The effect of forcing and landscape distribution on performance and consistency of model structures
It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on lands...
Saved in:
| Published in: | Hydrological processes Vol. 29; no. 17; pp. 3727 - 3743 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester
Blackwell Publishing Ltd
15.08.2015
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0885-6087, 1099-1085 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency. Copyright © 2015 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall-runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency. Copyright © 2015 John Wiley & Sons, Ltd. It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency. |
| Author | Euser, Tanja Savenije, Hubert H.G. Hrachowitz, Markus Winsemius, Hessel C. |
| Author_xml | – sequence: 1 givenname: Tanja surname: Euser fullname: Euser, Tanja email: Correspondence to: Tanja Euser, Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands., t.euser@tudelft.nl organization: Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands – sequence: 2 givenname: Markus surname: Hrachowitz fullname: Hrachowitz, Markus organization: Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands – sequence: 3 givenname: Hessel C. surname: Winsemius fullname: Winsemius, Hessel C. organization: Deltares, P.O. Box 177, 2600 GA, Delft, The Netherlands – sequence: 4 givenname: Hubert H.G. surname: Savenije fullname: Savenije, Hubert H.G. organization: Water Resources Section, Faculty of Civil Engineering and Applied Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands |
| BookMark | eNqNkcFu1DAURS1UJKYtC_4gEhtYhD7HdmwvUUU7SKXtohWiG8txXqhLJg52Ipi_x-mULiqQKlm2F-c8-fruk70hDEjIGwofKEB1dLsd84Vz8YKsKGhdUlBij6xAKVHWoOQrsp_SHQBwULAi7uoWC-w6dFMRuqIL0fnhe2GHtujzlpwdsWh9mqJv5smHochrxJjBjR0c3pMuDCkjOLjtMmQTWuyLrMxumiOmQ_Kys33C1w_nAbk--XR1vC7PLk4_H388K50ALkrXUKFpo5mspYD87spBxSQwqbFmTWU7aBS6nKF1QLFuKOetsJVsm2zVLTsg73Zzxxh-zpgms_HJYZ-DYJiToZLXldZM6GegVGnGhYJnoKCpVIKpjL59gt6FOQ4580JRLSpZ8Uwd7SgXQ0oRO-P8ZJe_naL1vaFglipNrtLcV5mN90-MMfqNjdt_sg_Tf_ket_8Hzfrb5V-j3BlLhb8fDRt_mFoyKczX81ND6frm5ovUBtgfsHm9oQ |
| CitedBy_id | crossref_primary_10_5194_hess_25_4887_2021 crossref_primary_10_1016_j_scitotenv_2018_12_206 crossref_primary_10_5194_hess_21_3953_2017 crossref_primary_10_5194_hess_28_4577_2024 crossref_primary_10_1155_2016_5173984 crossref_primary_10_5194_hess_27_2149_2023 crossref_primary_10_1007_s10980_018_0690_4 crossref_primary_10_5194_esd_12_725_2021 crossref_primary_10_1002_2015WR018115 crossref_primary_10_1002_2016WR019574 crossref_primary_10_5194_hess_29_127_2025 crossref_primary_10_1007_s12665_021_09840_y crossref_primary_10_5194_hess_21_2817_2017 crossref_primary_10_5194_hess_22_3493_2018 crossref_primary_10_1002_hyp_11232 crossref_primary_10_5194_hess_21_3325_2017 crossref_primary_10_1080_02626667_2022_2092405 crossref_primary_10_5194_hess_25_147_2021 crossref_primary_10_2166_ws_2020_284 crossref_primary_10_2166_nh_2016_242 crossref_primary_10_5194_hess_25_1943_2021 crossref_primary_10_1016_j_jhydrol_2021_126394 crossref_primary_10_1016_j_jhydrol_2023_129404 crossref_primary_10_1029_2018WR022985 crossref_primary_10_5194_hess_20_1151_2016 crossref_primary_10_1016_j_jhydrol_2017_04_049 crossref_primary_10_1016_j_jhydrol_2025_132897 crossref_primary_10_1002_2017WR021201 crossref_primary_10_1029_2020WR028837 crossref_primary_10_5194_hess_27_3083_2023 crossref_primary_10_1007_s12665_018_8017_y crossref_primary_10_2166_wcc_2022_273 crossref_primary_10_5194_hess_28_4011_2024 crossref_primary_10_5194_hess_24_3331_2020 crossref_primary_10_1029_2019WR026365 crossref_primary_10_1002_hyp_11224 crossref_primary_10_1007_s40808_023_01936_7 crossref_primary_10_5194_hess_20_4775_2016 crossref_primary_10_5194_hess_21_423_2017 crossref_primary_10_5194_hess_25_957_2021 crossref_primary_10_1016_j_jhydrol_2020_125588 |
| Cites_doi | 10.5194/hess-15-2007-2011 10.1029/2011WR011044 10.1002/hyp.1130 10.5194/hess-18-4861-2014 10.1016/j.jhydrol.2005.01.001 10.1061/(ASCE)1084-0699(2004)9:2(103) 10.1002/hyp.252 10.5194/hess-18-4839-2014 10.1016/0022-1694(70)90255-6 10.1080/02626667.2013.803183 10.1029/2005WR004362 10.1098/rspa.1948.0037 10.1016/S0022-1694(01)00496-6 10.1029/2004WR003693 10.1029/2007WR006386 10.5194/hess-17-533-2013 10.5194/hess-16-3419-2012 10.5194/hess-15-2205-2011 10.5194/hess-15-3275-2011 10.5194/hess-17-1893-2013 10.1016/0022-1694(89)90101-7 10.1016/j.jhydrol.2008.04.008 10.5194/hess-18-575-2014 10.1029/2006WR005563 10.1002/2014WR015484 10.1016/j.jhydrol.2011.03.051 10.1029/2004WR003291 10.1029/2002WR001404 10.1002/hyp.9264 10.5194/hess-10-139-2006 10.2478/s11600-012-0053-5 10.5194/hess-18-1895-2014 10.1002/hyp.1131 10.1029/2006WR005032 10.1016/j.jhydrol.2003.12.038 10.1002/hyp.6989 10.1016/j.jhydrol.2009.04.031 10.1029/2010WR009469 10.1002/hyp.5676 10.1002/hyp.3360090313 10.1002/hyp.7072 10.5194/hess-17-2263-2013 10.1029/2009WR007706 10.1002/hyp.7841 10.1016/j.advwatres.2007.01.005 10.1029/2010WR010174 10.1029/2003WR002854 10.1016/j.rse.2008.03.018 10.1080/02626667909491834 10.1002/hyp.7902 10.1002/hyp.7656 10.1080/02626667.2012.754987 10.1111/j.1752-1688.2001.tb00973.x 10.1016/j.jhydrol.2006.02.013 10.1002/hyp.3360090307 10.1080/02626667.2010.505572 10.1002/hyp.9988 10.5194/hess-14-2681-2010 10.1016/j.jhydrol.2005.07.007 10.1002/hyp.9726 10.1016/S0168-1923(99)00104-5 10.1029/2007WR006735 10.5194/hess-4-203-2000 10.1029/2007WR006716 10.1002/hyp.7963 10.1016/j.jhydrol.2004.03.033 10.1029/2000WR000207 10.5194/hess-1-101-1997 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| DOI | 10.1002/hyp.10445 |
| DatabaseName | Istex CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | 3743 |
| ExternalDocumentID | 3770101221 10_1002_hyp_10445 HYP10445 ark_67375_WNG_11HZZM79_0 |
| Genre | article |
| GeographicLocations | Belgium |
| GeographicLocations_xml | – name: Belgium |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT ALUQN AAYXX CITATION O8X 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c5045-cb1591b93767501082c02370379e63b2af0b8ec087dc01e6b144d5a27db1b96d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359429500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6087 |
| IngestDate | Fri Jul 11 18:29:27 EDT 2025 Thu Oct 02 03:08:30 EDT 2025 Tue Oct 07 09:25:12 EDT 2025 Mon Jul 14 08:03:38 EDT 2025 Sat Nov 29 03:02:47 EST 2025 Tue Nov 18 22:25:48 EST 2025 Tue Sep 09 05:09:24 EDT 2025 Tue Nov 11 03:32:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5045-cb1591b93767501082c02370379e63b2af0b8ec087dc01e6b144d5a27db1b96d3 |
| Notes | ark:/67375/WNG-11HZZM79-0 ArticleID:HYP10445 istex:EFFC5695577D8B1D3E7AA9D4DDCC7E3CDD94B0A9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0508-1017 |
| PQID | 1701952724 |
| PQPubID | 2034139 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1746299359 proquest_miscellaneous_1718934580 proquest_miscellaneous_1709178538 proquest_journals_1701952724 crossref_citationtrail_10_1002_hyp_10445 crossref_primary_10_1002_hyp_10445 wiley_primary_10_1002_hyp_10445_HYP10445 istex_primary_ark_67375_WNG_11HZZM79_0 |
| PublicationCentury | 2000 |
| PublicationDate | 15 August 2015 |
| PublicationDateYYYYMMDD | 2015-08-15 |
| PublicationDate_xml | – month: 08 year: 2015 text: 15 August 2015 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Hydrological processes |
| PublicationTitleAlternate | Hydrol. Process |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Euser T, Winsemius HC, Hrachowitz M, Fenicia F, Uhlenbrook S, Savenije HHG. 2013. A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences 17(5): 1893-1912. Reggiani P, Rientjes THM. 2005. Flux parameterization in the representative elementary watershed approach: application to a natural basin. Water Resources Research 41(4): W04013. Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22(18): 3802-3813. Savenije HHG. 2010. HESS opinions "Topography driven conceptual modelling (FLEX-Topo)". Hydrology and Earth System Sciences 14(12): 2681-2692. Seibert J, Bishop K, Rodhe A, McDonnell JJ. 2003a. Groundwater dynamics along a hillslope: a test of the steady state hypothesis. Water Resources Research 39(1): 1014. DOI: 10.1029/2002WR001404 Rakovec O, Hazenberg P, Torfs PJJF, Weerts AH, Uijlenhoet R. 2012. Generating spatial precipitation ensembles: impact of temporal correlation structure. Hydrology and Earth System Sciences 16(9): 3419-3434. Ajami NK, Gupta H, Wagener T, Sorooshian S. 2004. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4): 112-135. Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C. 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: a theoretical study using chimera watersheds. Water Resources Research 40(5): W05209. Hrachowitz M, Fovet O, Ruiz L, Euser T, Gharari S, Nijzink R, Freer J, Savenije HHG, Gascuel-Odoux C. 2014. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research. URL http://doi.wiley.com/10.1002/2014WR015484 Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW. 2005. Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. Journal of Hydrology 311(1-4): 20-48. Wagener T, Montanari A. 2011. Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resources Research 47(6): W06301. Beven KJ. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320(1-2): 18-36. Beven KJ. 1989. Changing ideas in hydrology-the case of physically-based models. Journal of Hydrology 105(1-2): 157-172. Flügel W-A. 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Brol, Germany. Hydrological Processes 9(3-4): 423-436. Gao H, Hrachowitz M, Fenicia F, Gharari S, Savenije HHG. 2014. Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the upper Heihe, China. Hydrology and Earth System Sciences 18(5): 1895-1915. McMillan HK, Clark MP, Bowden WB, Duncan M, Woods RA. 2011. Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure. Hydrological Processes 25(4): 511-522. Eshagh M, Lemoine J-M, Gegout P, Biancale R. 2013. On regularized time varying gravity field models based on grace data and their comparison with hydrological models. Acta Geophysica 61(1): 1-17. Gharari S, Shafiei M, Hrachowitz M, Kumar R, Fenicia F, Gupta HV, Savenije HHG. 2014b. A constraint-based search algorithm for parameter identification of environmental models. Hydrology and Earth System Sciences 18(12): 4861-4870.URL http://www.hydrol-earth-syst-sci.net/18/4861/2014 Lobligeois F, Andréassian V, Perrin C, Tabary P, Loumagne C. 2014. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrology and Earth System Sciences 18(2): 575-594. Andréassian V, Le Moine N, Perrin C, Ramos M-H, Oudin L, Mathevet T, Lerat J, Berthet L. 2012. All that glitters is not gold: the case of calibrating hydrological models. Hydrological Processes 26(14): 2206-2210. Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Waterloo M, Saleska S. 2011. Height above the nearest drainage-a hydrologically relevant new terrain model. Journal of Hydrology 404(1-2): 13-29. Scherrer S, Naef F. 2003. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrological Processes 17(2): 391-401. Hrachowitz M, Savenije H, Blöschl G, McDonnell J, Sivapalan M, Pomeroy J, Arheimer B, Blume T, Clark M, Ehret U, Fenicia F, Freer J, Gelfan A, Gupta H, Hughes D, Hut R, Montanari A, Pande S, Tetzlaff D, Troch P, Uhlenbrook S, Wagener T, Winsemius H, Woods R, Zehe E, Cudennec C. 2013a. A decade of predictions in ungauged basins (pub)-a review. Hydrological Sciences Journal 58(6): 1198-1255. Gharari S, Hrachowitz M, Fenicia F, Gao H, Savenije HHG. 2014a. Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences 18(12): 4839-4859. URL http://www.hydrol-earth-syst-sci.net/18/4839/2014 Winter T. 2001. The concept of hydrologic landscapes. Journal of the American Water Resources Association 37(2): 335-349. Seibert J, Rodhe A, Bishop K. 2003b. Simulating interactions between saturated and unsaturated storage in a conceptual runoff model. Hydrological Processes 17(2): 379-390. Kling H, Gupta H. 2009. On the development of regionalization relationships for lumped watershed models: the impact of ignoring sub-basin scale variability. Journal of Hydrology 373(3-4): 337-351. Hrachowitz M, Savenije H, Bogaard TA, Tetzlaff D, Soulsby C. 2013b. What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrology and Earth System Sciences 17(2): 533-564. Criss RE, Winston WE. 2008. Do Nash values have value? Discussion and alternate proposals. Hydrological Processes 22(14): 2723-2725. Jothityangkoon C, Sivapalan M, Farmer D. 2001. Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological model development. Journal of Hydrology 254(1-4): 174-198. Knudsen J, Thomsen A, Refsgaard J. 1986. Watbal a semi-distributed, physically based hydrological modelling system. Nordic Hydrology 17(4-5): 347-362. Kirchner JW. 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research 42(3): W03S04. Boyle DP, Gupta HV, Sorooshian S, Koren V, Zhang Z, Smith M. 2001. Toward improved streamflow forecasts: value of semidistributed modeling. Water Resources Research 37(11): 2749-2759. McMillan H, Gueguen M, Grimon E, Woods R, Clark M, Rupp DE. 2013. Spatial variability of hydrological processes and model structure diagnostics in a 50 km2 catchment. Hydrological Processes 28(18): 4896-4913. Yadav M, Wagener T, Gupta H. 2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources 30(8): 1756-1774. Carpenter TM, Georgakakos KP. 2006. Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology 329(1-2): 174-185. Das T, Bárdossy A, Zehe E, He Y. 2008. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology 356(1-2): 106-118. Fenicia F, Kavetski D, Savenije HHG. 2011. Elements of a flexible approach for conceptual hydrological modeling: 1. motivation and theoretical development. Water Resources Research 47(11): W11510. Gupta HV, Clark MP, Vrugt JA, Abramowitz G, Ye M. 2012. Towards a comprehensive assessment of model structural adequacy. Water Resources Research 48(8): W08301. Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London 193: 120-146. Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12): W12422. Nash J, Sutcliffe JV. 1970. River flow forecasting through conceptual models part i-a discussion of principles. Journal of Hydrology 10(3): 282-290. Shamir E, Imam B, Morin E, Gupta HV, Sorooshian S. 2005. The role of hydrograph indices in parameter estimation of rainfall-runoff models. Hydrological Processes 19(11): 2187-2207. Hingray B, Schaefli B, Mezghani A, Hamdi Y. 2010. Signature-based model calibration for hydrological prediction in mesoscale alpine catchments. Hydrological Sciences Journal 55(6): 1002-1016. Beven KJ, Freer J. 2001. A dynamic TOPMODEL. Hydrological Processes 15(10): 1993-2011. Westerberg IK, Guerrero J-L, Younger PM, Beven KJ, Seibert J, Halldin S, Freer JE, Xu C-Y. 2011. Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences 15(7): 2205-2227. Rodhe A, Seibert J. 1999. Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agricultural and Forest Meteorology 98-99: 325-340. Fenicia F, McDonnell JJ, Savenije HHG. 2008a. Learning from model improvement: on the contribution of complementary data to process understanding. Water Resources Research 44(6): W06419. Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1): 43-69. Son K, Sivapalan ME. 2007. Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data. Water Resources Research 43(1): W01415. Clark MP, Slater AG, Rupp DE, Woods RA, Vrugt JA, Gupta HV, Wagener T, Hay LE. 2008. Framework for understanding structural errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resources Research 44(12): W00B02. Beven KJ. 2000. Uniqueness of place and process representations in hydrological modelling. Hydro 2009; 45 2010; 55 2013b; 17 2013; 28 2010; 14 2013a; 58 2000; 4 2013; 61 2004; 9 2003a; 39 1997; 1 2003; 17 2011; 15 2012; 16 2014; 28 2007; 30 2014a; 18 2001; 254 2004; 298 2008a; 44 1989; 105 1979; 24 2006; 329 1948; 193 2003b; 17 2013; 58 2013; 17 2011; 404 2010; 24 2004; 291 2014b; 18 2008b; 44 2001; 15 2008; 22 2008; 356 2014; 18 2012; 26 2011; 25 2008; 112 2006; 320 1995; 9 2004; 40 2006; 10 2005; 311 1986; 17 2005; 41 1970; 10 2009; 373 1999; 98–99 2005; 19 2006; 42 2001; 37 2008; 44 2014 2011; 47 2012; 48 2013 2007; 43 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Knudsen J (e_1_2_7_42_1) 1986; 17 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – reference: Gharari S, Hrachowitz M, Fenicia F, Savenije HHG. 2011. Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth System Sciences 15(11): 3275-3291. – reference: Fenicia F, Kavetski D, Savenije HHG, Clark MP, Schoups G, Pfister L, Freer J. 2014. Catchment properties, function, and conceptual model representation: is there a correspondence? Hydrological Processes 28(4): 2451-2467. – reference: Jothityangkoon C, Sivapalan M, Farmer D. 2001. Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological model development. Journal of Hydrology 254(1-4): 174-198. – reference: Shamir E, Imam B, Morin E, Gupta HV, Sorooshian S. 2005. The role of hydrograph indices in parameter estimation of rainfall-runoff models. Hydrological Processes 19(11): 2187-2207. – reference: Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Waterloo M, Saleska S. 2011. Height above the nearest drainage-a hydrologically relevant new terrain model. Journal of Hydrology 404(1-2): 13-29. – reference: Boyle DP, Gupta HV, Sorooshian S, Koren V, Zhang Z, Smith M. 2001. Toward improved streamflow forecasts: value of semidistributed modeling. Water Resources Research 37(11): 2749-2759. – reference: Clark MP, McMillan HK, Collins DBG, Kavetski D, Woods RA. 2011. Hydrological field data from a modeller's perspective: Part 2: process-based evaluation of model hypotheses. Hydrological Processes 25(4): 523-543. – reference: Lamb R, Beven K. 1997. Using interactive recession curve analysis to specify a general catchment storage model. Hydrology and Earth System Sciences 1(1): 101-113. – reference: McMillan H, Gueguen M, Grimon E, Woods R, Clark M, Rupp DE. 2013. Spatial variability of hydrological processes and model structure diagnostics in a 50 km2 catchment. Hydrological Processes 28(18): 4896-4913. – reference: Eshagh M, Lemoine J-M, Gegout P, Biancale R. 2013. On regularized time varying gravity field models based on grace data and their comparison with hydrological models. Acta Geophysica 61(1): 1-17. – reference: Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22(18): 3802-3813. – reference: Kirchner JW. 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research 42(3): W03S04. – reference: Carpenter TM, Georgakakos KP. 2006. Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology 329(1-2): 174-185. – reference: McMillan HK, Clark MP, Bowden WB, Duncan M, Woods RA. 2011. Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure. Hydrological Processes 25(4): 511-522. – reference: Seibert J, Rodhe A, Bishop K. 2003b. Simulating interactions between saturated and unsaturated storage in a conceptual runoff model. Hydrological Processes 17(2): 379-390. – reference: Fenicia F, Savenije HHG, Matgen P, Pfister L. 2008b. Understanding catchment behavior through stepwise model concept improvement. Water Resources Research 44(1): W01402. – reference: Beven KJ, Freer J. 2001. A dynamic TOPMODEL. Hydrological Processes 15(10): 1993-2011. – reference: Lobligeois F, Andréassian V, Perrin C, Tabary P, Loumagne C. 2014. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrology and Earth System Sciences 18(2): 575-594. – reference: Gharari S, Shafiei M, Hrachowitz M, Kumar R, Fenicia F, Gupta HV, Savenije HHG. 2014b. A constraint-based search algorithm for parameter identification of environmental models. Hydrology and Earth System Sciences 18(12): 4861-4870.URL http://www.hydrol-earth-syst-sci.net/18/4861/2014/ – reference: Hrachowitz M, Savenije H, Blöschl G, McDonnell J, Sivapalan M, Pomeroy J, Arheimer B, Blume T, Clark M, Ehret U, Fenicia F, Freer J, Gelfan A, Gupta H, Hughes D, Hut R, Montanari A, Pande S, Tetzlaff D, Troch P, Uhlenbrook S, Wagener T, Winsemius H, Woods R, Zehe E, Cudennec C. 2013a. A decade of predictions in ungauged basins (pub)-a review. Hydrological Sciences Journal 58(6): 1198-1255. – reference: Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12): W12422. – reference: Rakovec O, Hazenberg P, Torfs PJJF, Weerts AH, Uijlenhoet R. 2012. Generating spatial precipitation ensembles: impact of temporal correlation structure. Hydrology and Earth System Sciences 16(9): 3419-3434. – reference: Rennó CD, Nobre AD, Cuartas LA, Soares JAV, Hodnett MG, Tomasella J, Waterloo MJ. 2008. HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in amazonia. Remote Sensing of Environment 112(9): 3469-3481. – reference: Gao H, Hrachowitz M, Fenicia F, Gharari S, Savenije HHG. 2014. Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the upper Heihe, China. Hydrology and Earth System Sciences 18(5): 1895-1915. – reference: Westerberg IK, Guerrero J-L, Younger PM, Beven KJ, Seibert J, Halldin S, Freer JE, Xu C-Y. 2011. Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences 15(7): 2205-2227. – reference: Ajami NK, Gupta H, Wagener T, Sorooshian S. 2004. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4): 112-135. – reference: Beven KJ. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320(1-2): 18-36. – reference: Yadav M, Wagener T, Gupta H. 2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources 30(8): 1756-1774. – reference: Wagener T, Montanari A. 2011. Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resources Research 47(6): W06301. – reference: Hingray B, Schaefli B, Mezghani A, Hamdi Y. 2010. Signature-based model calibration for hydrological prediction in mesoscale alpine catchments. Hydrological Sciences Journal 55(6): 1002-1016. – reference: Fenicia F, McDonnell JJ, Savenije HHG. 2008a. Learning from model improvement: on the contribution of complementary data to process understanding. Water Resources Research 44(6): W06419. – reference: Viglione A, Parajka J, Rogger M, Salinas JL, Laaha G, Sivapalan M, Blöschl G. 2013. Comparative assessment of predictions in ungauged basins-part 3: runoff signatures in Austria. Hydrology and Earth System Sciences 17(6): 2263-2279. – reference: Beven KJ. 1989. Changing ideas in hydrology-the case of physically-based models. Journal of Hydrology 105(1-2): 157-172. – reference: Reggiani P, Rientjes THM. 2005. Flux parameterization in the representative elementary watershed approach: application to a natural basin. Water Resources Research 41(4): W04013. – reference: Uhlenbrook S, Roser S, Tilch N. 2004. Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model. Journal of Hydrology 291(3-4): 278-296. – reference: Flügel W-A. 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Brol, Germany. Hydrological Processes 9(3-4): 423-436. – reference: Seibert J, Bishop K, Rodhe A, McDonnell JJ. 2003a. Groundwater dynamics along a hillslope: a test of the steady state hypothesis. Water Resources Research 39(1): 1014. DOI: 10.1029/2002WR001404 – reference: Beven K, Westerberg I. 2011. On red herrings and real herrings: disinformation and information in hydrological inference. Hydrological Processes 25(10): 1676-1680. URL http://doi.wiley.com/10.1002/hyp.7963 – reference: Scherrer S, Naef F. 2003. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrological Processes 17(2): 391-401. – reference: Maneta MP, Wallender WW. 2013. Pilot-point based multi-objective calibration in a surface-subsurface distributed hydrological model. Hydrological Sciences Journal 58(2): 390-407. – reference: Beven KJ. 2000. Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences 4(2): 203-213. – reference: Winter T. 2001. The concept of hydrologic landscapes. Journal of the American Water Resources Association 37(2): 335-349. – reference: Clark MP, Slater AG, Rupp DE, Woods RA, Vrugt JA, Gupta HV, Wagener T, Hay LE. 2008. Framework for understanding structural errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resources Research 44(12): W00B02. – reference: Gharari S, Hrachowitz M, Fenicia F, Gao H, Savenije HHG. 2014a. Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences 18(12): 4839-4859. URL http://www.hydrol-earth-syst-sci.net/18/4839/2014/ – reference: Nash J, Sutcliffe JV. 1970. River flow forecasting through conceptual models part i-a discussion of principles. Journal of Hydrology 10(3): 282-290. – reference: Euser T, Winsemius HC, Hrachowitz M, Fenicia F, Uhlenbrook S, Savenije HHG. 2013. A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences 17(5): 1893-1912. – reference: Savenije HHG. 2010. HESS opinions "Topography driven conceptual modelling (FLEX-Topo)". Hydrology and Earth System Sciences 14(12): 2681-2692. – reference: Oudin L, Andréassian V, Perrin C, Anctil F. 2004. Locating the sources of low-pass behavior within rainfall-runoff models. Water Resources Research 40(11): W11101. – reference: Criss RE, Winston WE. 2008. Do Nash values have value? Discussion and alternate proposals. Hydrological Processes 22(14): 2723-2725. – reference: Andréassian V, Le Moine N, Perrin C, Ramos M-H, Oudin L, Mathevet T, Lerat J, Berthet L. 2012. All that glitters is not gold: the case of calibrating hydrological models. Hydrological Processes 26(14): 2206-2210. – reference: Knudsen J, Thomsen A, Refsgaard J. 1986. Watbal a semi-distributed, physically based hydrological modelling system. Nordic Hydrology 17(4-5): 347-362. – reference: Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1): 43-69. – reference: Detty JM, McGuire KJ. 2010. Topographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment. Hydrological Processes 24(16): 2222-2236. – reference: Hrachowitz M, Bohte R, Mul ML, Bogaard TA, Savenije HHG, Uhlenbrook S. 2011. On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data-scarce semi-arid area. Hydrology and Earth System Sciences 15(6): 2007-2024. – reference: Yilmaz KK, Gupta HV, Wagener T. 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research 44(9): W09417. – reference: Das T, Bárdossy A, Zehe E, He Y. 2008. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology 356(1-2): 106-118. – reference: Rodhe A, Seibert J. 1999. Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agricultural and Forest Meteorology 98-99: 325-340. – reference: Blöschl G, Grayson RB, Sivapalan M. 1995. On the representative elementary area (rea) concept and its utility for distributed rainfall-runoff modelling. Hydrological Processes 9(3-4): 313-330. – reference: Fenicia F, Kavetski D, Savenije HHG. 2011. Elements of a flexible approach for conceptual hydrological modeling: 1. motivation and theoretical development. Water Resources Research 47(11): W11510. – reference: Gupta HV, Clark MP, Vrugt JA, Abramowitz G, Ye M. 2012. Towards a comprehensive assessment of model structural adequacy. Water Resources Research 48(8): W08301. – reference: Fenicia F, Savenije HHG, Matgen P, Pfister L. 2006. Is the groundwater reservoir linear? Learning from data in hydrological modelling. Hydrology and Earth System Sciences 10(1): 139-150. – reference: Hrachowitz M, Fovet O, Ruiz L, Euser T, Gharari S, Nijzink R, Freer J, Savenije HHG, Gascuel-Odoux C. 2014. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research. URL http://doi.wiley.com/10.1002/2014WR015484 – reference: Hrachowitz M, Savenije H, Bogaard TA, Tetzlaff D, Soulsby C. 2013b. What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrology and Earth System Sciences 17(2): 533-564. – reference: Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London 193: 120-146. – reference: Kling H, Gupta H. 2009. On the development of regionalization relationships for lumped watershed models: the impact of ignoring sub-basin scale variability. Journal of Hydrology 373(3-4): 337-351. – reference: Zhang Z, Koren V, Smith M, Reed S, Wang D. 2004. Use of next generation weather radar data and basin disaggregation to improve continuous hydrograph simulations. Journal of Hydrologic Engineering 9(2): 103-115. – reference: Andréassian V, Oddos A, Michel C, Anctil F, Perrin C, Loumagne C. 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: a theoretical study using chimera watersheds. Water Resources Research 40(5): W05209. – reference: Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW. 2005. Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. Journal of Hydrology 311(1-4): 20-48. – reference: Son K, Sivapalan ME. 2007. Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data. Water Resources Research 43(1): W01415. – volume: 4 start-page: 203 issue: 2 year: 2000 end-page: 213 article-title: Uniqueness of place and process representations in hydrological modelling publication-title: Hydrology and Earth System Sciences – volume: 9 start-page: 313 issue: 3–4 year: 1995 end-page: 330 article-title: On the representative elementary area (rea) concept and its utility for distributed rainfall–runoff modelling publication-title: Hydrological Processes – volume: 26 start-page: 2206 issue: 14 year: 2012 end-page: 2210 article-title: All that glitters is not gold: the case of calibrating hydrological models publication-title: Hydrological Processes – volume: 25 start-page: 1676 issue: 10 year: 2011 end-page: 1680 article-title: On red herrings and real herrings: disinformation and information in hydrological inference publication-title: Hydrological Processes – volume: 17 start-page: 533 issue: 2 year: 2013b end-page: 564 article-title: What can flux tracking teach us about water age distribution patterns and their temporal dynamics? publication-title: Hydrology and Earth System Sciences – volume: 10 start-page: 282 issue: 3 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models part i—a discussion of principles publication-title: Journal of Hydrology – volume: 47 issue: 6 year: 2011 article-title: Convergence of approaches toward reducing uncertainty in predictions in ungauged basins publication-title: Water Resources Research – volume: 44 issue: 12 year: 2008 article-title: Framework for understanding structural errors (FUSE): a modular framework to diagnose differences between hydrological models publication-title: Water Resources Research – volume: 25 start-page: 511 issue: 4 year: 2011 end-page: 522 article-title: Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure publication-title: Hydrological Processes – volume: 48 issue: 8 year: 2012 article-title: Towards a comprehensive assessment of model structural adequacy publication-title: Water Resources Research – volume: 28 start-page: 4896 issue: 18 year: 2013 end-page: 4913 article-title: Spatial variability of hydrological processes and model structure diagnostics in a 50 km catchment publication-title: Hydrological Processes – volume: 55 start-page: 1002 issue: 6 year: 2010 end-page: 1016 article-title: Signature‐based model calibration for hydrological prediction in mesoscale alpine catchments publication-title: Hydrological Sciences Journal – volume: 39 issue: 1 year: 2003a article-title: Groundwater dynamics along a hillslope: a test of the steady state hypothesis publication-title: Water Resources Research – volume: 16 start-page: 3419 issue: 9 year: 2012 end-page: 3434 article-title: Generating spatial precipitation ensembles: impact of temporal correlation structure publication-title: Hydrology and Earth System Sciences – volume: 15 start-page: 1993 issue: 10 year: 2001 end-page: 2011 article-title: A dynamic TOPMODEL publication-title: Hydrological Processes – volume: 18 start-page: 575 issue: 2 year: 2014 end-page: 594 article-title: When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events publication-title: Hydrology and Earth System Sciences – volume: 10 start-page: 139 issue: 1 year: 2006 end-page: 150 article-title: Is the groundwater reservoir linear? Learning from data in hydrological modelling publication-title: Hydrology and Earth System Sciences – volume: 9 start-page: 103 issue: 2 year: 2004 end-page: 115 article-title: Use of next generation weather radar data and basin disaggregation to improve continuous hydrograph simulations publication-title: Journal of Hydrologic Engineering – volume: 98–99 start-page: 325 year: 1999 end-page: 340 article-title: Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators publication-title: Agricultural and Forest Meteorology – volume: 25 start-page: 523 issue: 4 year: 2011 end-page: 543 article-title: Hydrological field data from a modeller's perspective: Part 2: process‐based evaluation of model hypotheses publication-title: Hydrological Processes – volume: 58 start-page: 390 issue: 2 year: 2013 end-page: 407 article-title: Pilot‐point based multi‐objective calibration in a surface‐subsurface distributed hydrological model publication-title: Hydrological Sciences Journal – volume: 22 start-page: 2723 issue: 14 year: 2008 end-page: 2725 article-title: Do Nash values have value? Discussion and alternate proposals publication-title: Hydrological Processes – volume: 15 start-page: 2205 issue: 7 year: 2011 end-page: 2227 article-title: Calibration of hydrological models using flow–duration curves publication-title: Hydrology and Earth System Sciences – volume: 15 start-page: 2007 issue: 6 year: 2011 end-page: 2024 article-title: On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data‐scarce semi‐arid area publication-title: Hydrology and Earth System Sciences – volume: 356 start-page: 106 issue: 1–2 year: 2008 end-page: 118 article-title: Comparison of conceptual model performance using different representations of spatial variability publication-title: Journal of Hydrology – volume: 18 start-page: 4861 issue: 12 year: 2014b end-page: 4870 article-title: A constraint‐based search algorithm for parameter identification of environmental models publication-title: Hydrology and Earth System Sciences – volume: 22 start-page: 3802 issue: 18 year: 2008 end-page: 3813 article-title: Reconciling theory with observations: elements of a diagnostic approach to model evaluation publication-title: Hydrological Processes – volume: 43 issue: 1 year: 2007 article-title: Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data publication-title: Water Resources Research – volume: 9 start-page: 423 issue: 3–4 year: 1995 end-page: 436 article-title: Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the river Brol, Germany publication-title: Hydrological Processes – volume: 193 start-page: 120 year: 1948 end-page: 146 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proceedings of the Royal Society of London – volume: 19 start-page: 2187 issue: 11 year: 2005 end-page: 2207 article-title: The role of hydrograph indices in parameter estimation of rainfall–runoff models publication-title: Hydrological Processes – volume: 24 start-page: 43 issue: 1 year: 1979 end-page: 69 article-title: A physically based, variable contributing area model of basin hydrology publication-title: Hydrological Sciences Bulletin – volume: 17 start-page: 391 issue: 2 year: 2003 end-page: 401 article-title: A decision scheme to indicate dominant hydrological flow processes on temperate grassland publication-title: Hydrological Processes – volume: 42 issue: 3 year: 2006 article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology publication-title: Water Resources Research – volume: 24 start-page: 2222 issue: 16 year: 2010 end-page: 2236 article-title: Topographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment publication-title: Hydrological Processes – volume: 61 start-page: 1 issue: 1 year: 2013 end-page: 17 article-title: On regularized time varying gravity field models based on grace data and their comparison with hydrological models publication-title: Acta Geophysica – volume: 105 start-page: 157 issue: 1–2 year: 1989 end-page: 172 article-title: Changing ideas in hydrology—the case of physically‐based models publication-title: Journal of Hydrology – volume: 291 start-page: 278 issue: 3–4 year: 2004 end-page: 296 article-title: Hydrological process representation at the meso‐scale: the potential of a distributed, conceptual catchment model publication-title: Journal of Hydrology – volume: 18 start-page: 1895 issue: 5 year: 2014 end-page: 1915 article-title: Testing the realism of a topography‐driven model (FLEX‐Topo) in the nested catchments of the upper Heihe, China publication-title: Hydrology and Earth System Sciences – volume: 37 start-page: 335 issue: 2 year: 2001 end-page: 349 article-title: The concept of hydrologic landscapes publication-title: Journal of the American Water Resources Association – volume: 37 start-page: 2749 issue: 11 year: 2001 end-page: 2759 article-title: Toward improved streamflow forecasts: value of semidistributed modeling publication-title: Water Resources Research – volume: 47 issue: 11 year: 2011 article-title: Elements of a flexible approach for conceptual hydrological modeling: 1. motivation and theoretical development publication-title: Water Resources Research – volume: 44 issue: 9 year: 2008 article-title: A process‐based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model publication-title: Water Resources Research – volume: 28 start-page: 2451 issue: 4 year: 2014 end-page: 2467 article-title: Catchment properties, function, and conceptual model representation: is there a correspondence? publication-title: Hydrological Processes – volume: 17 start-page: 379 issue: 2 year: 2003b end-page: 390 article-title: Simulating interactions between saturated and unsaturated storage in a conceptual runoff model publication-title: Hydrological Processes – volume: 44 issue: 6 year: 2008a article-title: Learning from model improvement: on the contribution of complementary data to process understanding publication-title: Water Resources Research – volume: 15 start-page: 3275 issue: 11 year: 2011 end-page: 3291 article-title: Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso‐scale catchment publication-title: Hydrology and Earth System Sciences – volume: 404 start-page: 13 issue: 1–2 year: 2011 end-page: 29 article-title: Height above the nearest drainage—a hydrologically relevant new terrain model publication-title: Journal of Hydrology – volume: 254 start-page: 174 issue: 1–4 year: 2001 end-page: 198 article-title: Process controls of water balance variability in a large semi‐arid catchment: downward approach to hydrological model development publication-title: Journal of Hydrology – volume: 17 start-page: 1893 issue: 5 year: 2013 end-page: 1912 article-title: A framework to assess the realism of model structures using hydrological signatures publication-title: Hydrology and Earth System Sciences – volume: 41 issue: 4 year: 2005 article-title: Flux parameterization in the representative elementary watershed approach: application to a natural basin publication-title: Water Resources Research – volume: 44 issue: 1 year: 2008b article-title: Understanding catchment behavior through stepwise model concept improvement publication-title: Water Resources Research – volume: 320 start-page: 18 issue: 1–2 year: 2006 end-page: 36 article-title: A manifesto for the equifinality thesis publication-title: Journal of Hydrology – volume: 329 start-page: 174 issue: 1–2 year: 2006 end-page: 185 article-title: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales publication-title: Journal of Hydrology – volume: 45 issue: 12 year: 2009 article-title: On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information publication-title: Water Resources Research – volume: 311 start-page: 20 issue: 1–4 year: 2005 end-page: 48 article-title: Multi‐criteria optimization of a regional spatially‐distributed subsurface water flow model publication-title: Journal of Hydrology – volume: 17 start-page: 347 issue: 4–5 year: 1986 end-page: 362 article-title: Watbal a semi‐distributed, physically based hydrological modelling system publication-title: Nordic Hydrology – volume: 18 start-page: 4839 issue: 12 year: 2014a end-page: 4859 article-title: Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration publication-title: Hydrology and Earth System Sciences – volume: 14 start-page: 2681 issue: 12 year: 2010 end-page: 2692 article-title: HESS opinions “Topography driven conceptual modelling (FLEX‐Topo)” publication-title: Hydrology and Earth System Sciences – year: 2014 article-title: Process consistency in models: The importance of system signatures, expert knowledge, and process complexity publication-title: Water Resources Research – volume: 298 start-page: 112 issue: 1–4 year: 2004 end-page: 135 article-title: Calibration of a semi‐distributed hydrologic model for streamflow estimation along a river system publication-title: Journal of Hydrology – volume: 30 start-page: 1756 issue: 8 year: 2007 end-page: 1774 article-title: Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins publication-title: Advances in Water Resources – volume: 17 start-page: 2263 issue: 6 year: 2013 end-page: 2279 article-title: Comparative assessment of predictions in ungauged basins—part 3: runoff signatures in Austria publication-title: Hydrology and Earth System Sciences – volume: 40 issue: 11 year: 2004 article-title: Locating the sources of low‐pass behavior within rainfall–runoff models publication-title: Water Resources Research – volume: 373 start-page: 337 issue: 3–4 year: 2009 end-page: 351 article-title: On the development of regionalization relationships for lumped watershed models: the impact of ignoring sub‐basin scale variability publication-title: Journal of Hydrology – volume: 58 start-page: 1198 issue: 6 year: 2013a end-page: 1255 article-title: A decade of predictions in ungauged basins (pub)—a review publication-title: Hydrological Sciences Journal – volume: 40 issue: 5 year: 2004 article-title: Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall‐runoff models: a theoretical study using chimera watersheds publication-title: Water Resources Research – volume: 112 start-page: 3469 issue: 9 year: 2008 end-page: 3481 article-title: HAND, a new terrain descriptor using SRTM‐DEM: mapping terra‐firme rainforest environments in amazonia publication-title: Remote Sensing of Environment – year: 2013 – volume: 1 start-page: 101 issue: 1 year: 1997 end-page: 113 article-title: Using interactive recession curve analysis to specify a general catchment storage model publication-title: Hydrology and Earth System Sciences – ident: e_1_2_7_34_1 doi: 10.5194/hess-15-2007-2011 – ident: e_1_2_7_31_1 doi: 10.1029/2011WR011044 – ident: e_1_2_7_60_1 doi: 10.1002/hyp.1130 – ident: e_1_2_7_30_1 doi: 10.5194/hess-18-4861-2014 – ident: e_1_2_7_58_1 doi: 10.1016/j.jhydrol.2005.01.001 – ident: e_1_2_7_71_1 doi: 10.1061/(ASCE)1084-0699(2004)9:2(103) – ident: e_1_2_7_9_1 doi: 10.1002/hyp.252 – ident: e_1_2_7_28_1 doi: 10.5194/hess-18-4839-2014 – ident: e_1_2_7_48_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_7_36_1 doi: 10.1080/02626667.2013.803183 – ident: e_1_2_7_40_1 doi: 10.1029/2005WR004362 – volume: 17 start-page: 347 issue: 4 year: 1986 ident: e_1_2_7_42_1 article-title: Watbal a semi‐distributed, physically based hydrological modelling system publication-title: Nordic Hydrology – ident: e_1_2_7_51_1 doi: 10.1098/rspa.1948.0037 – ident: e_1_2_7_39_1 doi: 10.1016/S0022-1694(01)00496-6 – ident: e_1_2_7_53_1 doi: 10.1029/2004WR003693 – ident: e_1_2_7_23_1 doi: 10.1029/2007WR006386 – ident: e_1_2_7_37_1 doi: 10.5194/hess-17-533-2013 – ident: e_1_2_7_52_1 doi: 10.5194/hess-16-3419-2012 – ident: e_1_2_7_66_1 doi: 10.5194/hess-15-2205-2011 – ident: e_1_2_7_29_1 doi: 10.5194/hess-15-3275-2011 – ident: e_1_2_7_20_1 doi: 10.5194/hess-17-1893-2013 – ident: e_1_2_7_6_1 doi: 10.1016/0022-1694(89)90101-7 – ident: e_1_2_7_17_1 doi: 10.1016/j.jhydrol.2008.04.008 – ident: e_1_2_7_38_1 – ident: e_1_2_7_44_1 doi: 10.5194/hess-18-575-2014 – ident: e_1_2_7_25_1 doi: 10.1029/2006WR005563 – ident: e_1_2_7_35_1 doi: 10.1002/2014WR015484 – ident: e_1_2_7_49_1 doi: 10.1016/j.jhydrol.2011.03.051 – ident: e_1_2_7_50_1 doi: 10.1029/2004WR003291 – ident: e_1_2_7_59_1 doi: 10.1029/2002WR001404 – ident: e_1_2_7_3_1 doi: 10.1002/hyp.9264 – ident: e_1_2_7_24_1 doi: 10.5194/hess-10-139-2006 – ident: e_1_2_7_19_1 doi: 10.2478/s11600-012-0053-5 – ident: e_1_2_7_27_1 doi: 10.5194/hess-18-1895-2014 – ident: e_1_2_7_57_1 doi: 10.1002/hyp.1131 – ident: e_1_2_7_62_1 doi: 10.1029/2006WR005032 – ident: e_1_2_7_63_1 doi: 10.1016/j.jhydrol.2003.12.038 – ident: e_1_2_7_32_1 doi: 10.1002/hyp.6989 – ident: e_1_2_7_41_1 doi: 10.1016/j.jhydrol.2009.04.031 – ident: e_1_2_7_65_1 doi: 10.1029/2010WR009469 – ident: e_1_2_7_61_1 doi: 10.1002/hyp.5676 – ident: e_1_2_7_26_1 doi: 10.1002/hyp.3360090313 – ident: e_1_2_7_16_1 doi: 10.1002/hyp.7072 – ident: e_1_2_7_64_1 doi: 10.5194/hess-17-2263-2013 – ident: e_1_2_7_67_1 doi: 10.1029/2009WR007706 – ident: e_1_2_7_47_1 doi: 10.1002/hyp.7841 – ident: e_1_2_7_69_1 doi: 10.1016/j.advwatres.2007.01.005 – ident: e_1_2_7_21_1 doi: 10.1029/2010WR010174 – ident: e_1_2_7_4_1 doi: 10.1029/2003WR002854 – ident: e_1_2_7_54_1 doi: 10.1016/j.rse.2008.03.018 – ident: e_1_2_7_10_1 doi: 10.1080/02626667909491834 – ident: e_1_2_7_14_1 doi: 10.1002/hyp.7902 – ident: e_1_2_7_18_1 doi: 10.1002/hyp.7656 – ident: e_1_2_7_45_1 doi: 10.1080/02626667.2012.754987 – ident: e_1_2_7_68_1 doi: 10.1111/j.1752-1688.2001.tb00973.x – ident: e_1_2_7_13_1 doi: 10.1016/j.jhydrol.2006.02.013 – ident: e_1_2_7_11_1 doi: 10.1002/hyp.3360090307 – ident: e_1_2_7_33_1 doi: 10.1080/02626667.2010.505572 – ident: e_1_2_7_46_1 doi: 10.1002/hyp.9988 – ident: e_1_2_7_56_1 doi: 10.5194/hess-14-2681-2010 – ident: e_1_2_7_8_1 doi: 10.1016/j.jhydrol.2005.07.007 – ident: e_1_2_7_22_1 doi: 10.1002/hyp.9726 – ident: e_1_2_7_55_1 doi: 10.1016/S0168-1923(99)00104-5 – ident: e_1_2_7_15_1 doi: 10.1029/2007WR006735 – ident: e_1_2_7_7_1 doi: 10.5194/hess-4-203-2000 – ident: e_1_2_7_70_1 doi: 10.1029/2007WR006716 – ident: e_1_2_7_5_1 doi: 10.1002/hyp.7963 – ident: e_1_2_7_2_1 doi: 10.1016/j.jhydrol.2004.03.033 – ident: e_1_2_7_12_1 doi: 10.1029/2000WR000207 – ident: e_1_2_7_43_1 doi: 10.5194/hess-1-101-1997 |
| SSID | ssj0004080 |
| Score | 2.342296 |
| Snippet | It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper... It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall-runoff modelling. This paper... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3727 |
| SubjectTerms | Belgium Calibration Catchments conceptual model Consistency distributed model states distributed model structure Dynamic structural analysis Heterogeneity hydrograph hydrologic models hydrological signatures Landscapes model validation Spatial distribution watersheds |
| Title | The effect of forcing and landscape distribution on performance and consistency of model structures |
| URI | https://api.istex.fr/ark:/67375/WNG-11HZZM79-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.10445 https://www.proquest.com/docview/1701952724 https://www.proquest.com/docview/1709178538 https://www.proquest.com/docview/1718934580 https://www.proquest.com/docview/1746299359 |
| Volume | 29 |
| WOSCitedRecordID | wos000359429500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 issn: 0885-6087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qnWBf_JaeVlmLiC-hm002u4tPor3egx6ltFj7suxXqCi5o2fF---d3eRyLdgiFMISyCQkszuZ3-zu_AbgDS1qa5yss9KW2HjrM2MCNoHLoKSlKtBUbEJMp_LkRB1swPtVLkzLD9FPuEXLSP_raODGLnbXpKFny3lcoCz5HRgyHLflAIafDsfHn9dpkTQVTkM74llFpVgRC1G22998xR0No2b_XMGalxFrcjnjB7d62Ydwv0Oa5EM7NB7BRmgew72u6PnZ8gk4HCKk3c9BZjVB9OrQjxHTeJISgOPWKOIjsW5XE4vgMV8nGiRJFzfYLiLwXsaHpMI6pCWlvcBI_ikcj_eOPk6yruZC5jiiu8xZxDe5VYnkBWM1yRx6dVSvUKEqLDM1tTI41KZ3NA-VxYDMc8OEt3hX5YtnMGhmTdgCQrGvhTDKeabKPK-UL6q48JvXEl1iyEfwbqV67TpC8lgX46duqZSZRq3ppLUR7PSi85aF419Cb1P_9RLm_Efctia4_jrdx1Bncnr6RShNR7C96mDdWexCJ156zgQrR_C6v4y2FhdQTBNmF0kGo1sEOPImmRwhYMklvUmmrBAGFFyhDtKwuf6r9OTbQTp5_v-iL2ATcR2PU98534YBdnp4CXfd71_fF-evOjP5C7feFeg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_qnVC_1GfxtOoqIn4J3Tw2uwt-Ee31xOtRpMXaL8u-QkXJHb229P57Zze5XAu2CEJYApmEZHYm85t9_AbgLc0ro62oksIU2DjjEq09Np4JL4Wh0tNYbIJPJuLoSO6vwYflXpiGH6IbcAueEf_XwcHDgPT2ijX0ZDELM5QFuwP9As2I9aD_-dvwcLzaF0lj5TR0JJaUVPAlsxDNtrubr8WjflDt5TWweRWyxpgzvP9_b_sANlqsST42xvEQ1nz9CNbbsucni8dg0UhIs6KDTCuC-NViJCO6diRuAQ6Lo4gL1LptVSyCx2y11SBK2rDEdh6g9yI8JJbWIQ0t7Tnm8k_gcLhz8GmUtFUXEssQ3yXWIMJJjYw0L5iticxiXMcfA5e-zE2mK2qEt6hOZ2nqS4MpmWM6487gXaXLN6FXT2v_FAjF3uZcS-syWaRpKV1ehqnftBIYFH06gPdL3SvbUpKHyhi_VUOmnCnUmopaG8CbTnTW8HD8Tehd7MBOQp_-CgvXOFPfJ7uY7IyOj_e4VHQAW8seVq3PzlVkpmcZz4oBvO4uo7eFKRRd--l5lMH8FiGOuE0mRRBYMEFvkylKBAI5k6iDaDc3f5Ua_diPJ8_-XfQVrI8O9sZq_GXy9TncQ5THwkB4yraghwbgX8Bde3H2c376svWZP1LzGdg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9qT2y_1EdberZqFJF-WZp9ZJNAv4j1PLEeh1is_RLyWlqUvaNnxfvvO8nu7VnQIghLWNjJsjvJZH6Tx28AXtK8MtqKKilMgYUzLtHaY-GZ8FIYKj2NySb4aCROT-V4BQ4XZ2Eafohuwi1YRhyvg4H7qasOlqyh5_NpWKEs2B3oFUyWaJa9o0-Dk-PluUgaM6ehIbGkpIIvmIVodtBVvuGPekG1v26Azd8ha_Q5g_v_97UPYKPFmuR10zkewoqvH8Fam_b8fL4JFjsJaXZ0kElFEL9a9GRE147EI8BhcxRxgVq3zYpF8JoujxpESRu22M4C9J6Hl8TUOqShpb3CWH4LTgZvP78ZJm3WhcQyxHeJNYhwUiMjzQtGayKz6NdxYODSl7nJdEWN8BbV6SxNfWkwJHNMZ9wZrFW6fBtW60ntd4BQbG3OtbQuk0WaltLlZVj6TSuBTtGnfdhf6F7ZlpI8ZMb4rhoy5Uyh1lTUWh9edKLThofjT0KvYgN2EvryW9i4xpn6MnqHwc7w7Owjl4r2YW_Rwqq12ZmKzPQs41nRh-fdY7S2sISiaz-5ijIY3yLEEbfJpAgCCybobTJFiUAgZxJ1EPvN3_9KDb-O483jfxd9BvfGRwN1_H70YRfWEeSxMA-esj1Yxfb3T-Cu_fnjYnb5tDWZa7g6GVM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+forcing+and+landscape+distribution+on+performance+and+consistency+of+model+structures&rft.jtitle=Hydrological+processes&rft.au=Euser%2C+Tanja&rft.au=Hrachowitz%2C+Markus&rft.au=Winsemius%2C+Hessel+C&rft.au=Savenije%2C+Hubert+HG&rft.date=2015-08-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1085&rft.volume=29&rft.issue=17&rft.spage=3727&rft_id=info:doi/10.1002%2Fhyp.10445&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3770101221 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |