Production and analysis of a mammalian septin hetero‐octamer complex

The septins are filament‐forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying cytoskeletal organization. These GTPases assemble into rod‐shaped soluble hetero‐hexamers and hetero‐octamers in mammals, which polymerize in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cytoskeleton (Hoboken, N.J.) Ročník 77; číslo 11; s. 485 - 499
Hlavní autori: DeRose, Barry T., Kelley, Robert S., Ravi, Roshni, Kokona, Bashkim, Beld, Joris, Spiliotis, Elias T., Padrick, Shae B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.11.2020
Wiley Subscription Services, Inc
Predmet:
ISSN:1949-3584, 1949-3592, 1949-3592
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The septins are filament‐forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying cytoskeletal organization. These GTPases assemble into rod‐shaped soluble hetero‐hexamers and hetero‐octamers in mammals, which polymerize into filaments and higher order structures. While the cell biology and pathobiology of septins are advancing rapidly, mechanistic study of the mammalian septins is limited by a lack of recombinant hetero‐octamer materials. We describe here the production and characterization of a recombinant mammalian septin hetero‐octamer of defined stoichiometry, the SEPT2/SEPT6/SEPT7/SEPT3 complex. Using a fluorescent protein fusion to the complex, we observed filaments assembled from this complex. In addition, we used this novel tool to resolve recent questions regarding the organization of the soluble septin complex. Biochemical characterization of a SEPT3 truncation that disrupts SEPT3‐SEPT3 interactions is consistent with SEPT3 occupying a central position in the complex while the SEPT2 subunits are at the ends of the rod‐shaped octameric complexes. Consistent with SEPT2 being on the complex ends, we find that our purified SEPT2/SEPT6/SEPT7/SEPT3 hetero‐octamer copolymerizes into mixed filaments with separately purified SEPT2/SEPT6/SEPT7 hetero‐hexamer. We expect this new recombinant production approach to lay essential groundwork for future studies into mammalian septin mechanism and function.
AbstractList The septins are filament-forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying cytoskeletal organization. These GTPases assemble into rod-shaped soluble hetero-hexamers and hetero-octamers in mammals, which polymerize into filaments and higher order structures. While the cell biology and pathobiology of septins are advancing rapidly, mechanistic study of the mammalian septins is limited by a lack of recombinant hetero-octamer materials. We describe here the production and characterization of a recombinant mammalian septin hetero-octamer of defined stoichiometry, the SEPT2/SEPT6/SEPT7/SEPT3 complex. Using a fluorescent protein fusion to the complex, we observed filaments assembled from this complex. In addition, we used this novel tool to resolve recent questions regarding the organization of the soluble septin complex. Biochemical characterization of a SEPT3 truncation that disrupts SEPT3-SEPT3 interactions is consistent with SEPT3 occupying a central position in the complex while the SEPT2 subunits are at the ends of the rod-shaped octameric complexes. Consistent with SEPT2 being on the complex ends, we find that our purified SEPT2/SEPT6/SEPT7/SEPT3 hetero-octamer copolymerizes into mixed filaments with separately purified SEPT2/SEPT6/SEPT7 hetero-hexamer. We expect this new recombinant production approach to lay essential groundwork for future studies into mammalian septin mechanism and function.The septins are filament-forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying cytoskeletal organization. These GTPases assemble into rod-shaped soluble hetero-hexamers and hetero-octamers in mammals, which polymerize into filaments and higher order structures. While the cell biology and pathobiology of septins are advancing rapidly, mechanistic study of the mammalian septins is limited by a lack of recombinant hetero-octamer materials. We describe here the production and characterization of a recombinant mammalian septin hetero-octamer of defined stoichiometry, the SEPT2/SEPT6/SEPT7/SEPT3 complex. Using a fluorescent protein fusion to the complex, we observed filaments assembled from this complex. In addition, we used this novel tool to resolve recent questions regarding the organization of the soluble septin complex. Biochemical characterization of a SEPT3 truncation that disrupts SEPT3-SEPT3 interactions is consistent with SEPT3 occupying a central position in the complex while the SEPT2 subunits are at the ends of the rod-shaped octameric complexes. Consistent with SEPT2 being on the complex ends, we find that our purified SEPT2/SEPT6/SEPT7/SEPT3 hetero-octamer copolymerizes into mixed filaments with separately purified SEPT2/SEPT6/SEPT7 hetero-hexamer. We expect this new recombinant production approach to lay essential groundwork for future studies into mammalian septin mechanism and function.
The septins are filament‐forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying cytoskeletal organization. These GTPases assemble into rod‐shaped soluble hetero‐hexamers and hetero‐octamers in mammals, which polymerize into filaments and higher order structures. While the cell biology and pathobiology of septins are advancing rapidly, mechanistic study of the mammalian septins is limited by a lack of recombinant hetero‐octamer materials. We describe here the production and characterization of a recombinant mammalian septin hetero‐octamer of defined stoichiometry, the SEPT2/SEPT6/SEPT7/SEPT3 complex. Using a fluorescent protein fusion to the complex, we observed filaments assembled from this complex. In addition, we used this novel tool to resolve recent questions regarding the organization of the soluble septin complex. Biochemical characterization of a SEPT3 truncation that disrupts SEPT3‐SEPT3 interactions is consistent with SEPT3 occupying a central position in the complex while the SEPT2 subunits are at the ends of the rod‐shaped octameric complexes. Consistent with SEPT2 being on the complex ends, we find that our purified SEPT2/SEPT6/SEPT7/SEPT3 hetero‐octamer copolymerizes into mixed filaments with separately purified SEPT2/SEPT6/SEPT7 hetero‐hexamer. We expect this new recombinant production approach to lay essential groundwork for future studies into mammalian septin mechanism and function.
Author Beld, Joris
Padrick, Shae B.
Ravi, Roshni
Kokona, Bashkim
Kelley, Robert S.
DeRose, Barry T.
Spiliotis, Elias T.
AuthorAffiliation 4 – Department of Chemistry, Haverford College, Haverford PA, 19041-1391, USA
1 – Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19102
5 – Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19102
2 – Present address: VCU Health System, Richmond, VA, 23219
3 – Present address: WuXi Advanced Therapies, Philadelphia, PA 19112
6 – Department of Biology, Drexel University, Philadelphia, PA 19104
AuthorAffiliation_xml – name: 5 – Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19102
– name: 3 – Present address: WuXi Advanced Therapies, Philadelphia, PA 19112
– name: 6 – Department of Biology, Drexel University, Philadelphia, PA 19104
– name: 1 – Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19102
– name: 4 – Department of Chemistry, Haverford College, Haverford PA, 19041-1391, USA
– name: 2 – Present address: VCU Health System, Richmond, VA, 23219
Author_xml – sequence: 1
  givenname: Barry T.
  surname: DeRose
  fullname: DeRose, Barry T.
  organization: Drexel University
– sequence: 2
  givenname: Robert S.
  surname: Kelley
  fullname: Kelley, Robert S.
  organization: VCU Health System
– sequence: 3
  givenname: Roshni
  surname: Ravi
  fullname: Ravi, Roshni
  organization: WuXi Advanced Therapies
– sequence: 4
  givenname: Bashkim
  surname: Kokona
  fullname: Kokona, Bashkim
  organization: Haverford College
– sequence: 5
  givenname: Joris
  surname: Beld
  fullname: Beld, Joris
  organization: Drexel University
– sequence: 6
  givenname: Elias T.
  surname: Spiliotis
  fullname: Spiliotis, Elias T.
  organization: Drexel University
– sequence: 7
  givenname: Shae B.
  orcidid: 0000-0002-6916-6194
  surname: Padrick
  fullname: Padrick, Shae B.
  email: sbp59@drexel.edu
  organization: Drexel University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33185030$$D View this record in MEDLINE/PubMed
BookMark eNp1kcuKFDEUhoOMOBcFn0AK3LipNvdUNoI0jgojutB1SKVOORlyaZMqtXc-wjzjPIk10zPtBV2EBM6Xn4__HKODlBMg9JjgFcGYPndxRYnk7B46IprrlglND_bvjh-i41ovMJaaYfYAHTJGOoEZPkKnH0oeZjf5nBqbhuXYsK2-NnlsbBNtjDZ4m5oKm8mn5hwmKPnqx2V2k41QGpfjJsD3h-j-aEOFR7f3Cfp0-urj-k179v712_XLs9YJzFnbcyIAtFbaEscowU71rKeSKkocaCfcSDo1CDmyoefajR3vOBOyp1qqDg_sBL3Y5W7mPsLgIE3FBrMpPtqyNdl68-ck-XPzOX81quNCdWIJeHYbUPKXGepkoq8OQrAJ8lwN5RIrqTSTC_r0L_Qiz2Xp54bSgtHFbKGe_G60V7mreAFWO8CVXGuB0Tg_2evCF0EfDMHmeofGRXOzw1-K-w93mf9A2x36zQfY_pcz63c7_ifBwKnF
CitedBy_id crossref_primary_10_1002_hsr2_436
crossref_primary_10_3389_fcell_2021_765085
crossref_primary_10_3389_fcell_2022_771388
crossref_primary_10_7554_eLife_75863
crossref_primary_10_1083_jcb_202203016
crossref_primary_10_3390_ijms241713536
crossref_primary_10_1016_j_jmb_2021_167096
crossref_primary_10_1016_j_bbapap_2023_140972
crossref_primary_10_7554_eLife_63349
crossref_primary_10_1038_s42003_023_05734_w
crossref_primary_10_3389_fcell_2023_1106595
crossref_primary_10_1002_cm_21736
crossref_primary_10_1002_cm_21747
crossref_primary_10_1038_s41467_021_24721_5
crossref_primary_10_1002_jcb_30660
crossref_primary_10_1242_jcs_258850
crossref_primary_10_1093_jmcb_mjaf003
crossref_primary_10_1016_j_ejmg_2023_104732
crossref_primary_10_1242_jcs_258484
Cites_doi 10.1016/j.tcb.2005.06.007
10.1091/mbc.e04-04-0330
10.1016/j.bpj.2018.01.002
10.1091/mbc.E18-02-0136
10.1186/1471-2148-7-103
10.1016/j.chom.2018.11.005
10.1128/MCB.7.10.3678
10.1002/cm.21569
10.1093/bioinformatics/bty1062
10.1038/ncb2921
10.1515/hsz-2013-0247
10.1186/1741-7015-9-133
10.2210/pdb2qnr/pdb
10.1016/j.jsb.2019.04.015
10.3389/fcell.2016.00126
10.1242/jcs.207555
10.1038/nrm3284
10.1038/nature06052
10.1091/mbc.E11-03-0253
10.1128/MCB.00035-08
10.1016/j.cell.2015.09.053
10.1016/j.devcel.2018.06.013
10.1042/BJ20120851
10.1016/j.devcel.2009.04.003
10.1515/BC.2011.077
10.1111/j.1471-4159.2007.04478.x
10.1002/cm.21571
10.1093/bioinformatics/btx551
10.1016/j.devcel.2004.12.005
10.1091/mbc.E07-07-0641
10.1007/s12551-017-0320-4
10.1021/acs.langmuir.6b03452
10.3389/fcell.2016.00122
10.1016/j.cub.2008.12.030
10.1016/j.cub.2019.05.050
10.1042/BJ20041090
10.1074/jbc.M605179200
10.1074/jbc.M117.806281
10.1126/science.183.4120.46
10.1016/j.bpj.2015.05.015
10.1371/journal.pone.0037551
10.1002/cm.21488
10.1038/nmeth.2089
10.1002/path.1789
10.1016/j.chom.2010.10.009
10.1074/jbc.M205246200
10.1111/j.1399-0004.2010.01392.x
10.1038/nmeth.2019
10.1093/jb/mvg182
10.1111/j.1471-4159.2004.02755.x
10.1562/0031-8655(2002)075<0362:TLIROT>2.0.CO;2
10.1186/s12859-017-1934-z
10.1091/mbc.E13-09-0553
10.1016/j.jmb.2015.07.026
10.1083/jcb.201807211
10.1016/j.isci.2019.02.015
10.1083/jcb.201511029
10.1038/embor.2011.193
10.1074/jbc.M112.387464
10.1074/jbc.M115.683128
10.1083/jcb.201106131
10.1074/mcp.M114.046847
10.1107/S2052252520002973
10.1016/j.devcel.2011.02.004
10.7554/eLife.23689
10.1083/jcb.201308068
10.1016/j.celrep.2015.11.052
10.1083/jcb.201405050
10.1007/s10142-019-00690-3
10.1371/journal.pone.0096390
10.1083/jcb.200710039
10.3389/fcell.2017.00003
10.1038/8100
10.1128/MCB.22.1.378-387.2002
10.1083/jcb.201708091
10.3389/fcell.2016.00127
10.1083/jcb.201006031
10.1016/bs.mcb.2016.03.024
10.1016/S0006-3495(00)76713-0
10.1371/journal.pone.0004196
10.1038/nmeth.1318
10.1186/gb-2003-4-11-236
10.1073/pnas.0902858106
10.1073/pnas.0803330105
10.1016/bs.mie.2015.05.001
10.1126/science.1191054
10.1083/jcb.143.3.737
10.1016/S1534-5807(02)00366-0
10.1016/j.ab.2003.10.047
10.1016/j.cell.2007.06.053
10.1016/S0968-0004(00)89099-4
10.1083/jcb.201703096
10.1083/jcb.201107123
10.1016/j.devcel.2007.09.001
10.1083/jcb.201012143
10.1073/pnas.1314138111
10.1038/sj.emboj.7601775
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
7QP
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/cm.21643
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1949-3592
EndPage 499
ExternalDocumentID PMC7845785
33185030
10_1002_cm_21643
CM21643
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Drexel University, Department of Biochemistry and Molecular Biology
– fundername: NIH/NIGMS
  funderid: 1R35 GM136337; 5RO1 GM097664‐9
– fundername: Drexel University, College of Medicine
– fundername: NIGMS NIH HHS
  grantid: R01 GM097664
– fundername: NIGMS NIH HHS
  grantid: R35 GM136337
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7QP
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5043-b415ee9979a1c3210c7b3b262721ce9c5cf187d56f3db49cf8484356b296780d3
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591363300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3584
1949-3592
IngestDate Tue Nov 04 01:59:37 EST 2025
Wed Oct 01 10:47:35 EDT 2025
Tue Oct 07 06:50:11 EDT 2025
Wed Feb 19 02:29:05 EST 2025
Sat Nov 29 01:55:15 EST 2025
Tue Nov 18 22:04:19 EST 2025
Wed Jan 22 16:31:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords polymerization
biochemical reconstitution
protein complex
GTP-binding proteins
cytoskeleton
septins
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5043-b415ee9979a1c3210c7b3b262721ce9c5cf187d56f3db49cf8484356b296780d3
Notes Funding information
NIH/NIGMS, Grant/Award Numbers: 1R35 GM136337, 5RO1 GM097664‐9; Drexel University, Department of Biochemistry and Molecular Biology; Drexel University, College of Medicine
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6916-6194
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7845785
PMID 33185030
PQID 2469532356
PQPubID 2034590
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7845785
proquest_miscellaneous_2460767936
proquest_journals_2469532356
pubmed_primary_33185030
crossref_citationtrail_10_1002_cm_21643
crossref_primary_10_1002_cm_21643
wiley_primary_10_1002_cm_21643_CM21643
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytoskeleton (Hoboken, N.J.)
PublicationTitleAlternate Cytoskeleton (Hoboken)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2017; 6
2007; 102
2012; 287
2019; 13
2013; 203
1987; 7
2016; 32
2014; 25
2019; 19
2008; 105
2019; 207
2015; 108
2011; 12
2015; 427
2011; 195
2012; 13
2003; 278
2011; 392
2011; 193
2004; 326
2017; 9
1974; 183
2018; 46
1995; 20
2018; 131
2020; 7
2014; 207
2003b; 4
2015; 290
2005; 385
2018; 217
2007; 130
2008; 28
2014; 16
2011; 20
2011; 22
2019; 29
2007; 7
2006; 281
2014; 9
2018; 34
2010; 191
2009; 19
2003a; 134
2009; 16
2007; 26
2010; 8
2015; 13
2015; 163
2010; 77
2018; 29
2015; 14
2007; 449
2010; 329
2002; 75
2019; 76
2019; 35
2015; 562
2008; 19
2002; 3
2017; 292
1999; 2
1992
2014; 111
2004; 91
2014; 395
2007; 13
2017; 216
2018; 24
2011; 9
2016; 4
2008; 180
2000; 78
2005; 8
2004; 15
2018; 114
2002; 22
2016; 212
2005; 206
2019
2019; 218
2009; 6
2017; 18
2016; 136
2013; 450
2009; 4
2005; 15
1998; 143
2012; 7
2012; 9
2009; 106
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
Kim J. (e_1_2_7_42_1) 2018; 29
Edwards R. A. (e_1_2_7_21_1) 2002; 75
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
Laue T. (e_1_2_7_51_1) 1992
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Booth E. A. (e_1_2_7_8_1) 2016; 136
e_1_2_7_4_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_35_1
Spiliotis E. T. (e_1_2_7_86_1) 2018; 131
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
Nakos K. (e_1_2_7_63_1) 2019; 76
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_88_1
e_1_2_7_65_1
Soroor F. (e_1_2_7_85_1) 2019
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
McMurray M. A. (e_1_2_7_57_1) 2019; 76
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_38_1
References_xml – volume: 183
  start-page: 46
  issue: 4120
  year: 1974
  end-page: 51
  article-title: Genetic control of the cell division cycle in yeast
  publication-title: Science
– volume: 32
  start-page: 12823
  issue: 48
  year: 2016
  end-page: 12832
  article-title: Septin interferes with the temperature‐dependent domain formation and disappearance of lipid bilayer membranes
  publication-title: Langmuir
– volume: 91
  start-page: 579
  issue: 3
  year: 2004
  end-page: 590
  article-title: Septin 3 (G‐septin) is a developmentally regulated phosphoprotein enriched in presynaptic nerve terminals
  publication-title: Journal of Neurochemistry
– volume: 16
  start-page: 322
  issue: 4
  year: 2014
  end-page: 334
  article-title: Septins promote F‐actin ring formation by crosslinking actin filaments into curved bundles
  publication-title: Nature Cell Biology
– volume: 427
  start-page: 3273
  issue: 20
  year: 2015
  end-page: 3284
  article-title: Septin 9 exhibits polymorphic binding to F‐actin and inhibits myosin and cofilin activity
  publication-title: Journal of Molecular Biology
– volume: 13
  start-page: 2699
  issue: 12
  year: 2015
  end-page: 2714
  article-title: Cdc42EP3/BORG2 and septin network enables mechano‐transduction and the emergence of cancer‐associated fibroblasts
  publication-title: Cell Reports
– volume: 9
  start-page: 676
  issue: 7
  year: 2012
  end-page: 682
  article-title: Fiji: An open‐source platform for biological‐image analysis
  publication-title: Nature Methods
– volume: 76
  start-page: 83
  issue: 1
  year: 2019
  end-page: 91
  article-title: Regulation of microtubule plus end dynamics by septin 9
  publication-title: Cytoskeleton (Hoboken)
– volume: 9
  start-page: 671
  issue: 7
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
– volume: 131
  issue: 1
  year: 2018
  article-title: Spatial effects – Site‐specific regulation of actin and microtubule organization by septin GTPases
  publication-title: Journal of Cell Science
– year: 2019
  article-title: Revised subunit order of mammalian septin complexes explains their in vitro polymerization properties
  publication-title: bioRxiv
– volume: 216
  start-page: 4041
  issue: 12
  year: 2017
  end-page: 4052
  article-title: SUMOylation of human septins is critical for septin filament bundling and cytokinesis
  publication-title: The Journal of Cell Biology
– volume: 7
  start-page: 103
  year: 2007
  article-title: Analysis of septins across kingdoms reveals orthology and new motifs
  publication-title: BMC Evolutionary Biology
– volume: 18
  start-page: 529
  issue: 1
  year: 2017
  article-title: ImageJ2: ImageJ for the next generation of scientific image data
  publication-title: BMC Bioinformatics
– volume: 22
  start-page: 3152
  issue: 17
  year: 2011
  end-page: 3164
  article-title: Deciphering the rules governing assembly order of mammalian septin complexes
  publication-title: Molecular Biology of the Cell
– volume: 207
  start-page: 225
  issue: 2
  year: 2014
  end-page: 235
  article-title: Septins promote stress fiber‐mediated maturation of focal adhesions and renal epithelial motility
  publication-title: The Journal of Cell Biology
– volume: 136
  start-page: 35
  year: 2016
  end-page: 56
  article-title: A FRET‐based method for monitoring septin polymerization and binding of septin‐associated proteins
  publication-title: Methods in Cell Biology
– volume: 287
  start-page: 30406
  issue: 36
  year: 2012
  end-page: 30413
  article-title: Uncovering principles that control septin‐septin interactions
  publication-title: The Journal of Biological Chemistry
– volume: 106
  start-page: 16592
  issue: 39
  year: 2009
  end-page: 16597
  article-title: GTP‐induced conformational changes in septins and implications for function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  start-page: 493
  issue: 4
  year: 2009
  end-page: 506
  article-title: Septins and the lateral compartmentalization of eukaryotic membranes
  publication-title: Developmental Cell
– volume: 326
  start-page: 13
  issue: 1
  year: 2004
  end-page: 20
  article-title: Visible fluorescent detection of proteins in polyacrylamide gels without staining
  publication-title: Analytical Biochemistry
– volume: 7
  issue: 5
  year: 2012
  article-title: Development of cysteine‐free fluorescent proteins for the oxidative environment
  publication-title: PLoS One
– volume: 206
  start-page: 269
  issue: 3
  year: 2005
  end-page: 278
  article-title: Expression profiling the human septin gene family
  publication-title: The Journal of Pathology
– volume: 163
  start-page: 712
  issue: 3
  year: 2015
  end-page: 723
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
– volume: 562
  start-page: 109
  year: 2015
  end-page: 133
  article-title: Calculations and publication‐quality illustrations for analytical ultracentrifugation data
  publication-title: Methods in Enzymology
– volume: 108
  start-page: 2896
  issue: 12
  year: 2015
  end-page: 2902
  article-title: Structural and thermodynamic properties of septin 3 investigated by small‐angle X‐ray scattering
  publication-title: Biophysical Journal
– volume: 26
  start-page: 3296
  issue: 14
  year: 2007
  end-page: 3307
  article-title: The septin complex is nonpolar
  publication-title: The EMBO Journal
– volume: 278
  start-page: 18538
  issue: 20
  year: 2003
  end-page: 18543
  article-title: Filament formation of MSF‐A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules
  publication-title: The Journal of Biological Chemistry
– volume: 14
  start-page: 1927
  issue: 7
  year: 2015
  end-page: 1945
  article-title: Novel host proteins and signaling pathways in enteropathogenic pathogenesis identified by global phosphoproteome analysis
  publication-title: Molecular & Cellular Proteomics
– volume: 111
  start-page: 2146
  issue: 6
  year: 2014
  end-page: 2151
  article-title: Septin assemblies form by diffusion‐driven annealing on membranes
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 193
  start-page: 1065
  issue: 6
  year: 2011
  end-page: 1081
  article-title: Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals
  publication-title: The Journal of Cell Biology
– volume: 13
  start-page: 677
  issue: 5
  year: 2007
  end-page: 690
  article-title: Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases
  publication-title: Developmental Cell
– volume: 6
  start-page: 343
  issue: 5
  year: 2009
  end-page: 345
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nature Methods
– volume: 4
  start-page: 126
  year: 2016
  article-title: Cancer‐related functions and subcellular localizations of septins
  publication-title: Frontiers in Cell and Development Biology
– volume: 19
  start-page: 787
  issue: 5
  year: 2019
  end-page: 797
  article-title: A blueprint of septin expression in human tissues
  publication-title: Functional & Integrative Genomics
– volume: 4
  start-page: 236
  issue: 11
  year: 2003b
  article-title: The septins
  publication-title: Genome Biology
– volume: 9
  issue: 5
  year: 2014
  article-title: In silico docking of forchlorfenuron (FCF) to septins suggests that FCF interferes with GTP binding
  publication-title: PLoS One
– volume: 449
  start-page: 311
  issue: 7160
  year: 2007
  end-page: 315
  article-title: Structural insight into filament formation by mammalian septins
  publication-title: Nature
– volume: 392
  start-page: 739
  issue: 8–9
  year: 2011
  end-page: 749
  article-title: Characterization of presynaptic septin complexes in mammalian hippocampal neurons
  publication-title: Biological Chemistry
– volume: 450
  start-page: 95
  issue: 1
  year: 2013
  end-page: 105
  article-title: The structure and properties of septin 3: A possible missing link in septin filament formation
  publication-title: Biochemical Journal
– volume: 19
  start-page: 1717
  issue: 4
  year: 2008
  end-page: 1726
  article-title: Mammalian septins are required for phagosome formation
  publication-title: Molecular Biology of the Cell
– volume: 15
  start-page: 4568
  issue: 10
  year: 2004
  end-page: 4583
  article-title: Protein‐protein interactions governing septin heteropentamer assembly and septin filament organization in
  publication-title: Molecular Biology of the Cell
– volume: 191
  start-page: 741
  issue: 4
  year: 2010
  end-page: 749
  article-title: Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission
  publication-title: The Journal of Cell Biology
– volume: 20
  start-page: 448
  issue: 11
  year: 1995
  end-page: 455
  article-title: Understanding, improving and using green fluorescent proteins
  publication-title: Trends in Biochemical Sciences
– volume: 76
  start-page: 457
  issue: 9‐10
  year: 2019
  end-page: 466
  article-title: A revised order of subunits in mammalian septin complexes
  publication-title: Cytoskeleton (Hoboken)
– volume: 281
  start-page: 30697
  issue: 41
  year: 2006
  end-page: 30706
  article-title: Structural analysis of septin 2, 6, and 7 complexes
  publication-title: The Journal of Biological Chemistry
– volume: 75
  start-page: 362
  issue: 4
  year: 2002
  end-page: 368
  article-title: The light‐induced reactions of tryptophan with halocompounds
  publication-title: Photochemistry and Photobiology
– volume: 13
  start-page: 183
  issue: 3
  year: 2012
  end-page: 194
  article-title: Septins: The fourth component of the cytoskeleton
  publication-title: Nature Reviews. Molecular Cell Biology
– volume: 78
  start-page: 1606
  issue: 3
  year: 2000
  end-page: 1619
  article-title: Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling
  publication-title: Biophysical Journal
– volume: 28
  start-page: 7012
  issue: 23
  year: 2008
  end-page: 7029
  article-title: Superfluous role of mammalian septins 3 and 5 in neuronal development and synaptic transmission
  publication-title: Molecular and Cellular Biology
– volume: 46
  start-page: 204
  issue: 2
  year: 2018
  end-page: 218
  article-title: Polarity of neuronal membrane traffic requires sorting of kinesin motor cargo during entry into dendrites by a microtubule‐associated septin
  publication-title: Developmental Cell
– volume: 195
  start-page: 815
  issue: 5
  year: 2011
  end-page: 826
  article-title: SEPT9 occupies the terminal positions in septin octamers and mediates polymerization‐dependent functions in abscission
  publication-title: The Journal of Cell Biology
– volume: 212
  start-page: 515
  issue: 5
  year: 2016
  end-page: 529
  article-title: Assembly, molecular organization, and membrane‐binding properties of development‐specific septins
  publication-title: The Journal of Cell Biology
– volume: 218
  start-page: 1128
  issue: 4
  year: 2019
  end-page: 1137
  article-title: An amphipathic helix enables septins to sense micrometer‐scale membrane curvature
  publication-title: The Journal of Cell Biology
– volume: 13
  start-page: 138
  year: 2019
  end-page: 153
  article-title: Septin 9 has two polybasic domains critical to septin filament assembly and golgi integrity
  publication-title: iScience
– volume: 20
  start-page: 540
  issue: 4
  year: 2011
  end-page: 549
  article-title: Septin filament formation is essential in budding yeast
  publication-title: Developmental Cell
– volume: 4
  issue: 1
  year: 2009
  article-title: Septins regulate bacterial entry into host cells
  publication-title: PLoS One
– volume: 22
  start-page: 378
  issue: 1
  year: 2002
  end-page: 387
  article-title: The septin CDCrel‐1 is dispensable for normal development and neurotransmitter release
  publication-title: Molecular and Cellular Biology
– volume: 8
  start-page: 433
  issue: 5
  year: 2010
  end-page: 444
  article-title: Entrapment of intracytosolic bacteria by septin cage‐like structures
  publication-title: Cell Host & Microbe
– volume: 3
  start-page: 791
  issue: 6
  year: 2002
  end-page: 802
  article-title: Self‐ and actin‐templated assembly of Mammalian septins
  publication-title: Developmental Cell
– volume: 24
  start-page: 866
  issue: 6
  year: 2018
  end-page: 874
  article-title: Septins recognize and entrap dividing bacterial cells for delivery to lysosomes
  publication-title: Cell Host & Microbe
– volume: 9
  start-page: 133
  year: 2011
  article-title: Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer
  publication-title: BMC Medicine
– volume: 207
  start-page: 67
  issue: 1
  year: 2019
  end-page: 73
  article-title: Revisiting SEPT7 and the slippage of beta‐strands in the septin family
  publication-title: Journal of Structural Biology
– volume: 4
  start-page: 122
  year: 2016
  article-title: Septin mutations in human cancers
  publication-title: Frontiers in Cell and Development Biology
– volume: 114
  start-page: 856
  issue: 4
  year: 2018
  end-page: 869
  article-title: HullRad: Fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties
  publication-title: Biophysical Journal
– volume: 19
  start-page: 140
  issue: 2
  year: 2009
  end-page: 145
  article-title: Septin‐mediated uniform bracing of phospholipid membranes
  publication-title: Current Biology
– volume: 9
  start-page: 481
  issue: 5
  year: 2017
  end-page: 500
  article-title: Septin structure and filament assembly
  publication-title: Biophysical Reviews
– volume: 6
  start-page: e23689
  year: 2017
  article-title: The step‐wise pathway of septin hetero‐octamer assembly in budding yeast
  publication-title: eLife
– volume: 7
  start-page: 3678
  issue: 10
  year: 1987
  end-page: 3687
  article-title: Immunofluorescence localization of the CDC12 gene product to the vicinity of the 10‐nm filaments in the mother‐bud neck
  publication-title: Molecular and Cellular Biology
– volume: 134
  start-page: 491
  issue: 4
  year: 2003a
  end-page: 496
  article-title: Assembly of mammalian septins
  publication-title: Journal of Biochemistry
– volume: 180
  start-page: 295
  issue: 2
  year: 2008
  end-page: 303
  article-title: Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules
  publication-title: The Journal of Cell Biology
– volume: 8
  start-page: 343
  issue: 3
  year: 2005
  end-page: 352
  article-title: Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa
  publication-title: Developmental Cell
– volume: 77
  start-page: 511
  issue: 6
  year: 2010
  end-page: 524
  article-title: Conquering the complex world of human septins: Implications for health and disease
  publication-title: Clinical Genetics
– volume: 7
  start-page: 462
  issue: 3
  year: 2020
  end-page: 479
  article-title: A complete compendium of crystal structures for the human SEPT3 subgroup reveals functional plasticity at a specific septin interface
  publication-title: IUCrJ
– volume: 292
  start-page: 18392
  issue: 45
  year: 2017
  end-page: 18407
  article-title: Interaction between the AAA(+) ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide‐induced conformational changes regulate cofactor binding
  publication-title: The Journal of Biological Chemistry
– volume: 15
  start-page: 414
  issue: 8
  year: 2005
  end-page: 424
  article-title: Some assembly required: Yeast septins provide the instruction manual
  publication-title: Trends in Cell Biology
– volume: 143
  start-page: 737
  issue: 3
  year: 1998
  end-page: 749
  article-title: Polymerization of purified yeast septins: Evidence that organized filament arrays may not be required for septin function
  publication-title: The Journal of Cell Biology
– volume: 29
  start-page: 2174
  issue: 13
  year: 2019
  end-page: 2182
  article-title: A septin double ring controls the spatiotemporal organization of the ESCRT machinery in cytokinetic abscission
  publication-title: Current Biology
– volume: 329
  start-page: 436
  issue: 5990
  year: 2010
  end-page: 439
  article-title: A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution
  publication-title: Science
– volume: 12
  start-page: 1118
  issue: 11
  year: 2011
  end-page: 1126
  article-title: The emerging functions of septins in metazoans
  publication-title: EMBO Reports
– volume: 76
  start-page: 449
  issue: 9–10
  year: 2019
  end-page: 456
  article-title: Turning it inside out: The organization of human septin heterooligomers
  publication-title: Cytoskeleton (Hoboken)
– start-page: 90
  year: 1992
  end-page: 125
– volume: 195
  start-page: 993
  issue: 6
  year: 2011
  end-page: 1004
  article-title: Subunit‐dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation
  publication-title: The Journal of Cell Biology
– volume: 102
  start-page: 77
  issue: 1
  year: 2007
  end-page: 92
  article-title: Targeted disruption of Sept3, a heteromeric assembly partner of Sept5 and Sept7 in axons, has no effect on developing CNS neurons
  publication-title: Journal of Neurochemistry
– volume: 34
  start-page: 215
  issue: 2
  year: 2018
  end-page: 222
  article-title: CCFold: Rapid and accurate prediction of coiled‐coil structures and application to modelling intermediate filaments
  publication-title: Bioinformatics
– volume: 4
  start-page: 127
  year: 2016
  article-title: Septins and bacterial infection
  publication-title: Frontiers in Cell and Development Biology
– volume: 290
  start-page: 28388
  issue: 47
  year: 2015
  end-page: 28401
  article-title: A Forster resonance energy transfer (FRET)‐based system provides insight into the ordered assembly of yeast septin hetero‐octamers
  publication-title: The Journal of Biological Chemistry
– volume: 395
  start-page: 157
  issue: 2
  year: 2014
  end-page: 167
  article-title: Septin 9 amplification and isoform‐specific expression in peritumoral and tumor breast tissue
  publication-title: Biological Chemistry
– volume: 35
  start-page: 2790
  issue: 16
  year: 2019
  end-page: 2795
  article-title: DeepCoil‐a fast and accurate prediction of coiled‐coil domains in protein sequences
  publication-title: Bioinformatics
– volume: 203
  start-page: 895
  issue: 6
  year: 2013
  end-page: 905
  article-title: Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules
  publication-title: The Journal of Cell Biology
– volume: 5
  start-page: 3
  year: 2017
  article-title: The mammalian septin interactome
  publication-title: Frontiers in Cell and Development Biology
– volume: 130
  start-page: 837
  issue: 5
  year: 2007
  end-page: 850
  article-title: Septins regulate actin organization and cell‐cycle arrest through nuclear accumulation of NCK mediated by SOCS7
  publication-title: Cell
– volume: 25
  start-page: 1594
  issue: 10
  year: 2014
  end-page: 1607
  article-title: Cell type‐specific expression of SEPT3‐homology subgroup members controls the subunit number of heteromeric septin complexes
  publication-title: Molecular Biology of the Cell
– volume: 105
  start-page: 8274
  issue: 24
  year: 2008
  end-page: 8279
  article-title: Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 434
  issue: 5
  year: 1999
  end-page: 439
  article-title: The septin CDCrel‐1 binds syntaxin and inhibits exocytosis
  publication-title: Nature Neuroscience
– volume: 29
  start-page: 1693
  issue: 13
  year: 2018
  end-page: 1703
  article-title: Septins regulate junctional integrity of endothelial monolayers
  publication-title: Molecular Biology of the Cell
– volume: 385
  start-page: 347
  issue: Pt 2
  year: 2005
  end-page: 353
  article-title: The septin Sept5/CDCrel‐1 competes with alpha‐SNAP for binding to the SNARE complex
  publication-title: Biochemical Journal
– volume: 217
  start-page: 2911
  issue: 8
  year: 2018
  end-page: 2929
  article-title: Septins suppress the release of vaccinia virus from infected cells
  publication-title: The Journal of Cell Biology
– ident: e_1_2_7_95_1
  doi: 10.1016/j.tcb.2005.06.007
– ident: e_1_2_7_94_1
  doi: 10.1091/mbc.e04-04-0330
– ident: e_1_2_7_23_1
  doi: 10.1016/j.bpj.2018.01.002
– volume: 29
  start-page: 1693
  issue: 13
  year: 2018
  ident: e_1_2_7_42_1
  article-title: Septins regulate junctional integrity of endothelial monolayers
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.E18-02-0136
– ident: e_1_2_7_67_1
  doi: 10.1186/1471-2148-7-103
– ident: e_1_2_7_49_1
  doi: 10.1016/j.chom.2018.11.005
– ident: e_1_2_7_30_1
  doi: 10.1128/MCB.7.10.3678
– ident: e_1_2_7_58_1
  doi: 10.1002/cm.21569
– ident: e_1_2_7_53_1
  doi: 10.1093/bioinformatics/bty1062
– ident: e_1_2_7_55_1
  doi: 10.1038/ncb2921
– ident: e_1_2_7_17_1
  doi: 10.1515/hsz-2013-0247
– ident: e_1_2_7_96_1
  doi: 10.1186/1741-7015-9-133
– ident: e_1_2_7_36_1
  doi: 10.2210/pdb2qnr/pdb
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jsb.2019.04.015
– ident: e_1_2_7_71_1
  doi: 10.3389/fcell.2016.00126
– volume: 131
  issue: 1
  year: 2018
  ident: e_1_2_7_86_1
  article-title: Spatial effects – Site‐specific regulation of actin and microtubule organization by septin GTPases
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.207555
– ident: e_1_2_7_60_1
  doi: 10.1038/nrm3284
– ident: e_1_2_7_82_1
  doi: 10.1038/nature06052
– ident: e_1_2_7_80_1
  doi: 10.1091/mbc.E11-03-0253
– ident: e_1_2_7_92_1
  doi: 10.1128/MCB.00035-08
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cell.2015.09.053
– ident: e_1_2_7_41_1
  doi: 10.1016/j.devcel.2018.06.013
– ident: e_1_2_7_54_1
  doi: 10.1042/BJ20120851
– year: 2019
  ident: e_1_2_7_85_1
  article-title: Revised subunit order of mammalian septin complexes explains their in vitro polymerization properties
  publication-title: bioRxiv
– ident: e_1_2_7_16_1
  doi: 10.1016/j.devcel.2009.04.003
– ident: e_1_2_7_91_1
  doi: 10.1515/BC.2011.077
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1471-4159.2007.04478.x
– volume: 76
  start-page: 449
  issue: 9
  year: 2019
  ident: e_1_2_7_57_1
  article-title: Turning it inside out: The organization of human septin heterooligomers
  publication-title: Cytoskeleton (Hoboken)
  doi: 10.1002/cm.21571
– ident: e_1_2_7_29_1
  doi: 10.1093/bioinformatics/btx551
– ident: e_1_2_7_37_1
  doi: 10.1016/j.devcel.2004.12.005
– ident: e_1_2_7_35_1
  doi: 10.1091/mbc.E07-07-0641
– ident: e_1_2_7_93_1
  doi: 10.1007/s12551-017-0320-4
– ident: e_1_2_7_99_1
  doi: 10.1021/acs.langmuir.6b03452
– ident: e_1_2_7_3_1
  doi: 10.3389/fcell.2016.00122
– ident: e_1_2_7_89_1
  doi: 10.1016/j.cub.2008.12.030
– ident: e_1_2_7_40_1
  doi: 10.1016/j.cub.2019.05.050
– ident: e_1_2_7_5_1
  doi: 10.1042/BJ20041090
– ident: e_1_2_7_52_1
  doi: 10.1074/jbc.M605179200
– ident: e_1_2_7_72_1
  doi: 10.1074/jbc.M117.806281
– ident: e_1_2_7_32_1
  doi: 10.1126/science.183.4120.46
– ident: e_1_2_7_66_1
  doi: 10.1016/j.bpj.2015.05.015
– ident: e_1_2_7_88_1
  doi: 10.1371/journal.pone.0037551
– volume: 76
  start-page: 83
  issue: 1
  year: 2019
  ident: e_1_2_7_63_1
  article-title: Regulation of microtubule plus end dynamics by septin 9
  publication-title: Cytoskeleton (Hoboken)
  doi: 10.1002/cm.21488
– ident: e_1_2_7_77_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_7_31_1
  doi: 10.1002/path.1789
– ident: e_1_2_7_59_1
  doi: 10.1016/j.chom.2010.10.009
– ident: e_1_2_7_62_1
  doi: 10.1074/jbc.M205246200
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1399-0004.2010.01392.x
– ident: e_1_2_7_76_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_7_45_1
  doi: 10.1093/jb/mvg182
– start-page: 90
  volume-title: Analytical ultracentrifugation in biochemistry and polymer science
  year: 1992
  ident: e_1_2_7_51_1
– ident: e_1_2_7_98_1
  doi: 10.1111/j.1471-4159.2004.02755.x
– volume: 75
  start-page: 362
  issue: 4
  year: 2002
  ident: e_1_2_7_21_1
  article-title: The light‐induced reactions of tryptophan with halocompounds
  publication-title: Photochemistry and Photobiology
  doi: 10.1562/0031-8655(2002)075<0362:TLIROT>2.0.CO;2
– ident: e_1_2_7_74_1
  doi: 10.1186/s12859-017-1934-z
– ident: e_1_2_7_81_1
  doi: 10.1091/mbc.E13-09-0553
– ident: e_1_2_7_84_1
  doi: 10.1016/j.jmb.2015.07.026
– ident: e_1_2_7_14_1
  doi: 10.1083/jcb.201807211
– ident: e_1_2_7_65_1
  doi: 10.1016/j.isci.2019.02.015
– ident: e_1_2_7_27_1
  doi: 10.1083/jcb.201511029
– ident: e_1_2_7_75_1
  doi: 10.1038/embor.2011.193
– ident: e_1_2_7_44_1
  doi: 10.1074/jbc.M112.387464
– ident: e_1_2_7_9_1
  doi: 10.1074/jbc.M115.683128
– ident: e_1_2_7_43_1
  doi: 10.1083/jcb.201106131
– ident: e_1_2_7_78_1
  doi: 10.1074/mcp.M114.046847
– ident: e_1_2_7_15_1
  doi: 10.1107/S2052252520002973
– ident: e_1_2_7_56_1
  doi: 10.1016/j.devcel.2011.02.004
– ident: e_1_2_7_97_1
  doi: 10.7554/eLife.23689
– ident: e_1_2_7_4_1
  doi: 10.1083/jcb.201308068
– ident: e_1_2_7_13_1
  doi: 10.1016/j.celrep.2015.11.052
– ident: e_1_2_7_20_1
  doi: 10.1083/jcb.201405050
– ident: e_1_2_7_100_1
  doi: 10.1007/s10142-019-00690-3
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pone.0096390
– ident: e_1_2_7_87_1
  doi: 10.1083/jcb.200710039
– ident: e_1_2_7_64_1
  doi: 10.3389/fcell.2017.00003
– ident: e_1_2_7_6_1
  doi: 10.1038/8100
– ident: e_1_2_7_68_1
  doi: 10.1128/MCB.22.1.378-387.2002
– ident: e_1_2_7_70_1
  doi: 10.1083/jcb.201708091
– ident: e_1_2_7_90_1
  doi: 10.3389/fcell.2016.00127
– ident: e_1_2_7_22_1
  doi: 10.1083/jcb.201006031
– volume: 136
  start-page: 35
  year: 2016
  ident: e_1_2_7_8_1
  article-title: A FRET‐based method for monitoring septin polymerization and binding of septin‐associated proteins
  publication-title: Methods in Cell Biology
  doi: 10.1016/bs.mcb.2016.03.024
– ident: e_1_2_7_79_1
  doi: 10.1016/S0006-3495(00)76713-0
– ident: e_1_2_7_61_1
  doi: 10.1371/journal.pone.0004196
– ident: e_1_2_7_28_1
  doi: 10.1038/nmeth.1318
– ident: e_1_2_7_46_1
  doi: 10.1186/gb-2003-4-11-236
– ident: e_1_2_7_83_1
  doi: 10.1073/pnas.0902858106
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.0803330105
– ident: e_1_2_7_10_1
  doi: 10.1016/bs.mie.2015.05.001
– ident: e_1_2_7_34_1
  doi: 10.1126/science.1191054
– ident: e_1_2_7_24_1
  doi: 10.1083/jcb.143.3.737
– ident: e_1_2_7_47_1
  doi: 10.1016/S1534-5807(02)00366-0
– ident: e_1_2_7_50_1
  doi: 10.1016/j.ab.2003.10.047
– ident: e_1_2_7_48_1
  doi: 10.1016/j.cell.2007.06.053
– ident: e_1_2_7_18_1
  doi: 10.1016/S0968-0004(00)89099-4
– ident: e_1_2_7_73_1
  doi: 10.1083/jcb.201703096
– ident: e_1_2_7_26_1
  doi: 10.1083/jcb.201107123
– ident: e_1_2_7_39_1
  doi: 10.1016/j.devcel.2007.09.001
– ident: e_1_2_7_19_1
  doi: 10.1083/jcb.201012143
– ident: e_1_2_7_11_1
  doi: 10.1073/pnas.1314138111
– ident: e_1_2_7_38_1
  doi: 10.1038/sj.emboj.7601775
SSID ssj0069303
Score 2.3909001
Snippet The septins are filament‐forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying...
The septins are filament-forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms biochemical reconstitution
Cytokinesis
Cytoskeleton
Filaments
Fungi
Fusion protein
GTP‐binding proteins
Hexamers
Mammals
polymerization
protein complex
Septin
septins
Stoichiometry
Title Production and analysis of a mammalian septin hetero‐octamer complex
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcm.21643
https://www.ncbi.nlm.nih.gov/pubmed/33185030
https://www.proquest.com/docview/2469532356
https://www.proquest.com/docview/2460767936
https://pubmed.ncbi.nlm.nih.gov/PMC7845785
Volume 77
WOSCitedRecordID wos000591363300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1949-3592
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069303
  issn: 1949-3584
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xWypx4dUCgWXlSlV7Sru1k9g-osKKA1RV1ZX2FtleW63UJGizi-DGT-A38ksYOw9YtUhIPUQ5eJJYHs_LmfkGYN8ajl6sYjG6uxiguCyNhVUuTrn2XaS1y1QSmk3wszMxn8vzNqvS18I0-BD9gZuXjKCvvYArXR__AQ01xRFFX58NYMvXVGHgtfX-Yjr71Olh3-MvpNfLRMYM7WwHPTuhx92zm8bolod5O1Hybwc2WKDpk_vM_Sk8bv1O8q7ZKM_ggS2fw3bTifL7DkzPG-RX5BJR5QKvBquEVI4oUqiiCOchpPZJMCW58kk01a8fPyuzUoVdkpCZbr_twmz64fL0Y9y2WIiNhy6LNdpva6XkUp0YX85juGaaZhQDQ2OlSY07EXyRZo4tdCKNE4lAByvTVKKVmyzYCxiWVWlfAREyc9Iwl3Ipk0Q7hYTSIq-FsxkGLREcdmudmxZ_3LfBuMkb5GSamyIPqxLBXk_5pcHcuINm1LErb6WuzinG-imjOD98RT-M8uJ_gqjSVutAM-EZaiWkedlwt_8I86XkqPUi4Bt87wk8FvfmSHl9FTC5uUg8bFAEB4Hv_5x3fvo53F__L-EbeER9iB_KH0cwXC3X9i08NF9X1_VyDAM-F-N25_8GmKsFew
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BAmovLdDXUgpGQvQUWOzED_VU0a5ALCuEQOIWOV5bIDVJtbtU7a0_gd_IL2HsPNoVVKrEIcrBk8TyZF72zDcA29YI9GI1i9DdxQDF8SSSVrsoEZnvIp05ruPQbEIMh_LyUp3OwaemFqbCh2g33LxkBH3tBdxvSO_9QQ01-S5FZ5_Nw0LMmZAdWPhy1r8YNIrYN_kL-fUqVhFDQ9tgz_boXvPsrDV64GI-zJT824MNJqj_8kmTX4YXtedJPle_ygrM2WIVlqpelL9eQf-0wn5FPhFdjPCq0EpI6Ygmuc7zsCNCJj4NpiBXPo2mvPt9W5qpzu2YhNx0-_M1XPS_nh8cRnWThch48LIoQwturVJC6X3jC3qMyFhGOcXQ0FhlEuP2pRgl3LFRFivjZCzRxeIZVWjneiP2BjpFWdh3QKTiThnmEqFUHGdOI6GyyG3pLMewpQsfm8VOTY1A7hthfEsr7GSamjwNq9KFrZbye4W68QjNesOvtJa7SUox2k8YxfnhK9phlBh_DKILW94Emp7gqJeQ5m3F3vYjzBeTo97rgphhfEvg0bhnR4rrq4DKLWTsgYO6sBMY_895pwcn4b72v4Sb8Ozw_GSQDo6Gx-_hOfUBfyiGXIfOdHxjP8Ci-TG9now3agG4Bw6BCIM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RhaJe-qAtXaDFSKicUhbbiWP1hKBRK-hqVRWJW-Q4tkBqErS7ILjxE_iN_BLGzgNWFKlSD1EOniSWx_NyZr4B2DRaoBerWIDuLgYoNgqD2CgbhCJzXaQzGynum02I4TA-PpajOfja1sLU-BDdgZuTDK-vnYCbs9xu36OG6uILRWefPYN5HsqQ92B-_1dydNgqYtfkz-fXSy4Dhoa2xZ4d0O322Vlr9MjFfJwp-dCD9SYoefVfk38NLxvPk-zWW-UNzJlyCZ7XvSiv3kIyqrFfkU9ElTleNVoJqSxRpFBF4U9EyMSlwZTkxKXRVLfXN5WeqsKMic9NN5fv4Cj59nvve9A0WQi0Ay8LMrTgxkgppNrRrqBHi4xlNKIYGmojdajtTizyMLIsz7jUNuYxulhRRiXauUHO3kOvrErzAUgsIys1s6GQkvPMKiSUBrkdWxNh2NKHrXaxU90gkLtGGH_SGjuZprpI_ar0YaOjPKtRN_5Cs9byK23kbpJSjPZDRnF--IpuGCXG_QZRpanOPc1ARKiXkGa5Zm_3EeaKyVHv9UHMML4jcGjcsyPl6YlH5RYxd8BBffjsGf_kvNO9n_6-8q-E67A42k_Swx_Dg1V4QV2872sh16A3HZ-bj7CgL6ank_GnZv_fAY6NB_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+and+analysis+of+a+mammalian+septin+hetero-octamer+complex&rft.jtitle=Cytoskeleton+%28Hoboken%2C+N.J.%29&rft.au=DeRose%2C+Barry+T&rft.au=Kelley%2C+Robert+S&rft.au=Ravi%2C+Roshni&rft.au=Kokona%2C+Bashkim&rft.date=2020-11-01&rft.eissn=1949-3592&rft.volume=77&rft.issue=11&rft.spage=485&rft_id=info:doi/10.1002%2Fcm.21643&rft_id=info%3Apmid%2F33185030&rft.externalDocID=33185030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3584&client=summon