi: 10.5194/hess-15-2007-2011
– ident: e_1_2_7_31_1
  doi: 10.1029/2011WR011044
– ident: e_1_2_7_60_1
  doi: 10.1002/hyp.1130
– ident: e_1_2_7_30_1
  doi: 10.5194/hess-18-4861-2014
– ident: e_1_2_7_58_1
  doi: 10.1016/j.jhydrol.2005.01.001
– ident: e_1_2_7_71_1
  doi: 10.1061/(ASCE)1084-0699(2004)9:2(103)
– ident: e_1_2_7_9_1
  doi: 10.1002/hyp.252
– ident: e_1_2_7_28_1
  doi: 10.5194/hess-18-4839-2014
– ident: e_1_2_7_48_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_7_36_1
  doi: 10.1080/02626667.2013.803183
– ident: e_1_2_7_40_1
  doi: 10.1029/2005WR004362
– volume: 17
  start-page: 347
  issue: 4
  year: 1986
  ident: e_1_2_7_42_1
  article-title: Watbal a semi‐distributed, physically based hydrological modelling system
  publication-title: Nordic Hydrology
– ident: e_1_2_7_51_1
  doi: 10.1098/rspa.1948.0037
– ident: e_1_2_7_39_1
  doi: 10.1016/S0022-1694(01)00496-6
– ident: e_1_2_7_53_1
  doi: 10.1029/2004WR003693
– ident: e_1_2_7_23_1
  doi: 10.1029/2007WR006386
– ident: e_1_2_7_37_1
  doi: 10.5194/hess-17-533-2013
– ident: e_1_2_7_52_1
  doi: 10.5194/hess-16-3419-2012
– ident: e_1_2_7_66_1
  doi: 10.5194/hess-15-2205-2011
– ident: e_1_2_7_29_1
  doi: 10.5194/hess-15-3275-2011
– ident: e_1_2_7_20_1
  doi: 10.5194/hess-17-1893-2013
– ident: e_1_2_7_6_1
  doi: 10.1016/0022-1694(89)90101-7
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jhydrol.2008.04.008
– ident: e_1_2_7_38_1
– ident: e_1_2_7_44_1
  doi: 10.5194/hess-18-575-2014
– ident: e_1_2_7_25_1
  doi: 10.1029/2006WR005563
– ident: e_1_2_7_35_1
  doi: 10.1002/2014WR015484
– ident: e_1_2_7_49_1
  doi: 10.1016/j.jhydrol.2011.03.051
– ident: e_1_2_7_50_1
  doi: 10.1029/2004WR003291
– ident: e_1_2_7_59_1
  doi: 10.1029/2002WR001404
– ident: e_1_2_7_3_1
  doi: 10.1002/hyp.9264
– ident: e_1_2_7_24_1
  doi: 10.5194/hess-10-139-2006
– ident: e_1_2_7_19_1
  doi: 10.2478/s11600-012-0053-5
– ident: e_1_2_7_27_1
  doi: 10.5194/hess-18-1895-2014
– ident: e_1_2_7_57_1
  doi: 10.1002/hyp.1131
– ident: e_1_2_7_62_1
  doi: 10.1029/2006WR005032
– ident: e_1_2_7_63_1
  doi: 10.1016/j.jhydrol.2003.12.038
– ident: e_1_2_7_32_1
  doi: 10.1002/hyp.6989
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jhydrol.2009.04.031
– ident: e_1_2_7_65_1
  doi: 10.1029/2010WR009469
– ident: e_1_2_7_61_1
  doi: 10.1002/hyp.5676
– ident: e_1_2_7_26_1
  doi: 10.1002/hyp.3360090313
– ident: e_1_2_7_16_1
  doi: 10.1002/hyp.7072
– ident: e_1_2_7_64_1
  doi: 10.5194/hess-17-2263-2013
– ident: e_1_2_7_67_1
  doi: 10.1029/2009WR007706
– ident: e_1_2_7_47_1
  doi: 10.1002/hyp.7841
– ident: e_1_2_7_69_1
  doi: 10.1016/j.advwatres.2007.01.005
– ident: e_1_2_7_21_1
  doi: 10.1029/2010WR010174
– ident: e_1_2_7_4_1
  doi: 10.1029/2003WR002854
– ident: e_1_2_7_54_1
  doi: 10.1016/j.rse.2008.03.018
– ident: e_1_2_7_10_1
  doi: 10.1080/02626667909491834
– ident: e_1_2_7_14_1
  doi: 10.1002/hyp.7902
– ident: e_1_2_7_18_1
  doi: 10.1002/hyp.7656
– ident: e_1_2_7_45_1
  doi: 10.1080/02626667.2012.754987
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1752-1688.2001.tb00973.x
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jhydrol.2006.02.013
– ident: e_1_2_7_11_1
  doi: 10.1002/hyp.3360090307
– ident: e_1_2_7_33_1
  doi: 10.1080/02626667.2010.505572
– ident: e_1_2_7_46_1
  doi: 10.1002/hyp.9988
– ident: e_1_2_7_56_1
  doi: 10.5194/hess-14-2681-2010
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: e_1_2_7_22_1
  doi: 10.1002/hyp.9726
– ident: e_1_2_7_55_1
  doi: 10.1016/S0168-1923(99)00104-5
– ident: e_1_2_7_15_1
  doi: 10.1029/2007WR006735
– ident: e_1_2_7_7_1
  doi: 10.5194/hess-4-203-2000
– ident: e_1_2_7_70_1
  doi: 10.1029/2007WR006716
– ident: e_1_2_7_5_1
  doi: 10.1002/hyp.7963
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jhydrol.2004.03.033
– ident: e_1_2_7_12_1
  doi: 10.1029/2000WR000207
– ident: e_1_2_7_43_1
  doi: 10.5194/hess-1-101-1997
SSID ssj0004080
Score 2.342296
Snippet It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper...
It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall-runoff modelling. This paper...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3727
SubjectTerms Belgium
Calibration
Catchments
conceptual model
Consistency
distributed model states
distributed model structure
Dynamic structural analysis
Heterogeneity
hydrograph
hydrologic models
hydrological signatures
Landscapes
model validation
Spatial distribution
watersheds
Title The effect of forcing and landscape distribution on performance and consistency of model structures
URI https://api.istex.fr/ark:/67375/WNG-11HZZM79-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.10445
https://www.proquest.com/docview/1701952724
https://www.proquest.com/docview/1709178538
https://www.proquest.com/docview/1718934580
https://www.proquest.com/docview/1746299359
Volume 29
