Protein identification in imaging mass spectrometry through spatially targeted liquid micro‐extractions

Rationale Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro‐extractions coupled to online liquid chromatography (LC). We have characterized the e...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry Vol. 32; no. 5; pp. 442 - 450
Main Authors: Ryan, Daniel J., Nei, David, Prentice, Boone M., Rose, Kristie L., Caprioli, Richard M., Spraggins, Jeffrey M.
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 15.03.2018
Subjects:
ISSN:0951-4198, 1097-0231, 1097-0231
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rationale Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro‐extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment. Methods Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top‐down and bottom‐up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 μm spatial resolution. Results Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2‐μL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data. Conclusions Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.
AbstractList Rationale Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro‐extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment. Methods Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top‐down and bottom‐up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 μm spatial resolution. Results Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2‐μL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data. Conclusions Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.
Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro-extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment. Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top-down and bottom-up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 μm spatial resolution. Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2-μL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data. Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.
Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro-extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment.RATIONALELiquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro-extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment.Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top-down and bottom-up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 μm spatial resolution.METHODSProteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top-down and bottom-up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 μm spatial resolution.Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2-μL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data.RESULTSRobotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2-μL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data.Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.CONCLUSIONSRobotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.
Rationale Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro-extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment. Methods Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top-down and bottom-up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 µm spatial resolution. Results Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2-µL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data. Conclusions Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.
Author Prentice, Boone M.
Ryan, Daniel J.
Nei, David
Spraggins, Jeffrey M.
Caprioli, Richard M.
Rose, Kristie L.
AuthorAffiliation 2 Mass Spectrometry Research Center, Vanderbilt University, 465 21 st Ave S #9160, Nashville, TN 37235, USA
1 Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
4 Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA
5 Department of Medicine, Vanderbilt University, 465 21 st Ave S #9160, Nashville, TN 37235, USA
3 Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
AuthorAffiliation_xml – name: 4 Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA
– name: 3 Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
– name: 2 Mass Spectrometry Research Center, Vanderbilt University, 465 21 st Ave S #9160, Nashville, TN 37235, USA
– name: 1 Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
– name: 5 Department of Medicine, Vanderbilt University, 465 21 st Ave S #9160, Nashville, TN 37235, USA
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Ryan
  fullname: Ryan, Daniel J.
  organization: Vanderbilt University
– sequence: 2
  givenname: David
  surname: Nei
  fullname: Nei, David
  organization: Vanderbilt University
– sequence: 3
  givenname: Boone M.
  orcidid: 0000-0002-1927-9457
  surname: Prentice
  fullname: Prentice, Boone M.
  organization: Vanderbilt University
– sequence: 4
  givenname: Kristie L.
  surname: Rose
  fullname: Rose, Kristie L.
  organization: Vanderbilt University
– sequence: 5
  givenname: Richard M.
  orcidid: 0000-0001-5859-3310
  surname: Caprioli
  fullname: Caprioli, Richard M.
  organization: Vanderbilt University
– sequence: 6
  givenname: Jeffrey M.
  orcidid: 0000-0001-9198-5498
  surname: Spraggins
  fullname: Spraggins, Jeffrey M.
  email: jeff.spraggins@vanderbilt.edu
  organization: Vanderbilt University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29226434$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1qFDEcxYO02G0VfAIZ8Mab2eZjMpPcCLL4BRVF9Dpkkv_OpmQm2ySj7p2P4DP6JGa7bf1AIRBy8svh_HNO0dEUJkDoEcFLgjE9j2ZcCtzQe2hBsOxqTBk5QgssOakbIsUJOk3pEmNCOMX30QmVlLYNaxbIvY8hg5sqZ2HKbu2Mzi6UY1mjHtw0VKNOqUpbMDmGEXLcVXkTwzxsilhg7X1RdBwgg628u5qdrUZnYvjx7Tt8zVGbvWN6gI7X2id4eLOfoU8vX3xcva4v3r16s3p-URteJqiltY3oRW8Is8xQAo1pm94aI4GLlq07wwQmVgvDWQ-aFtmyFgjrWl5Exs7Qs4Pvdu5HsKaMFbVX21jmiTsVtFN_3kxuo4bwWXFBqMCyGDy9MYjhaoaU1eiSAe_1BGFOisiOc8la0RX0yV_oZZjjVMZTtPSCGyzlPtHj3xPdRbltoQDLA1A-LaUIa2Vcvu6hBHReEaz2NatSs9rX_Cvi3YNbz3-g9QH94jzs_supD6u31_xPYGK6Uw
CitedBy_id crossref_primary_10_1016_j_aca_2021_339021
crossref_primary_10_1186_s12014_024_09505_5
crossref_primary_10_1007_s00216_018_1493_9
crossref_primary_10_1039_D5AN00446B
crossref_primary_10_3389_fendo_2022_993081
crossref_primary_10_1038_s41467_022_34824_2
crossref_primary_10_1002_advs_202416722
crossref_primary_10_1002_jms_5016
crossref_primary_10_1016_j_jpba_2018_08_030
crossref_primary_10_3390_metabo12060510
crossref_primary_10_1016_j_cbpa_2018_10_023
crossref_primary_10_1002_mas_21661
crossref_primary_10_1073_pnas_1917421117
crossref_primary_10_1042_BST20190793
crossref_primary_10_1109_ACCESS_2020_2977680
crossref_primary_10_1002_jms_4633
crossref_primary_10_1021_jasms_0c00232
Cites_doi 10.1002/jms.1709
10.1002/jms.1926
10.1002/pmic.201300046
10.1021/acs.jproteome.5b00076
10.1016/j.ijms.2004.02.020
10.1007/s13361-013-0737-3
10.1021/ac970888i
10.1038/s41598-017-00703-w
10.4155/bio.11.232
10.1007/s13361-014-0967-z
10.1074/mcp.M113.027599
10.1007/s00216-015-8803-2
10.1002/pmic.201500508
10.1111/j.1471-4159.1974.tb10761.x
10.1016/0169-328X(91)90146-O
10.1002/pmic.200800320
10.1007/s13361-015-1147-5
10.1016/j.jprot.2016.11.014
10.1021/acs.analchem.6b04395
10.1021/ac503479a
10.1182/blood.V69.1.1.1
10.2215/CJN.00630208
10.1007/s13361-015-1152-8
10.1021/pr200784p
10.1002/rcm.6580
10.1002/rcm.5107
10.1002/pmic.200800127
10.1021/ac400832w
10.1038/cddis.2014.337
10.1002/jms.1177
10.1167/iovs.15-18117
10.1002/cm.20117
10.1021/ac200998a
10.1021/ac100954p
10.1038/nmeth1094
10.1039/C6AY00782A
10.1021/acs.analchem.7b03512
10.1007/s00204-016-1905-6
10.1021/pr070464x
10.1002/pmic.201600003
10.1021/ac3031493
10.1021/acs.analchem.5b01151
10.1146/annurev-biochem-060614-034124
10.1038/nprot.2016.081
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
7X8
5PM
DOI 10.1002/rcm.8042
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
ProQuest Computer Science Collection
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-0231
EndPage 450
ExternalDocumentID PMC5812809
29226434
10_1002_rcm_8042
RCM8042
Genre article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health Shared Instrumentation Grant Program
  funderid: 1S10OD012359‐01
– fundername: National Institutes of Health/National Institute of General Medical Sciences
  funderid: 5P41 GM103391‐07
– fundername: NIH HHS
  grantid: S10 OD012359
– fundername: NIGMS NIH HHS
  grantid: P41 GM103391
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
7X8
5PM
ID FETCH-LOGICAL-c5042-9dd48b8bc13d3c21e4c64bdcc9e5863f7c3801da8c53bea29e5d36e13765a8c33
IEDL.DBID DRFUL
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425112700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-4198
1097-0231
IngestDate Tue Nov 04 01:58:58 EST 2025
Thu Jul 10 17:48:35 EDT 2025
Fri Jul 25 12:04:34 EDT 2025
Thu Apr 03 07:08:49 EDT 2025
Sat Nov 29 07:04:21 EST 2025
Tue Nov 18 22:36:04 EST 2025
Wed Jan 22 16:44:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2017 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5042-9dd48b8bc13d3c21e4c64bdcc9e5863f7c3801da8c53bea29e5d36e13765a8c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5859-3310
0000-0001-9198-5498
0000-0002-1927-9457
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5812809
PMID 29226434
PQID 2002040993
PQPubID 1016428
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5812809
proquest_miscellaneous_1975593687
proquest_journals_2002040993
pubmed_primary_29226434
crossref_citationtrail_10_1002_rcm_8042
crossref_primary_10_1002_rcm_8042
wiley_primary_10_1002_rcm_8042_RCM8042
PublicationCentury 2000
PublicationDate 15 March 2018
PublicationDateYYYYMMDD 2018-03-15
PublicationDate_xml – month: 03
  year: 2018
  text: 15 March 2018
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle RCM
PublicationTitle Rapid communications in mass spectrometry
PublicationTitleAlternate Rapid Commun Mass Spectrom
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 56
2017; 7
2015; 14
2010; 16
2013; 27
2013; 24
1997; 69
2017; 89
2013; 85
2011; 83
2008; 7
2014; 25
2008; 8
2015; 407
2017; 152
2011; 3
2016; 16
2012; 11
1991; 9
2016; 11
2010; 82
2010; 45
1987; 69
2015; 26
2017; 91
2006; 63
1974; 23
2014; 5
2004; 234
2015; 84
2013; 12
1995; 68
2015; 87
2014; 14
2007; 4
2011; 46
2011; 25
2009; 4
2007; 42
2016; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
El Ayed M (e_1_2_6_8_1) 2010; 16
Mu H (e_1_2_6_40_1) 2006; 63
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Hall AK (e_1_2_6_41_1) 1991; 9
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Bosch A (e_1_2_6_44_1) 1995; 68
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
Bunn HF (e_1_2_6_46_1) 1987; 69
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 5
  year: 2014
  article-title: Release and activity of histone in diseases
  publication-title: Cell Death Dis
– volume: 11
  start-page: 1996
  issue: 3
  year: 2012
  end-page: 2003
  article-title: Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging
  publication-title: J Proteome Res
– volume: 8
  start-page: 3785
  issue: 18
  year: 2008
  end-page: 3800
  article-title: Protein and peptides in pictures: Imaging with MALDI mass spectrometry
  publication-title: Proteomics
– volume: 89
  start-page: 11143
  issue: 20
  year: 2017
  end-page: 11150
  article-title: Integration of ion mobility MSE after fully automated, online, high‐resolution liquid extraction surface analysis micro‐liquid chromatography
  publication-title: Anal Chem
– volume: 16
  start-page: 1678
  issue: 11‐12
  year: 2016
  end-page: 1689
  article-title: Next‐generation technologies for spatial proteomics: Integrating ultra‐high speed MALDI‐TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis
  publication-title: Proteomics
– volume: 8
  start-page: 3373
  issue: 16
  year: 2016
  end-page: 3382
  article-title: Analysis of urine, oral fluid and fingerprints by liquid extraction surface analysis coupled to high resolution MS and MS/MS – opportunities for forensic and biomedical science
  publication-title: Anal Methods
– volume: 9
  start-page: 175
  issue: 1‐2
  year: 1991
  end-page: 177
  article-title: Developmental regulation of thymosin‐beta‐10 messenger‐RNA in the human brain
  publication-title: Mol Brain Res
– volume: 8
  start-page: 3746
  issue: 18
  year: 2008
  end-page: 3754
  article-title: SIMS and MALDI MS imaging of the spinal cord
  publication-title: Proteomics
– volume: 25
  start-page: 2345
  issue: 16
  year: 2011
  end-page: 2354
  article-title: Liquid extraction surface analysis (LESA) of food surfaces employing chip‐based nano‐electrospray mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
– volume: 69
  start-page: 1
  issue: 1
  year: 1987
  end-page: 6
  article-title: Subunit assembly of hemoglobin – an important determinant of hematologic phenotypE
  publication-title: Blood
– volume: 16
  start-page: BR233
  issue: 8
  year: 2010
  end-page: BR245
  article-title: MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers
  publication-title: Med Sci Monitor
– volume: 45
  start-page: 252
  issue: 3
  year: 2010
  end-page: 260
  article-title: Fully automated liquid extraction‐based surface sampling and ionization using a chip‐based robotic nanoelectrospray platform
  publication-title: J Mass Spectrom
– volume: 85
  start-page: 2717
  issue: 5
  year: 2013
  end-page: 2723
  article-title: Localized in situ hydrogel‐mediated protein digestion and extraction technique for on‐tissue analysis
  publication-title: Anal Chem
– volume: 25
  start-page: 1953
  issue: 11
  year: 2014
  end-page: 1961
  article-title: Top‐down and bottom‐up identification of proteins by liquid extraction surface analysis mass spectrometry of healthy and diseased human liver tissue
  publication-title: J Am Soc Mass Spectrom
– volume: 24
  start-page: 1927
  issue: 12
  year: 2013
  end-page: 1936
  article-title: Ambient DESI and LESA‐MS analysis of proteins adsorbed to a biomaterial surface using in‐situ surface tryptic digestion
  publication-title: J Am Soc Mass Spectrom
– volume: 63
  start-page: 222
  issue: 4
  year: 2006
  end-page: 230
  article-title: Thymosin beta 10 inhibits cell migration and capillary‐like tube formation of human coronary artery endothelial cells
  publication-title: Cell Motil Cytoskeleton
– volume: 84
  start-page: 631
  year: 2015
  end-page: 657
  article-title: ATP synthase
  publication-title: Annu Rev Biochem
– volume: 3
  start-page: 2427
  issue: 21
  year: 2011
  end-page: 2441
  article-title: MALDI imaging mass spectrometry: bridging biology and chemistry in drug development
  publication-title: Bioanalysis
– volume: 4
  start-page: 33
  issue: 1
  year: 2009
  end-page: 38
  article-title: Health‐related quality of life and hemoglobin levels in chronic kidney disease patients
  publication-title: Clin J Am Soc Nephrol
– volume: 4
  start-page: 828
  issue: 10
  year: 2007
  end-page: 833
  article-title: MALDI imaging mass spectrometry: molecular snapshots of biochemical systems
  publication-title: Nat Methods
– volume: 26
  start-page: 974
  issue: 6
  year: 2015
  end-page: 985
  article-title: MALDI FTICR IMS of intact proteins: Using mass accuracy to link protein images with proteomics data
  publication-title: J Am Soc Mass Spectrom
– volume: 46
  start-page: 568
  issue: 6
  year: 2011
  end-page: 571
  article-title: High spatial resolution imaging mass spectrometry and classical histology on a single tissue section
  publication-title: J Mass Spectrom
– volume: 152
  start-page: 243
  year: 2017
  end-page: 253
  article-title: Profiling and identification of new proteins involved in brain ischemia using MALDI‐imaging‐mass‐spectrometry
  publication-title: J Proteomics
– volume: 42
  start-page: 254
  issue: 2
  year: 2007
  end-page: 262
  article-title: Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry
  publication-title: J Mass Spectrom
– volume: 68
  start-page: 220
  issue: 3
  year: 1995
  end-page: 225
  article-title: Changes in‐core histone variant composition in differentiating neurons – the roles of differential turnover and synthesis rates
  publication-title: Eur J Cell Biol
– volume: 26
  start-page: 1320
  issue: 8
  year: 2015
  end-page: 1327
  article-title: Native liquid extraction surface analysis mass spectrometry: Analysis of noncovalent protein complexes directly from dried substrates
  publication-title: J Am Soc Mass Spectrom
– volume: 91
  start-page: 2283
  issue: 6
  year: 2017
  end-page: 2294
  article-title: Imaging mass spectrometry in drug development and toxicology
  publication-title: Arch Toxicol
– volume: 23
  start-page: 1081
  issue: 5
  year: 1974
  end-page: 1082
  article-title: ATP synthesis by mitochondria of brain synaptosomes
  publication-title: J Neurochem
– volume: 14
  start-page: 2511
  issue: 6
  year: 2015
  end-page: 2519
  article-title: ESI‐MS/MS and MALDI‐IMS localization reveal alterations in phosphatidic acid, diacylglycerol, and DHA in glioma stem cell xenografts
  publication-title: J Proteome Res
– volume: 56
  start-page: 7398
  issue: 12
  year: 2015
  end-page: 7405
  article-title: MALDI imaging mass spectrometry spatially maps age‐related deamidation and truncation of human lens aquaporin‐0
  publication-title: Invest Ophthalmol Vis Sc
– volume: 69
  start-page: 4751
  issue: 23
  year: 1997
  end-page: 4760
  article-title: Molecular imaging of biological samples: Localization of peptides and proteins using MALDI‐TOF MS
  publication-title: Anal Chem
– volume: 16
  start-page: 1622
  issue: 11‐12
  year: 2016
  end-page: 1632
  article-title: Spatially‐resolved protein surface microsampling from tissue sections using liquid extraction surface analysis
  publication-title: Proteomics
– volume: 82
  start-page: 5917
  issue: 14
  year: 2010
  end-page: 5921
  article-title: Liquid microjunction surface sampling coupled with high‐pressure liquid chromatography‐electrospray ionization‐mass spectrometry for analysis of drugs and metabolites in whole‐body thin tissue sections
  publication-title: Anal Chem
– volume: 407
  start-page: 5989
  issue: 20
  year: 2015
  end-page: 5998
  article-title: Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet‐based liquid‐microjunction surface‐sampling‐HPLC‐ESI‐MS‐MS
  publication-title: Anal Bioanal Chem
– volume: 7
  start-page: 969
  issue: 3
  year: 2008
  end-page: 978
  article-title: MALDI Imaging of formalin‐fixed paraffin‐embedded tissues: Application to model animals of Parkinson disease for biomarker hunting
  publication-title: J Proteome Res
– volume: 85
  start-page: 6767
  issue: 14
  year: 2013
  end-page: 6774
  article-title: Spatially‐directed protein identification from tissue sections by top‐down LC‐MS/MS with electron transfer dissociation
  publication-title: Anal Chem
– volume: 14
  start-page: 820
  issue: 7‐8
  year: 2014
  end-page: 828
  article-title: Imaging mass spectrometry for assessing temporal proteomics: Analysis of calprotectin in pulmonary infection
  publication-title: Proteomics
– volume: 87
  start-page: 670
  issue: 1
  year: 2015
  end-page: 676
  article-title: Histology‐directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue
  publication-title: Anal Chem
– volume: 87
  start-page: 6794
  issue: 13
  year: 2015
  end-page: 6800
  article-title: Liquid extraction surface analysis mass spectrometry coupled with field asymmetric waveform ion mobility spectrometry for analysis of intact proteins from biological substrates
  publication-title: Anal Chem
– volume: 89
  start-page: 2948
  issue: 5
  year: 2017
  end-page: 2955
  article-title: Enhanced spatially resolved proteomics using on‐tissue hydrogel mediated protein digestion
  publication-title: Anal Chem
– volume: 234
  start-page: 175
  issue: 1‐3
  year: 2004
  end-page: 184
  article-title: Strategies for automating top‐down protein analysis with Q‐FTICR MS
  publication-title: Int J Mass Spectrom
– volume: 12
  start-page: 2901
  issue: 10
  year: 2013
  end-page: 2910
  article-title: Comprehensive identification of proteins from MALDI imaging
  publication-title: Mol Cell Proteomics
– volume: 27
  start-page: 1329
  issue: 12
  year: 2013
  end-page: 1334
  article-title: Continuous‐flow liquid microjunction surface sampling probe connected on‐line with high‐performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins
  publication-title: Rapid Commun Mass Spectrom
– volume: 7
  start-page: 603
  year: 2017
  article-title: Ultra‐high mass resolution MALDI imaging mass spectrometry of proteins and metabolites in a mouse model of glioblastoma
  publication-title: Sci Rep
– volume: 11
  start-page: 1428
  issue: 8
  year: 2016
  end-page: 1443
  article-title: High‐mass‐resolution MALDI mass spectrometry imaging of metabolites from formalin‐fixed paraffin‐embedded tissue
  publication-title: Nat Protocols
– volume: 83
  start-page: 5728
  issue: 14
  year: 2011
  end-page: 5734
  article-title: Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution
  publication-title: Anal Chem
– ident: e_1_2_6_27_1
  doi: 10.1002/jms.1709
– volume: 68
  start-page: 220
  issue: 3
  year: 1995
  ident: e_1_2_6_44_1
  article-title: Changes in‐core histone variant composition in differentiating neurons – the roles of differential turnover and synthesis rates
  publication-title: Eur J Cell Biol
– ident: e_1_2_6_38_1
  doi: 10.1002/jms.1926
– ident: e_1_2_6_3_1
  doi: 10.1002/pmic.201300046
– ident: e_1_2_6_16_1
  doi: 10.1021/acs.jproteome.5b00076
– ident: e_1_2_6_24_1
  doi: 10.1016/j.ijms.2004.02.020
– ident: e_1_2_6_29_1
  doi: 10.1007/s13361-013-0737-3
– ident: e_1_2_6_2_1
  doi: 10.1021/ac970888i
– ident: e_1_2_6_14_1
  doi: 10.1038/s41598-017-00703-w
– ident: e_1_2_6_5_1
  doi: 10.4155/bio.11.232
– ident: e_1_2_6_28_1
  doi: 10.1007/s13361-014-0967-z
– ident: e_1_2_6_15_1
  doi: 10.1074/mcp.M113.027599
– ident: e_1_2_6_32_1
  doi: 10.1007/s00216-015-8803-2
– ident: e_1_2_6_34_1
  doi: 10.1002/pmic.201500508
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1471-4159.1974.tb10761.x
– volume: 9
  start-page: 175
  issue: 1
  year: 1991
  ident: e_1_2_6_41_1
  article-title: Developmental regulation of thymosin‐beta‐10 messenger‐RNA in the human brain
  publication-title: Mol Brain Res
  doi: 10.1016/0169-328X(91)90146-O
– ident: e_1_2_6_10_1
  doi: 10.1002/pmic.200800320
– ident: e_1_2_6_11_1
  doi: 10.1007/s13361-015-1147-5
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jprot.2016.11.014
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.analchem.6b04395
– ident: e_1_2_6_22_1
  doi: 10.1021/ac503479a
– volume: 69
  start-page: 1
  issue: 1
  year: 1987
  ident: e_1_2_6_46_1
  article-title: Subunit assembly of hemoglobin – an important determinant of hematologic phenotypE
  publication-title: Blood
  doi: 10.1182/blood.V69.1.1.1
– ident: e_1_2_6_47_1
  doi: 10.2215/CJN.00630208
– ident: e_1_2_6_33_1
  doi: 10.1007/s13361-015-1152-8
– ident: e_1_2_6_4_1
  doi: 10.1021/pr200784p
– ident: e_1_2_6_31_1
  doi: 10.1002/rcm.6580
– ident: e_1_2_6_35_1
  doi: 10.1002/rcm.5107
– ident: e_1_2_6_19_1
  doi: 10.1002/pmic.200800127
– ident: e_1_2_6_26_1
  doi: 10.1021/ac400832w
– ident: e_1_2_6_45_1
  doi: 10.1038/cddis.2014.337
– ident: e_1_2_6_20_1
  doi: 10.1002/jms.1177
– ident: e_1_2_6_17_1
  doi: 10.1167/iovs.15-18117
– volume: 63
  start-page: 222
  issue: 4
  year: 2006
  ident: e_1_2_6_40_1
  article-title: Thymosin beta 10 inhibits cell migration and capillary‐like tube formation of human coronary artery endothelial cells
  publication-title: Cell Motil Cytoskeleton
  doi: 10.1002/cm.20117
– volume: 16
  start-page: BR233
  issue: 8
  year: 2010
  ident: e_1_2_6_8_1
  article-title: MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers
  publication-title: Med Sci Monitor
– ident: e_1_2_6_39_1
  doi: 10.1021/ac200998a
– ident: e_1_2_6_25_1
  doi: 10.1021/ac100954p
– ident: e_1_2_6_9_1
  doi: 10.1038/nmeth1094
– ident: e_1_2_6_36_1
  doi: 10.1039/C6AY00782A
– ident: e_1_2_6_37_1
  doi: 10.1021/acs.analchem.7b03512
– ident: e_1_2_6_6_1
  doi: 10.1007/s00204-016-1905-6
– ident: e_1_2_6_7_1
  doi: 10.1021/pr070464x
– ident: e_1_2_6_12_1
  doi: 10.1002/pmic.201600003
– ident: e_1_2_6_23_1
  doi: 10.1021/ac3031493
– ident: e_1_2_6_30_1
  doi: 10.1021/acs.analchem.5b01151
– ident: e_1_2_6_42_1
  doi: 10.1146/annurev-biochem-060614-034124
– ident: e_1_2_6_13_1
  doi: 10.1038/nprot.2016.081
SSID ssj0011520
Score 2.3809993
Snippet Rationale Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS)...
Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow....
Rationale Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 442
SubjectTerms Brain
Coupling (molecular)
Cyclotron resonance
Desorption
Fourier transforms
Identification methods
Image acquisition
Ionization
Ions
Liquid chromatography
Mass spectrometry
Peptides
Proteins
Proteomics
Robotics
Scientific imaging
Spatial data
Spatial resolution
Spectroscopy
Surface analysis (chemical)
Workflow
Title Protein identification in imaging mass spectrometry through spatially targeted liquid micro‐extractions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcm.8042
https://www.ncbi.nlm.nih.gov/pubmed/29226434
https://www.proquest.com/docview/2002040993
https://www.proquest.com/docview/1975593687
https://pubmed.ncbi.nlm.nih.gov/PMC5812809
Volume 32
WOSCitedRecordID wos000425112700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0231
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011520
  issn: 0951-4198
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLRJcyhtSSmUkBKfQxI_YPlYLKw5QVRWV9hY5tleNtJvCpsuZn8Bv5Jd07DxgVZCQOCWaTB6yZzyTZOb7AF5Rp3wm_CKtQu8Hl1qkRhuTLiouKyazwmUukk3IkxM1n-vTvqoy9MJ0-BDjB7fgGXG9Dg5uqvboF2jo2q7eKrzBDuxSNFsxgd13Z7Pzj-M_BIxM2UAkz_HdeoCezejRcO52MLqRYd4slPw9gY0RaHbvf579Puz1eSc57gzlAdzyzUO4Mx3o3h5BfRoQG-qG1K4vIIpzRoJkFamMyAoTbRJbMwPGAZ5FepYfFKKyWS5REivLvSPL-uumdmQVCv5-fv-BMWDd9VC0j-F89v7z9EPa8zCkVoQZ1M5xVanK5swxS3PPbcErZ632QhVsIS3DOOeMsoJV3lAUO1b4HNcugULGnsCkuWz8MyB5IXJlM-4y77hG98c9fGERynLDDHUJvBkmpLQ9SHngyliWHbwyLXHoyjB0CbwcNb90wBx_0DkY5rTsXbMNvJsUVy7My_AS42Ec7PCnxDT-ctOWuZYiUB0qmcDTzgTGm1Adeo8ZT0BuGceoEAC7t4809UUE7haYTalMJ_A6Gsdfn7s8m34K2_1_VXwOdzGRi72SuTiAydV641_Abfvtqm7Xh7Aj5-qwd49rwbAXoQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFqlceD8CBYyE4JQ2ie3EFie0sCpiu6qqVuotcmyviLSbwm6XMz-B38gvYcZ5wKogIXFKNJnEkT32jJOZ7wN4mTnlE-lncUW1H6LQMjbamHhWiaLiRZK7xAWyiWI6Vefn-ngL3vS1MC0-xPDBjWZGWK9pgtMH6YNfqKFLu9hX2MI12BFoRWjeO-9OxmeT4ScCuqakZ5IXuLnusWeT7KC_d9MbXQkxr2ZK_h7BBhc0vvVfL38bbnaRJ3vbmsod2PLNXdgd9YRv96A-JsyGumG161KIwqgxkiwCmRFbYKjNQnEmoRzgXazj-UEhKpv5HCUht9w7Nq-_rGvHFpTy9-Pbd_QCy7aKYnUfzsbvT0eHccfEEFtJY6idE6pSlU254zZLvbC5qJy12kuV81lhOXo6Z5SVvPImQ7HjuU9x9ZIo5PwBbDcXjX8ELM1lqmwiXOKd0LgA4BluWaSywnCTuQhe9yNS2g6mnNgy5mULsJyV2HUldV0ELwbNzy00xx909vpBLbvJuSLmzQzXLozM8BHDZexs-ldiGn-xXpWpLiSRHaoigoetDQyNZJqqj7mIoNiwjkGBILs3rzT1pwDdLTGeUomO4FWwjr--d3kyOqLj439VfA67h6dHk3LyYfrxCdzAsC5UTqZyD7Yvl2v_FK7br5f1avmsmyU_AcrHGqk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLQIuvB-BAkZCcApNYjuxxQltWYEoq1VFpd4ix_aKSLtp2e1y5ifwG_klzDgPWBUkJE6JxuPY8mvGsef7AJ5nTvlE-nlcUeyHKLSMjTYmnleiqHiR5C5xgWyimE7VyYme7cDrPhamxYcYfrjRzAjrNU1wf-bm-79QQ1d2-UphCZdgVxCHzAh2D44mx4fDIQKapqRnkhe4ue6xZ5Nsv8-7bY0uuJgXb0r-7sEGEzS58V-VvwnXO8-TvWmHyi3Y8c1tuDruCd_uQD0jzIa6YbXrrhCFXmMkWQYyI7ZEV5uF4ExCOcBcrOP5QSEqm8UCJeFuuXdsUX_Z1I4t6crfj2_f0Qqs2iiK9V04nrz9NH4Xd0wMsZXUh9o5oSpV2ZQ7brPUC5uLylmrvVQ5nxeWo6VzRlnJK28yFDue-xRXL4lCzu_BqDlt_ANgaS5TZRPhEu-ExgUA33DLIpUVhpvMRfCy75HSdjDlxJaxKFuA5azEpiup6SJ4NmietdAcf9DZ6zu17Cbnmpg3M1y70DPDTwzJ2Nh0VmIaf7pZl6kuJJEdqiKC--0YGArJNEUfcxFBsTU6BgWC7N5OaerPAbpboj-lEh3BizA6_lrv8mj8kZ4P_1XxKVyZHUzKw_fTD4_gGnp1IXAylXswOl9t_GO4bL-e1-vVk26S_AQy3Bok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+identification+in+imaging+mass+spectrometry+through+spatially+targeted+liquid+micro-extractions&rft.jtitle=Rapid+communications+in+mass+spectrometry&rft.au=Ryan%2C+Daniel+J&rft.au=Nei%2C+David&rft.au=Prentice%2C+Boone+M&rft.au=Rose%2C+Kristie+L&rft.date=2018-03-15&rft.eissn=1097-0231&rft.volume=32&rft.issue=5&rft.spage=442&rft_id=info:doi/10.1002%2Frcm.8042&rft_id=info%3Apmid%2F29226434&rft.externalDocID=29226434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-4198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-4198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-4198&client=summon