WOSCitedRecordID wos000359429500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  issn: 0885-6087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qnWBf_JaeVlmLiC-hm002u4tPor3egx6ltFj7suxXqCi5o2fF---d3eRyLdgiFMISyCQkszuZ3-zu_AbgDS1qa5yss9KW2HjrM2MCNoHLoKSlKtBUbEJMp_LkRB1swPtVLkzLD9FPuEXLSP_raODGLnbXpKFny3lcoCz5HRgyHLflAIafDsfHn9dpkTQVTkM74llFpVgRC1G22998xR0No2b_XMGalxFrcjnjB7d62Ydwv0Oa5EM7NB7BRmgew72u6PnZ8gk4HCKk3c9BZjVB9OrQjxHTeJISgOPWKOIjsW5XE4vgMV8nGiRJFzfYLiLwXsaHpMI6pCWlvcBI_ikcj_eOPk6yruZC5jiiu8xZxDe5VYnkBWM1yRx6dVSvUKEqLDM1tTI41KZ3NA-VxYDMc8OEt3hX5YtnMGhmTdgCQrGvhTDKeabKPK-UL6q48JvXEl1iyEfwbqV67TpC8lgX46duqZSZRq3ppLUR7PSi85aF419Cb1P_9RLm_Efctia4_jrdx1Bncnr6RShNR7C96mDdWexCJ156zgQrR_C6v4y2FhdQTBNmF0kGo1sEOPImmRwhYMklvUmmrBAGFFyhDtKwuf6r9OTbQTp5_v-iL2ATcR2PU98534YBdnp4CXfd71_fF-evOjP5C7feFeg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_qnVC_1GfxtOoqIn4J3Tw2uwt-Ee31xOtRpMXaL8u-QkXJHb229P57Zze5XAu2CEJYApmEZHYm85t9_AbgLc0ro62oksIU2DjjEq09Np4JL4Wh0tNYbIJPJuLoSO6vwYflXpiGH6IbcAueEf_XwcHDgPT2ijX0ZDELM5QFuwP9As2I9aD_-dvwcLzaF0lj5TR0JJaUVPAlsxDNtrubr8WjflDt5TWweRWyxpgzvP9_b_sANlqsST42xvEQ1nz9CNbbsucni8dg0UhIs6KDTCuC-NViJCO6diRuAQ6Lo4gL1LptVSyCx2y11SBK2rDEdh6g9yI8JJbWIQ0t7Tnm8k_gcLhz8GmUtFUXEssQ3yXWIMJJjYw0L5iticxiXMcfA5e-zE2mK2qEt6hOZ2nqS4MpmWM6487gXaXLN6FXT2v_FAjF3uZcS-syWaRpKV1ehqnftBIYFH06gPdL3SvbUpKHyhi_VUOmnCnUmopaG8CbTnTW8HD8Tehd7MBOQp_-CgvXOFPfJ7uY7IyOj_e4VHQAW8seVq3PzlVkpmcZz4oBvO4uo7eFKRRd--l5lMH8FiGOuE0mRRBYMEFvkylKBAI5k6iDaDc3f5Ua_diPJ8_-XfQVrI8O9sZq_GXy9TncQ5THwkB4yraghwbgX8Bde3H2c376svWZP1LzGdg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9qT2y_1EdberZqFJF-WZp9ZJNAv4j1PLEeh1is_RLyWlqUvaNnxfvvO8nu7VnQIghLWNjJsjvJZH6Tx28AXtK8MtqKKilMgYUzLtHaY-GZ8FIYKj2NySb4aCROT-V4BQ4XZ2Eafohuwi1YRhyvg4H7qasOlqyh5_NpWKEs2B3oFUyWaJa9o0-Dk-PluUgaM6ehIbGkpIIvmIVodtBVvuGPekG1v26Azd8ha_Q5g_v_97UPYKPFmuR10zkewoqvH8Fam_b8fL4JFjsJaXZ0kElFEL9a9GRE147EI8BhcxRxgVq3zYpF8JoujxpESRu22M4C9J6Hl8TUOqShpb3CWH4LTgZvP78ZJm3WhcQyxHeJNYhwUiMjzQtGayKz6NdxYODSl7nJdEWN8BbV6SxNfWkwJHNMZ9wZrFW6fBtW60ntd4BQbG3OtbQuk0WaltLlZVj6TSuBTtGnfdhf6F7ZlpI8ZMb4rhoy5Uyh1lTUWh9edKLThofjT0KvYgN2EvryW9i4xpn6MnqHwc7w7Owjl4r2YW_Rwqq12ZmKzPQs41nRh-fdY7S2sISiaz-5ijIY3yLEEbfJpAgCCybobTJFiUAgZxJ1EPvN3_9KDb-O483jfxd9BvfGRwN1_H70YRfWEeSxMA-esj1Yxfb3T-Cu_fnjYnb5tDWZa7g6GVM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+forcing+and+landscape+distribution+on+performance+and+consistency+of+model+structures&rft.jtitle=Hydrological+processes&rft.au=Euser%2C+Tanja&rft.au=Hrachowitz%2C+Markus&rft.au=Winsemius%2C+Hessel+C&rft.au=Savenije%2C+Hubert+HG&rft.date=2015-08-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1085&rft.volume=29&rft.issue=17&rft.spage=3727&rft_id=info:doi/10.1002%2Fhyp.10445&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3770101221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon