Evolution of the SARS‐CoV‐2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission
The first dominant SARS‐CoV‐2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS‐CoV‐2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is o...
Saved in:
| Published in: | Reviews in medical virology Vol. 32; no. 5; pp. e2381 - n/a |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Wiley Periodicals Inc
01.09.2022
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 1052-9276, 1099-1654, 1099-1654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The first dominant SARS‐CoV‐2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS‐CoV‐2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co‐circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan‐Hu‐1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8–127 times reduction) as compared to the Wuhan‐Hu‐1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12–35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS‐CoV‐2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS‐CoV‐2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood. |
|---|---|
| AbstractList | The first dominant SARS‐CoV‐2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS‐CoV‐2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co‐circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan‐Hu‐1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8–127 times reduction) as compared to the Wuhan‐Hu‐1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12–35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS‐CoV‐2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS‐CoV‐2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood. The first dominant SARS-CoV-2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS-CoV-2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co-circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan-Hu-1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8-127 times reduction) as compared to the Wuhan-Hu-1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12-35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS-CoV-2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS-CoV-2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood.The first dominant SARS-CoV-2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS-CoV-2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co-circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan-Hu-1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8-127 times reduction) as compared to the Wuhan-Hu-1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12-35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS-CoV-2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS-CoV-2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood. |
| Author | Foster, Charles Bull, Rowena A. Tedla, Nicodemus Shrestha, Lok Bahadur Rawlinson, William |
| AuthorAffiliation | 1 School of Medical Sciences Faculty of Medicine UNSW Sydney New South Wales Australia 3 Serology and Virology Division Department of Microbiology New South Wales Health Pathology Sydney New South Wales Australia 2 The Kirby Institute UNSW Sydney New South Wales Australia |
| AuthorAffiliation_xml | – name: 2 The Kirby Institute UNSW Sydney New South Wales Australia – name: 1 School of Medical Sciences Faculty of Medicine UNSW Sydney New South Wales Australia – name: 3 Serology and Virology Division Department of Microbiology New South Wales Health Pathology Sydney New South Wales Australia |
| Author_xml | – sequence: 1 givenname: Lok Bahadur orcidid: 0000-0002-0054-0715 surname: Shrestha fullname: Shrestha, Lok Bahadur organization: UNSW – sequence: 2 givenname: Charles surname: Foster fullname: Foster, Charles organization: New South Wales Health Pathology – sequence: 3 givenname: William orcidid: 0000-0003-0988-7827 surname: Rawlinson fullname: Rawlinson, William organization: New South Wales Health Pathology – sequence: 4 givenname: Nicodemus surname: Tedla fullname: Tedla, Nicodemus organization: UNSW – sequence: 5 givenname: Rowena A. orcidid: 0000-0002-9844-3744 surname: Bull fullname: Bull, Rowena A. email: r.bull@unsw.edu.au organization: UNSW |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35856385$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kd1qFTEUhYNU7I-CTyABb7yZY5JJJhMvhOOh1UJFaLW3IZPZY1NmktNk5kjvfIQ-o09ipqetPyiB7MD-slh7r32044MHhJ5TsqCEsNdx2CxYWdNHaI8SpQpaCb4zvwUrFJPVLtpP6ZIQmg9_gnZLUYuqrMUe8oeb0E-jCx6HDo8XgM-Wp2c_vt-swnm-GQ6DszF3NyY648eE3y0XFI9hruINPh7WvbNmFki4CxG7YZg8YEjWrAEb3-IxGp8Gl1JmnqLHnekTPLurB-jL0eHn1Yfi5NP749XypLCCcFrUqqIERCNaqRhnbWMFtFy2RjV1Cbapai6YKEvT2JYI2SihLO3yoKAUlZ0qD9Dbre56agZoLfjsotfr6AYTr3UwTv_Z8e5Cfw0brUqupJRZ4NWdQAxXE6RR5wks9L3xEKakWaUYkZVgPKMv_0IvwxR9Hk8zSakUXJI6Uy9-d_Rg5T6KDCy2QF53ShE6bd14u9hs0PWaEj1nrXPWes76l8WHD_ea_0CLLfrN9XD9X06ffjy_5X8CoLa5Bw |
| CitedBy_id | crossref_primary_10_1002_mco2_460 crossref_primary_10_1111_eci_14004 crossref_primary_10_1186_s43556_023_00134_2 crossref_primary_10_1016_j_automatica_2025_112479 crossref_primary_10_3389_fcimb_2023_1178590 crossref_primary_10_1016_j_watres_2024_122465 crossref_primary_10_3389_fimmu_2025_1452814 crossref_primary_10_1002_wer_10999 crossref_primary_10_1016_j_cmi_2023_01_001 crossref_primary_10_1016_j_jcis_2023_06_121 crossref_primary_10_1089_vim_2023_0050 crossref_primary_10_3389_fimmu_2024_1407149 crossref_primary_10_1038_s41598_025_92254_8 crossref_primary_10_1128_spectrum_00055_23 crossref_primary_10_1038_s41467_023_43330_y crossref_primary_10_1016_j_bcp_2023_115617 crossref_primary_10_1016_j_ejps_2023_106564 crossref_primary_10_2147_JIR_S503263 crossref_primary_10_3390_vaccines11101564 crossref_primary_10_1093_pnasnexus_pgae183 crossref_primary_10_1016_j_clim_2025_110492 crossref_primary_10_1016_j_heliyon_2024_e34691 crossref_primary_10_1038_s41392_022_01295_2 crossref_primary_10_3389_fmolb_2025_1536953 crossref_primary_10_3389_fpubh_2023_1321283 crossref_primary_10_1016_j_jksus_2023_103081 crossref_primary_10_1016_j_vaccine_2023_01_067 crossref_primary_10_1038_s41467_023_40554_w crossref_primary_10_1371_journal_ppat_1011659 crossref_primary_10_3390_vaccines10101699 crossref_primary_10_3390_vaccines10101698 crossref_primary_10_1002_adbi_202300612 crossref_primary_10_15585_mmwr_mm7203a5 crossref_primary_10_3390_v17020197 crossref_primary_10_1016_j_vaccine_2022_10_053 crossref_primary_10_1016_j_bbrep_2025_101922 crossref_primary_10_3390_vaccines12080883 crossref_primary_10_1128_jvi_01684_22 crossref_primary_10_1177_11769343241272415 crossref_primary_10_3390_diagnostics13091573 crossref_primary_10_1080_0167482X_2024_2305899 crossref_primary_10_1002_jmv_28519 crossref_primary_10_1002_jmv_70130 crossref_primary_10_3390_vaccines12111236 crossref_primary_10_3390_biom15040541 crossref_primary_10_3390_pathogens12081017 crossref_primary_10_1016_j_mayocpiqo_2025_100642 crossref_primary_10_3389_fmicb_2023_1320856 crossref_primary_10_3389_fphar_2025_1570206 crossref_primary_10_1016_j_anl_2022_12_002 crossref_primary_10_1038_s41467_023_41049_4 crossref_primary_10_1186_s13045_023_01443_3 crossref_primary_10_3390_vaccines11020318 crossref_primary_10_3390_v16020184 crossref_primary_10_1097_MD_0000000000036965 crossref_primary_10_1016_S1875_5364_24_60577_7 crossref_primary_10_3390_vaccines11071146 crossref_primary_10_1016_j_antiviral_2024_105905 crossref_primary_10_3389_fcimb_2024_1397297 crossref_primary_10_1080_22221751_2024_2320913 crossref_primary_10_1002_jmv_28406 crossref_primary_10_1016_j_msard_2022_104425 crossref_primary_10_1016_j_buildenv_2023_110117 crossref_primary_10_1016_j_ijregi_2023_04_014 crossref_primary_10_3390_v15020352 crossref_primary_10_1002_hsr2_1127 crossref_primary_10_1093_jtm_taac108 crossref_primary_10_1128_spectrum_04194_22 crossref_primary_10_3390_vaccines11020314 crossref_primary_10_1007_s10875_023_01486_8 crossref_primary_10_1016_j_nexres_2025_100223 crossref_primary_10_3389_fmicb_2023_1183633 crossref_primary_10_3389_fmed_2022_1082846 crossref_primary_10_3390_v15040865 crossref_primary_10_1016_j_virol_2025_110584 crossref_primary_10_1128_spectrum_01099_23 crossref_primary_10_1186_s12879_025_10585_3 crossref_primary_10_1016_j_hlpt_2024_100849 crossref_primary_10_3390_genes14020407 crossref_primary_10_1016_j_vaccine_2022_10_049 crossref_primary_10_1186_s12879_024_09089_3 crossref_primary_10_2174_0113816128334441241108050528 crossref_primary_10_1186_s12873_025_01279_9 crossref_primary_10_3390_pathogens14030274 crossref_primary_10_1093_ve_veae034 crossref_primary_10_3389_fimmu_2024_1383612 crossref_primary_10_1080_22221751_2023_2220577 crossref_primary_10_1186_s44342_024_00006_3 crossref_primary_10_1007_s12020_024_03891_4 crossref_primary_10_1038_s41467_023_40272_3 crossref_primary_10_3390_diagnostics13030559 crossref_primary_10_1016_j_heliyon_2024_e30208 crossref_primary_10_1128_aem_00774_25 crossref_primary_10_1016_j_ijid_2024_01_017 crossref_primary_10_1038_s41598_025_03798_8 crossref_primary_10_1093_cid_ciad618 crossref_primary_10_3390_vaccines12070742 crossref_primary_10_1002_btm2_10709 crossref_primary_10_3390_vaccines12050451 crossref_primary_10_1016_j_ebiom_2024_105461 crossref_primary_10_1080_07391102_2022_2162131 crossref_primary_10_3390_v14112387 crossref_primary_10_1002_anie_202415226 crossref_primary_10_1016_j_ijid_2023_11_039 crossref_primary_10_1007_s11033_024_10048_z crossref_primary_10_1016_S1473_3099_23_00373_0 crossref_primary_10_3390_vaccines11010053 crossref_primary_10_1016_j_pbiomolbio_2023_02_004 crossref_primary_10_1186_s12879_024_09408_8 crossref_primary_10_1016_j_heliyon_2024_e34492 crossref_primary_10_56305_001c_73426 crossref_primary_10_3390_v16101556 crossref_primary_10_3390_ijms25126338 crossref_primary_10_3390_biom15060764 crossref_primary_10_1016_j_antiviral_2023_105669 crossref_primary_10_1089_tmj_2022_0502 crossref_primary_10_3390_molecules30092061 crossref_primary_10_1016_j_antiviral_2023_105541 crossref_primary_10_1016_j_coviro_2023_101375 crossref_primary_10_1016_j_intimp_2023_110824 crossref_primary_10_3390_jcm13133809 crossref_primary_10_3390_vaccines12050464 crossref_primary_10_61186_iem_11_2_123 crossref_primary_10_3390_vaccines11010160 crossref_primary_10_1093_lambio_ovae074 crossref_primary_10_3390_vaccines10111926 crossref_primary_10_3390_medicina59020261 crossref_primary_10_2147_IDR_S421938 crossref_primary_10_1002_slct_202201380 crossref_primary_10_3390_v15081699 crossref_primary_10_1007_s12247_023_09713_w crossref_primary_10_1016_j_jlr_2025_100860 crossref_primary_10_1038_s42003_023_04923_x crossref_primary_10_1080_14760584_2023_2211153 crossref_primary_10_3390_microorganisms10101952 crossref_primary_10_1016_j_jtct_2023_09_027 crossref_primary_10_1016_j_virs_2023_07_005 crossref_primary_10_1177_11779322241266354 crossref_primary_10_1371_journal_ppat_1010870 crossref_primary_10_1371_journal_ppat_1013469 crossref_primary_10_3390_v14122728 crossref_primary_10_1080_14760584_2025_2550984 crossref_primary_10_1016_j_jiph_2023_11_029 crossref_primary_10_3390_vaccines10122111 crossref_primary_10_2196_51498 crossref_primary_10_3389_fimmu_2023_1219546 crossref_primary_10_3390_v14112364 crossref_primary_10_3390_v15091933 crossref_primary_10_1080_22221751_2024_2437246 crossref_primary_10_3389_fmolb_2023_1153046 crossref_primary_10_3390_v15091937 crossref_primary_10_3389_fcimb_2023_1142578 crossref_primary_10_1002_jmv_28577 crossref_primary_10_1002_ange_202415226 crossref_primary_10_3390_v15122394 crossref_primary_10_1111_irv_13135 crossref_primary_10_1016_j_onehlt_2025_101145 crossref_primary_10_3390_ijms232214157 crossref_primary_10_3390_genes14061218 crossref_primary_10_7717_peerj_17134 crossref_primary_10_1002_mef2_20 crossref_primary_10_1186_s12889_024_18980_2 crossref_primary_10_3389_fpubh_2025_1526727 crossref_primary_10_1016_j_actatropica_2024_107444 crossref_primary_10_1080_1120009X_2023_2289269 crossref_primary_10_1016_j_antiviral_2024_105871 crossref_primary_10_1186_s12929_023_00936_0 crossref_primary_10_1002_jmv_29314 crossref_primary_10_3390_vaccines13080789 crossref_primary_10_3389_fimmu_2023_1126392 crossref_primary_10_1016_j_celrep_2024_114567 crossref_primary_10_1002_jmv_29790 crossref_primary_10_1007_s44411_025_00284_5 crossref_primary_10_1038_s41467_024_50286_0 crossref_primary_10_1038_s43856_024_00457_3 crossref_primary_10_3390_biologics3020008 crossref_primary_10_3390_vaccines11061040 crossref_primary_10_1002_mef2_39 crossref_primary_10_3389_fimmu_2022_1041185 crossref_primary_10_1016_j_placenta_2023_08_063 crossref_primary_10_1186_s12964_023_01104_5 crossref_primary_10_1007_s11684_022_0981_7 crossref_primary_10_3390_microorganisms11092336 crossref_primary_10_3390_ijms242216069 crossref_primary_10_1002_jmv_28900 crossref_primary_10_3389_fimmu_2023_1291534 crossref_primary_10_52711_0974_360X_2025_00251 crossref_primary_10_1093_infdis_jiae546 crossref_primary_10_3390_vaccines12020163 crossref_primary_10_3390_v14092016 crossref_primary_10_3390_vaccines13070761 crossref_primary_10_1016_j_compbiomed_2023_107576 crossref_primary_10_3390_pathogens13121051 crossref_primary_10_1016_j_vaccine_2023_02_017 crossref_primary_10_1016_j_celrep_2023_112888 crossref_primary_10_1007_s00203_023_03493_0 crossref_primary_10_3389_fimmu_2024_1439242 crossref_primary_10_3389_fmicb_2024_1334152 crossref_primary_10_1038_s41467_024_47784_6 crossref_primary_10_1016_j_chom_2022_11_016 crossref_primary_10_1002_jmv_29456 crossref_primary_10_1111_phn_13275 crossref_primary_10_1128_jvi_01366_22 crossref_primary_10_3389_fimmu_2023_1165769 crossref_primary_10_3390_v15091901 crossref_primary_10_1016_j_jhin_2022_11_016 crossref_primary_10_1128_jvi_01070_23 crossref_primary_10_1186_s12985_022_01944_6 crossref_primary_10_3390_vaccines11030570 crossref_primary_10_1016_j_antiviral_2023_105571 crossref_primary_10_1016_j_jhazmat_2022_130686 crossref_primary_10_1016_j_ebiom_2022_104390 crossref_primary_10_3390_v14091855 crossref_primary_10_3389_fpubh_2022_957277 crossref_primary_10_1371_journal_ppat_1011804 crossref_primary_10_2147_PLMI_S373617 crossref_primary_10_1186_s12985_024_02365_3 crossref_primary_10_3390_jcm11216272 crossref_primary_10_1016_j_idairyj_2023_105805 crossref_primary_10_1016_j_reprotox_2025_108878 crossref_primary_10_3390_vaccines11101624 crossref_primary_10_2147_IJN_S473448 crossref_primary_10_1007_s00431_024_05495_6 crossref_primary_10_3390_medicina58101393 crossref_primary_10_3389_fpubh_2022_1029171 crossref_primary_10_1016_j_virol_2025_110509 crossref_primary_10_3390_v15081661 crossref_primary_10_1016_j_heliyon_2024_e26423 crossref_primary_10_1080_22221751_2023_2270071 crossref_primary_10_1155_2023_6618710 crossref_primary_10_1016_j_apsb_2024_12_030 crossref_primary_10_1016_j_virol_2025_110508 crossref_primary_10_3390_v15030793 crossref_primary_10_1002_rmv_2439 crossref_primary_10_1038_s44298_024_00018_4 crossref_primary_10_1007_s15010_023_02034_7 crossref_primary_10_3389_fimmu_2022_1034444 crossref_primary_10_1097_CCE_0000000000001122 crossref_primary_10_1038_s42003_023_05263_6 crossref_primary_10_1126_sciimmunol_adg7015 crossref_primary_10_1016_j_yexcr_2025_114499 crossref_primary_10_1111_fcp_12889 crossref_primary_10_1128_jvi_00192_23 crossref_primary_10_1016_j_virusres_2025_199626 crossref_primary_10_3389_fimmu_2022_1035151 crossref_primary_10_1111_cpr_70060 crossref_primary_10_3390_vaccines11040713 crossref_primary_10_1002_jmv_70476 crossref_primary_10_1038_s41467_025_59145_y crossref_primary_10_3390_microorganisms11020534 crossref_primary_10_1017_ice_2022_258 crossref_primary_10_1038_s41551_025_01353_4 crossref_primary_10_1016_j_clim_2025_110507 crossref_primary_10_1088_1751_8121_acd233 crossref_primary_10_1136_bmjopen_2023_073091 crossref_primary_10_1002_jmv_29479 crossref_primary_10_3390_v17070918 crossref_primary_10_1007_s13337_024_00878_7 crossref_primary_10_3390_v14122696 crossref_primary_10_3390_vaccines13030262 crossref_primary_10_3389_fped_2023_1020865 crossref_primary_10_3389_fmicb_2025_1650239 crossref_primary_10_1038_s41392_023_01443_2 crossref_primary_10_1016_j_jaerosci_2025_106587 crossref_primary_10_1017_S0950268823001619 crossref_primary_10_1016_j_scitotenv_2023_168619 crossref_primary_10_1002_jmv_28397 crossref_primary_10_3390_v16010132 crossref_primary_10_1038_s41598_024_63945_5 crossref_primary_10_1002_jmv_29128 crossref_primary_10_3390_vaccines12050505 crossref_primary_10_1016_j_bcp_2022_115401 crossref_primary_10_1038_s41598_024_62874_7 crossref_primary_10_26565_2075_3810_2024_51_04 crossref_primary_10_3390_jcm13144099 crossref_primary_10_1016_j_virusres_2023_199169 crossref_primary_10_1093_cid_ciad209 crossref_primary_10_3389_fimmu_2023_1211558 crossref_primary_10_1093_procel_pwae007 crossref_primary_10_1002_pro_70306 crossref_primary_10_1016_j_heliyon_2024_e36243 crossref_primary_10_1007_s10238_023_01168_0 crossref_primary_10_3390_biomedicines13092128 crossref_primary_10_1016_j_heliyon_2023_e18093 crossref_primary_10_1080_23744235_2024_2382263 crossref_primary_10_3390_v15010133 crossref_primary_10_3390_healthcare11222950 crossref_primary_10_1016_j_chom_2023_11_012 crossref_primary_10_1080_24694452_2024_2346728 crossref_primary_10_1371_journal_pone_0295541 crossref_primary_10_2196_66237 crossref_primary_10_1002_mco2_642 crossref_primary_10_3390_ph17091240 crossref_primary_10_1038_s41598_024_75038_4 crossref_primary_10_3390_jcm11247332 crossref_primary_10_1186_s12879_023_08527_y crossref_primary_10_2147_JMDH_S419859 crossref_primary_10_3390_vaccines13030244 crossref_primary_10_1007_s44211_023_00396_4 crossref_primary_10_1038_s44298_024_00061_1 crossref_primary_10_1080_1120009X_2023_2250138 crossref_primary_10_3390_clinpract14030055 crossref_primary_10_1002_pca_3204 crossref_primary_10_3390_v15112192 crossref_primary_10_1093_infdis_jiac385 crossref_primary_10_5582_bst_2022_01530 crossref_primary_10_1021_acscentsci_2c01349 crossref_primary_10_1002_jmv_28172 crossref_primary_10_1016_j_virol_2024_110241 crossref_primary_10_3390_bios15030198 crossref_primary_10_3390_vaccines13060549 crossref_primary_10_1016_j_virusres_2024_199365 crossref_primary_10_3390_v14102178 crossref_primary_10_3389_fimmu_2024_1268213 crossref_primary_10_1002_jmv_29263 crossref_primary_10_1016_j_jddst_2023_104567 |
| Cites_doi | 10.1056/nejmc2031364 10.1056/nejmc2119407 10.1016/s1473‐3099(22)00365‐6 10.1056/nejmoa2119658 10.1101/2021.12.27.21268278 10.1038/s41467‐022‐28246‐3 10.1038/s41591‐022‐01700‐x 10.1016/j.jobb.2021.12.001 10.1016/j.celrep.2022.110345 10.1016/j.jgg.2021.12.003 10.1016/S1473-3099(22)00224-9 10.1128/jvi.00090‐22 10.1073/pnas.2109905118 10.1101/2021.12.17.21267961 10.1101/2021.12.12.21267646 10.1016/j.cell.2020.09.038 10.1038/s41586-022-04411-y 10.1016/s0140‐6736(21)02758‐6 10.1016/j.cell.2022.06.005 10.1056/nejmoa2114583 10.1038/s41577‐020‐00480‐0 10.1016/s0140‐6736(21)02844‐0 10.1101/2021.12.12.472315 10.1126/science.abm0811 10.1016/j.meegid.2021.104869 10.1016/j.cell.2021.12.046 10.1101/2022.02.07.479306 10.1371/journal.pcbi.1009474 10.1056/nejmc2201849 10.1136/bmj.o922 10.1101/2022.03.19.484981 10.1016/j.cub.2021.06.049 10.1101/2021.12.14.21267772 10.1038/s41586‐021‐04389‐z 10.21203/rs.3.rs-1601788/v1 10.1016/j.idc.2019.08.001 10.21203/rs.3.rs-1168453/v1 10.1038/d41586-022-01069-4 10.1016/s0140‐6736(22)00327‐0 10.1101/2022.01.31.478406 10.1038/s41392‐020‐0184‐0 10.1101/2021.12.26.474085 10.3389/fimmu.2021.752003 10.1101/2022.02.15.480166 10.1002/jmv.27588 10.1101/2021.12.07.21267432 10.1038/s41586‐020‐2349‐y 10.1038/s41423‐022‐00837‐6 10.1016/s0262‐4079(22)00030‐6 10.1038/s41392‐022‐00874‐7 10.1056/nejmc2119358 10.1016/S0140-6736(22)00017-4 10.1056/NEJMc2119912 10.1056/nejmc2206725 10.1016/j.xcrm.2022.100529 10.3389/fimmu.2021.687449 10.1101/2021.12.13.21267748 10.1021/acs.jcim.1c01451 10.1126/science.abn7591 10.1101/2022.01.12.22269148 10.1016/j.meegid.2014.12.022 10.1056/nejmoa2201570 10.1016/j.cell.2021.08.014 10.1101/2021.11.11.21266068 10.1038/s41564‐021‐00954‐4 10.1093/infdis/jiab622 10.1016/j.cell.2020.05.015 10.1101/2022.03.03.22271812 10.1038/s41598‐021‐94463‐3 10.1016/j.cell.2021.01.007 10.1080/19420862.2021.1922134 10.1101/2021.12.22.21268273 10.1101/2022.02.22.21268475 10.1136/bmjopen‐2020‐044618 10.1016/j.cell.2020.06.025 10.3389/fmed.2020.607786 10.1038/d41586‐022‐00149‐9 10.1016/j.immuni.2021.10.019 10.1101/2021.12.08.21267417 10.1101/2022.04.29.22274477 10.1126/science.acx9738 10.1016/j.cell.2021.06.020 10.1126/science.abc6952 10.1101/2022.03.13.484129 10.1101/2021.12.06.471446 10.1038/s41591‐022‐01792‐5 10.1038/s41591‐021‐01678‐y 10.1038/s41591‐022‐01887‐z 10.1001/jama.2022.2274 10.1126/science.abn8652 10.1016/j.tmaid.2021.102234 10.1126/sciimmunol.abj1750 10.1001/jama.2022.0470 10.3389/fmicb.2022.826883 10.1001/jama.2021.22898 10.3390/ijms23041987 10.1016/j.cell.2021.12.033 10.1056/nejmc2202542 10.1371/journal.ppat.1009849 10.1038/s41586‐022‐04980‐y 10.1056/nejmc2200133 10.1038/d41586‐021‐03825‐4 10.1093/bioinformatics/bty407 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
| DOI | 10.1002/rmv.2381 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Public Health |
| EISSN | 1099-1654 |
| EndPage | n/a |
| ExternalDocumentID | PMC9349777 35856385 10_1002_rmv_2381 RMV2381 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: National Health and Medical Research Council – fundername: ; |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 29P 31~ 33P 3SF 3V. 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMXJE BPHCQ BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F D1J DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD ELTNK EMOBN F00 F01 F04 F5P FEDTE FUBAC FYUFA G-S G.N GNP GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0L M1P M65 M7P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5041-89610e5b5d79242dbc5ed47da9b83ecb68452533abcd057b959c1f276e9917f93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 358 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827683000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1052-9276 1099-1654 |
| IngestDate | Tue Nov 04 01:57:01 EST 2025 Fri Sep 05 08:13:29 EDT 2025 Fri Oct 03 06:00:42 EDT 2025 Mon Jul 21 06:00:45 EDT 2025 Tue Nov 18 21:53:27 EST 2025 Sat Nov 29 02:22:32 EST 2025 Wed Jan 22 16:22:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | omicron immune evasion SARS-COV-2 monoclonal antibodies |
| Language | English |
| License | Attribution 2022 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5041-89610e5b5d79242dbc5ed47da9b83ecb68452533abcd057b959c1f276e9917f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-0054-0715 0000-0002-9844-3744 0000-0003-0988-7827 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frmv.2381 |
| PMID | 35856385 |
| PQID | 2711754708 |
| PQPubID | 30417 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9349777 proquest_miscellaneous_2692076524 proquest_journals_2711754708 pubmed_primary_35856385 crossref_citationtrail_10_1002_rmv_2381 crossref_primary_10_1002_rmv_2381 wiley_primary_10_1002_rmv_2381_RMV2381 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chichester – name: Hoboken |
| PublicationTitle | Reviews in medical virology |
| PublicationTitleAlternate | Rev Med Virol |
| PublicationYear | 2022 |
| Publisher | Wiley Periodicals Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Periodicals Inc – name: John Wiley and Sons Inc |
| References | 2022; 375 2022; 253 2021; 21 2021; 600 2015; 30 2022; 23 2020; 369 2022; 22 2022; 28 2022; 377 2020; 5 2021; 31 2021; 398 2021; 118 0 2018; 34 2022; 602 2022; 327 2022; 38 2021; 7 2021; 48 2021; 6 2020; 383 2021; 225 2022; 94 2019; 33 2020; 583 2020; 181 2020; 182 2020; 183 2022; 45 2021; 184 2021; 386 2021; 385 2021; 92 2022; 399 2022; 386 2021; 13 2021; 54 2022; 185 2021; 12 2021; 11 2022; 3 2022 2022; 4 2021 2022; 62 2022; 7 2021; 17 2022; 13 2022; 96 2021; 374 2022; 19 e_1_2_16_46_1 e_1_2_16_27_1 e_1_2_16_69_1 e_1_2_16_117_1 e_1_2_16_42_1 e_1_2_16_88_1 e_1_2_16_65_1 e_1_2_16_113_1 e_1_2_16_84_1 e_1_2_16_61_1 e_1_2_16_120_1 e_1_2_16_80_1 e_1_2_16_101_1 e_1_2_16_15_1 e_1_2_16_38_1 e_1_2_16_19_1 Haseltine WA (e_1_2_16_23_1) 2022 e_1_2_16_34_1 e_1_2_16_30_1 e_1_2_16_53_1 Who (e_1_2_16_57_1) 2022 e_1_2_16_76_1 e_1_2_16_99_1 e_1_2_16_105_1 e_1_2_16_128_1 World Health Organization (e_1_2_16_8_1) 2021 e_1_2_16_11_1 e_1_2_16_109_1 e_1_2_16_124_1 e_1_2_16_95_1 e_1_2_16_91_1 e_1_2_16_131_1 e_1_2_16_9_1 e_1_2_16_5_1 e_1_2_16_26_1 e_1_2_16_49_1 e_1_2_16_45_1 e_1_2_16_68_1 Cromer D (e_1_2_16_103_1) 2021 e_1_2_16_41_1 e_1_2_16_64_1 e_1_2_16_87_1 e_1_2_16_118_1 e_1_2_16_22_1 e_1_2_16_60_1 e_1_2_16_83_1 e_1_2_16_114_1 (e_1_2_16_25_1) 2022 e_1_2_16_14_1 e_1_2_16_56_1 e_1_2_16_37_1 e_1_2_16_79_1 e_1_2_16_98_1 e_1_2_16_52_1 e_1_2_16_129_1 e_1_2_16_75_1 e_1_2_16_102_1 e_1_2_16_71_1 e_1_2_16_94_1 e_1_2_16_10_1 e_1_2_16_125_1 e_1_2_16_106_1 e_1_2_16_90_1 e_1_2_16_132_1 e_1_2_16_4_1 Pinghui S (e_1_2_16_121_1) 2022 Wrenn JO (e_1_2_16_54_1) e_1_2_16_29_1 e_1_2_16_67_1 e_1_2_16_48_1 Mallapaty S (e_1_2_16_33_1) 2022 e_1_2_16_63_1 e_1_2_16_119_1 Heidi L (e_1_2_16_18_1) 2021 e_1_2_16_44_1 e_1_2_16_86_1 e_1_2_16_21_1 e_1_2_16_115_1 e_1_2_16_82_1 e_1_2_16_122_1 Reynolds CJ (e_1_2_16_112_1) e_1_2_16_13_1 e_1_2_16_17_1 e_1_2_16_36_1 e_1_2_16_59_1 e_1_2_16_78_1 Hachmann NP (e_1_2_16_72_1) 2022 e_1_2_16_32_1 e_1_2_16_55_1 e_1_2_16_74_1 e_1_2_16_97_1 e_1_2_16_70_1 e_1_2_16_51_1 e_1_2_16_107_1 e_1_2_16_126_1 e_1_2_16_93_1 e_1_2_16_7_1 e_1_2_16_110_1 e_1_2_16_3_1 Karim F (e_1_2_16_40_1) 2021 e_1_2_16_28_1 e_1_2_16_47_1 e_1_2_16_89_1 World Health Organization (e_1_2_16_24_1) 2022 e_1_2_16_2_1 e_1_2_16_43_1 e_1_2_16_66_1 e_1_2_16_85_1 e_1_2_16_20_1 e_1_2_16_62_1 e_1_2_16_81_1 e_1_2_16_116_1 e_1_2_16_123_1 e_1_2_16_100_1 e_1_2_16_39_1 e_1_2_16_12_1 e_1_2_16_35_1 e_1_2_16_16_1 e_1_2_16_58_1 e_1_2_16_31_1 e_1_2_16_77_1 e_1_2_16_104_1 e_1_2_16_96_1 e_1_2_16_73_1 e_1_2_16_108_1 e_1_2_16_92_1 e_1_2_16_50_1 e_1_2_16_127_1 e_1_2_16_111_1 e_1_2_16_6_1 e_1_2_16_130_1 |
| References_xml | – volume: 33 start-page: 891 issue: 4 year: 2019 end-page: 905 article-title: The Middle East respiratory syndrome (MERS) publication-title: Infect Dis Clin – volume: 399 start-page: 234 issue: 10321 year: 2022 end-page: 236 article-title: Reduced neutralisation of SARS‐CoV‐2 omicron B.1.1.529 variant by post‐immunisation serum publication-title: Lancet – year: 2022 article-title: Rapid epidemic expansion of the SARS‐CoV‐2 Omicron variant in southern Africa publication-title: Nature – volume: 602 start-page: 19 issue: 7895 year: 2022 article-title: Deltacron: the story of the variant that wasn’t publication-title: Nature News – volume: 386 start-page: 1288 issue: 13 year: 2022 end-page: 1290 article-title: Protection against the omicron variant from previous SARS‐CoV‐2 infection publication-title: N Engl J Med – volume: 28 start-page: 490 issue: 3 year: 2022 end-page: 495 article-title: An infectious SARS‐CoV‐2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies publication-title: Nat Med – year: 2022 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature – volume: 28 start-page: 472 issue: 3 year: 2022 end-page: 476 article-title: Ancestral SARS‐CoV‐2‐specific T cells cross‐recognize the Omicron variant publication-title: Nat Med – volume: 17 issue: 8 year: 2021 article-title: Acute SARS‐CoV‐2 infections harbor limited within‐host diversity and transmit via tight transmission bottlenecks publication-title: PLOS Pathog – year: 2021 article-title: Persistent SARS‐CoV‐2 infection and intra‐host evolution in association with advanced HIV infection publication-title: medRxiv – year: 2021 – volume: 184 start-page: 5179 issue: 20 year: 2021 end-page: 5188 article-title: Generation and transmission of interlineage recombinants in the SARS‐CoV‐2 pandemic publication-title: Cell – volume: 23 issue: 4 year: 2022 article-title: Omicron genetic and clinical peculiarities that may overturn SARS‐CoV‐2 pandemic: a literature review publication-title: Int J Mol Sci – volume: 327 start-page: 639 issue: 7 year: 2022 end-page: 651 article-title: Association between 3 doses of mRNA COVID‐19 vaccine and symptomatic infection caused by the SARS‐CoV‐2 omicron and delta variants publication-title: JAMA – volume: 253 start-page: 8 issue: 3369 year: 2022 end-page: 9 article-title: Understanding omicron publication-title: New Sci – volume: 327 start-page: 179 issue: 2 year: 2022 end-page: 181 article-title: Antibody response and variant cross‐neutralization after SARS‐CoV‐2 breakthrough infection publication-title: JAMA – volume: 383 start-page: 2291 issue: 23 year: 2020 end-page: 2293 article-title: Persistence and evolution of SARS‐CoV‐2 in an immunocompromised host publication-title: N Engl J Med – volume: 225 start-page: 1118 issue: 7 year: 2021 end-page: 1123 article-title: Yearlong COVID‐19 infection reveals within‐host evolution of SARS‐CoV‐2 in a patient with B‐cell depletion publication-title: J Infect Dis – volume: 327 start-page: 1286 issue: 13 year: 2022 end-page: 1288 article-title: Estimates of SARS‐CoV‐2 omicron variant severity in ontario, Canada publication-title: JAMA – volume: 19 start-page: 445 issue: 3 year: 2022 end-page: 446 article-title: Vaccine booster efficiently inhibits entry of SARS‐CoV‐2 omicron variant publication-title: Cell Mol Immunol – volume: 377 year: 2022 article-title: Covid‐19: symptomatic infection with omicron variant is milder and shorter than with delta, study reports publication-title: BMJ – volume: 386 start-page: 1377 issue: 14 year: 2022 end-page: 1380 article-title: Efficacy of a fourth dose of Covid‐19 mRNA vaccine against omicron publication-title: N Engl J Med – volume: 185 start-page: 457 issue: 3 year: 2022 end-page: 466 article-title: mRNA‐based COVID‐19 vaccine boosters induce neutralizing immunity against SARS‐CoV‐2 Omicron variant publication-title: Cell – volume: 54 start-page: 2908e2906 issue: 12 year: 2021 end-page: 2921 article-title: Immunizations with diverse sarbecovirus receptor‐binding domains elicit SARS‐CoV‐2 neutralizing antibodies against a conserved site of vulnerability publication-title: Immunity – volume: 185 start-page: 467 issue: 3 year: 2022 end-page: 484 article-title: SARS‐CoV‐2 Omicron‐B.1.1.529 leads to widespread escape from neutralizing antibody responses publication-title: Cell – volume: 184 start-page: 861 issue: 4 year: 2021 end-page: 880 article-title: Adaptive immunity to SARS‐CoV‐2 and COVID‐19 publication-title: Cell – year: 2022 article-title: Early assessment of the clinical severity of the SARS‐CoV‐2 omicron variant in South Africa: a data linkage study publication-title: Lancet – volume: 21 start-page: 73 issue: 2 year: 2021 end-page: 82 article-title: Viral targets for vaccines against COVID‐19 publication-title: Nat Rev Immunol – volume: 48 start-page: 1111 issue: 12 year: 2021 end-page: 1121 article-title: Evidence for a mouse origin of the SARS‐CoV‐2 Omicron variant publication-title: J Genet Genom – volume: 398 start-page: 2126 issue: 10317 year: 2021 end-page: 2128 article-title: Omicron SARS‐CoV‐2 variant: a new chapter in the COVID‐19 pandemic publication-title: Lancet – year: 2022 – volume: 0 issue: 0 – volume: 7 issue: 1 year: 2022 article-title: The antigenicity of SARS‐CoV‐2 Delta variants aggregated 10 high‐frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain publication-title: Signal Transduct Target Ther – volume: 399 start-page: 1618 issue: 10335 year: 2022 end-page: 1624 article-title: Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS‐CoV‐2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study publication-title: Lancet – volume: 6 issue: 59 year: 2021 article-title: SARS‐CoV‐2 variants of concern partially escape humoral but not T‐cell responses in COVID‐19 convalescent donors and vaccinees publication-title: Sci Immunolo – volume: 183 start-page: 996 issue: 4 year: 2020 end-page: 1012 article-title: Antigen‐specific adaptive immunity to SARS‐CoV‐2 in acute COVID‐19 and associations with age and disease severity publication-title: Cell – volume: 13 year: 2022 article-title: Emergence of progressive mutations in SARS‐CoV‐2 from a hematologic patient with prolonged viral replication publication-title: Front Microbiol – volume: 182 start-page: 828 issue: 4 year: 2020 end-page: 842 article-title: Structures of human antibodies bound to SARS‐CoV‐2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell – volume: 17 issue: 10 year: 2021 article-title: Factors affecting aerosol SARS‐CoV‐2 transmission via HVAC systems; a modeling study publication-title: PLOS Comput Biol – volume: 22 start-page: 942 issue: 7 year: 2022 end-page: 943 article-title: Neutralisation sensitivity of SARS‐CoV‐2 omicron subvariants to therapeutic monoclonal antibodies publication-title: Lancet Infect Dis – volume: 12 year: 2021 article-title: Reactive T cells in convalescent COVID‐19 patients with negative SARS‐CoV‐2 antibody serology publication-title: Front Immunol – volume: 38 issue: 6 year: 2022 article-title: Maintenance of broad neutralising antibodies and memory B cells 12 months post‐infection is predicted by SARS‐CoV‐2 specific CD4+ T cell responses publication-title: Cell Rep – volume: 94 start-page: 1825 issue: 5 year: 2022 end-page: 1832 article-title: Omicron variant of SARS‐CoV‐2: genomics, transmissibility, and responses to current COVID‐19 vaccines publication-title: J Med Virol – volume: 13 issue: 1 year: 2022 article-title: Tracking cryptic SARS‐CoV‐2 lineages detected in NYC wastewater publication-title: Nat Commun – volume: 34 start-page: 4121 issue: 23 year: 2018 end-page: 4123 article-title: Nextstrain: real‐time tracking of pathogen evolution publication-title: Bioinformatics – year: 2022 article-title: Comparable neutralisation evasion of SARS‐CoV‐2 omicron subvariants BA.1, BA.2, and BA.3 publication-title: Lancet Infect Dis – volume: 375 start-page: 183 issue: 6577 year: 2022 end-page: 192 article-title: Heterologous infection and vaccination shapes immunity against SARS‐CoV‐2 variants publication-title: Science – year: 2021 article-title: Neutralising antibody titres as predictors of protection against SARS‐CoV‐2 variants and the impact of boosting: a meta‐analysis publication-title: Lancet Microbe – volume: 31 start-page: R918 issue: 14 year: 2021 end-page: R929 article-title: The origins and potential future of SARS‐CoV‐2 variants of concern in the evolving COVID‐19 pandemic publication-title: Curr Biol – volume: 7 year: 2021 article-title: Effects of environmental factors on severity and mortality of COVID‐19 publication-title: Front Med – volume: 6 start-page: 1188 issue: 9 year: 2021 end-page: 1198 article-title: SARS‐CoV‐2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution publication-title: Nat Microbiology – volume: 386 start-page: 1712 issue: 18 year: 2022 end-page: 1720 article-title: Protection by a fourth dose of BNT162b2 against omicron in Israel publication-title: N Engl J Med – volume: 11 issue: 1 year: 2021 article-title: Factors influencing SARS‐CoV‐2 transmission and outbreak control measures in densely populated settings publication-title: Sci Rep – volume: 385 issue: 24 year: 2021 article-title: Waning immune humoral response to BNT162b2 Covid‐19 vaccine over 6 months publication-title: N Engl J Med – volume: 12 year: 2021 article-title: Broadly‐neutralizing antibodies against emerging SARS‐CoV‐2 variants publication-title: Front Immunol – volume: 386 start-page: 492 issue: 5 year: 2021 end-page: 494 article-title: Third BNT162b2 vaccination neutralization of SARS‐CoV‐2 omicron infection publication-title: N Engl J Med – volume: 30 start-page: 296 year: 2015 end-page: 307 article-title: Recombination in viruses: mechanisms, methods of study, and evolutionary consequences publication-title: Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis – volume: 62 start-page: 412 issue: 2 year: 2022 end-page: 422 article-title: Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance publication-title: J Chem Inf Model – volume: 369 start-page: 650 issue: 6504 year: 2020 end-page: 655 article-title: A neutralizing human antibody binds to the N‐terminal domain of the Spike protein of SARS‐CoV‐2 publication-title: Science – volume: 11 issue: 2 year: 2021 article-title: Risk factors for COVID‐19 infection, disease severity and related deaths in Africa: a systematic review publication-title: BMJ Open – volume: 185 start-page: 2422 issue: 14 year: 2022 end-page: 2433.e13 article-title: Antibody escape of SARS‐CoV‐2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum publication-title: Cell – volume: 375 start-page: 864 issue: 6583 year: 2022 end-page: 868 article-title: Structural basis of SARS‐CoV‐2 Omicron immune evasion and receptor engagement publication-title: Science – volume: 181 start-page: 1489 issue: 7 year: 2020 end-page: 1501 article-title: Targets of T Cell responses to SARS‐CoV‐2 coronavirus in humans with COVID‐19 disease and unexposed individuals publication-title: Cell – volume: 386 start-page: 1314 issue: 14 year: 2022 end-page: 1326 article-title: Population immunity and Covid‐19 severity with omicron variant in South Africa publication-title: N Engl J Med – volume: 386 start-page: 2526 issue: 26 year: 2022 end-page: 2528 article-title: Neutralization of the SARS‐CoV‐2 omicron BA.4/5 and BA.2.12.1 subvariants publication-title: N Engl J Med – volume: 375 start-page: eabn7591 issue: 6581 year: 2022 end-page: 680 article-title: Neutralization of SARS‐CoV‐2 Omicron by BNT162b2 mRNA vaccine‐elicited human sera publication-title: Science – volume: 184 start-page: 4220 issue: 16 year: 2021 end-page: 4236 article-title: Reduced neutralization of SARS‐CoV‐2 B.1.617 by vaccine and convalescent serum publication-title: Cell – year: 2022 article-title: SARS‐CoV‐2 omicron variant neutralization after mRNA‐1273 booster vaccination publication-title: N Engl J Med – volume: 28 start-page: 1297 issue: 6 year: 2022 end-page: 1302 article-title: Serum neutralization of SARS‐CoV‐2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies publication-title: Nat Med – volume: 92 year: 2021 article-title: One year into the pandemic: short‐term evolution of SARS‐CoV‐2 and emergence of new lineages publication-title: Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis – volume: 600 start-page: 577 issue: 7890 year: 2021 end-page: 578 – volume: 386 start-page: 995 issue: 10 year: 2022 end-page: 998 article-title: Efficacy of antibodies and antiviral drugs against Covid‐19 omicron variant publication-title: N Engl J Med – year: 2022 article-title: Where did Omicron come from? Three key theories publication-title: Nat News – year: 2021 article-title: Broadly neutralizing antibodies overcome SARS‐CoV‐2 Omicron antigenic shift publication-title: Nature – volume: 118 issue: 47 year: 2021 article-title: Furin cleavage of the SARS‐CoV‐2 spike is modulated by ‐glycosylation publication-title: Proc Natl Acad Sci U. S. A – volume: 45 year: 2022 article-title: Highly mutated SARS‐CoV‐2 Omicron variant sparks significant concern among global experts ‐ what is known so far? publication-title: Trav Med Infect Dis – volume: 13 issue: 1 year: 2021 article-title: Potent SARS‐CoV‐2 binding and neutralization through maturation of iconic SARS‐CoV‐1 antibodies publication-title: mAbs – volume: 3 issue: 2 year: 2022 article-title: mRNA‐1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS‐CoV‐2 omicron variant publication-title: Cell Rep Med – volume: 4 start-page: 33 issue: 1 year: 2022 end-page: 37 article-title: Origin and evolutionary analysis of the SARS‐CoV‐2 Omicron variant publication-title: J Biosaf Biosecur – volume: 5 issue: 1 year: 2020 article-title: The role of furin cleavage site in SARS‐CoV‐2 spike protein‐mediated membrane fusion in the presence or absence of trypsin publication-title: Signal Transduct Target Ther – volume: 583 start-page: 290 issue: 7815 year: 2020 end-page: 295 article-title: Cross‐neutralization of SARS‐CoV‐2 by a human monoclonal SARS‐CoV antibody publication-title: Nature – year: 2022 article-title: Are new Omicron subvariants a threat? Here's how scientists are keeping watch publication-title: Nat News – volume: 96 issue: 7 year: 2022 article-title: SARS‐CoV‐2 evolution: on the sudden appearance of the omicron variant publication-title: J Virol – year: 2022 article-title: Clinical outcomes associated with SARS‐CoV‐2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in southern California publication-title: Nat Med – volume: 386 start-page: 1579 issue: 16 year: 2022 end-page: 1580 article-title: Neutralization of the SARS‐CoV‐2 omicron BA.1 and BA.2 variants publication-title: N Engl J Med – volume: 602 start-page: 671 issue: 7898 year: 2022 end-page: 675 article-title: Considerable escape of SARS‐CoV‐2 Omicron to antibody neutralization publication-title: Nature – volume: 374 issue: 6572 year: 2021 article-title: Where did 'weird' Omicron come from? publication-title: Science – ident: e_1_2_16_38_1 doi: 10.1056/nejmc2031364 – ident: e_1_2_16_131_1 doi: 10.1056/nejmc2119407 – ident: e_1_2_16_86_1 doi: 10.1016/s1473‐3099(22)00365‐6 – ident: e_1_2_16_13_1 doi: 10.1056/nejmoa2119658 – ident: e_1_2_16_19_1 doi: 10.1101/2021.12.27.21268278 – ident: e_1_2_16_35_1 doi: 10.1038/s41467‐022‐28246‐3 – ident: e_1_2_16_95_1 doi: 10.1038/s41591‐022‐01700‐x – ident: e_1_2_16_31_1 doi: 10.1016/j.jobb.2021.12.001 – ident: e_1_2_16_98_1 doi: 10.1016/j.celrep.2022.110345 – ident: e_1_2_16_105_1 – ident: e_1_2_16_34_1 doi: 10.1016/j.jgg.2021.12.003 – ident: e_1_2_16_85_1 doi: 10.1016/S1473-3099(22)00224-9 – ident: e_1_2_16_7_1 doi: 10.1128/jvi.00090‐22 – ident: e_1_2_16_44_1 doi: 10.1073/pnas.2109905118 – ident: e_1_2_16_128_1 doi: 10.1101/2021.12.17.21267961 – ident: e_1_2_16_129_1 doi: 10.1101/2021.12.12.21267646 – ident: e_1_2_16_90_1 doi: 10.1016/j.cell.2020.09.038 – ident: e_1_2_16_9_1 doi: 10.1038/s41586-022-04411-y – ident: e_1_2_16_17_1 doi: 10.1016/s0140‐6736(21)02758‐6 – ident: e_1_2_16_71_1 doi: 10.1016/j.cell.2022.06.005 – ident: e_1_2_16_96_1 doi: 10.1056/nejmoa2114583 – ident: e_1_2_16_69_1 doi: 10.1038/s41577‐020‐00480‐0 – ident: e_1_2_16_73_1 doi: 10.1016/s0140‐6736(21)02844‐0 – ident: e_1_2_16_94_1 doi: 10.1101/2021.12.12.472315 – ident: e_1_2_16_111_1 doi: 10.1126/science.abm0811 – ident: e_1_2_16_4_1 doi: 10.1016/j.meegid.2021.104869 – start-page: eabq1841 volume-title: Immune boosting by B.1.1.529 (Omicron) depends on previous SARS‐CoV‐2 exposure ident: e_1_2_16_112_1 – ident: e_1_2_16_14_1 doi: 10.1016/j.cell.2021.12.046 – ident: e_1_2_16_82_1 doi: 10.1101/2022.02.07.479306 – volume-title: Neutralization Escape by SARS‐CoV‐2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5 year: 2022 ident: e_1_2_16_72_1 – ident: e_1_2_16_20_1 doi: 10.1371/journal.pcbi.1009474 – start-page: 577 volume-title: How severe are Omicron infections? year: 2021 ident: e_1_2_16_18_1 – year: 2021 ident: e_1_2_16_103_1 article-title: Neutralising antibody titres as predictors of protection against SARS‐CoV‐2 variants and the impact of boosting: a meta‐analysis publication-title: Lancet Microbe – ident: e_1_2_16_63_1 – ident: e_1_2_16_26_1 doi: 10.1056/nejmc2201849 – ident: e_1_2_16_58_1 doi: 10.1136/bmj.o922 – ident: e_1_2_16_120_1 doi: 10.1101/2022.03.19.484981 – ident: e_1_2_16_116_1 doi: 10.1016/j.cub.2021.06.049 – ident: e_1_2_16_81_1 doi: 10.1101/2021.12.14.21267772 – ident: e_1_2_16_32_1 doi: 10.1038/s41586‐021‐04389‐z – ident: e_1_2_16_49_1 doi: 10.21203/rs.3.rs-1601788/v1 – ident: e_1_2_16_52_1 doi: 10.1016/j.idc.2019.08.001 – ident: e_1_2_16_100_1 doi: 10.21203/rs.3.rs-1168453/v1 – ident: e_1_2_16_27_1 doi: 10.1038/d41586-022-01069-4 – ident: e_1_2_16_51_1 doi: 10.1016/s0140‐6736(22)00327‐0 – ident: e_1_2_16_74_1 doi: 10.1101/2022.01.31.478406 – ident: e_1_2_16_43_1 doi: 10.1038/s41392‐020‐0184‐0 – ident: e_1_2_16_60_1 doi: 10.1101/2021.12.26.474085 – ident: e_1_2_16_41_1 doi: 10.3389/fimmu.2021.752003 – ident: e_1_2_16_28_1 – ident: e_1_2_16_83_1 doi: 10.1101/2022.02.15.480166 – ident: e_1_2_16_42_1 doi: 10.1002/jmv.27588 – volume-title: Update on Omicron year: 2021 ident: e_1_2_16_8_1 – ident: e_1_2_16_11_1 doi: 10.1101/2021.12.07.21267432 – ident: e_1_2_16_80_1 doi: 10.1038/s41586‐020‐2349‐y – volume-title: BA.2: What to Know about World’s Dominant Omicron Sub‐variant year: 2022 ident: e_1_2_16_25_1 – ident: e_1_2_16_47_1 – ident: e_1_2_16_125_1 doi: 10.1038/s41423‐022‐00837‐6 – ident: e_1_2_16_56_1 doi: 10.1016/s0262‐4079(22)00030‐6 – volume-title: What is the XE Omicron hybrid and should we be worried about it? year: 2022 ident: e_1_2_16_121_1 – ident: e_1_2_16_2_1 doi: 10.1038/s41392‐022‐00874‐7 – ident: e_1_2_16_127_1 doi: 10.1056/nejmc2119358 – ident: e_1_2_16_48_1 doi: 10.1016/S0140-6736(22)00017-4 – ident: e_1_2_16_102_1 doi: 10.1056/NEJMc2119912 – ident: e_1_2_16_107_1 doi: 10.1056/nejmc2206725 – ident: e_1_2_16_108_1 doi: 10.1016/j.xcrm.2022.100529 – ident: e_1_2_16_123_1 – ident: e_1_2_16_113_1 – ident: e_1_2_16_92_1 doi: 10.3389/fimmu.2021.687449 – ident: e_1_2_16_106_1 doi: 10.1101/2021.12.13.21267748 – ident: e_1_2_16_15_1 doi: 10.1021/acs.jcim.1c01451 – ident: e_1_2_16_101_1 doi: 10.1126/science.abn7591 – ident: e_1_2_16_46_1 doi: 10.1101/2022.01.12.22269148 – ident: e_1_2_16_115_1 doi: 10.1016/j.meegid.2014.12.022 – ident: e_1_2_16_110_1 doi: 10.1056/nejmoa2201570 – ident: e_1_2_16_117_1 doi: 10.1016/j.cell.2021.08.014 – ident: e_1_2_16_66_1 doi: 10.1101/2021.11.11.21266068 – ident: e_1_2_16_65_1 doi: 10.1038/s41564‐021‐00954‐4 – ident: e_1_2_16_37_1 doi: 10.1093/infdis/jiab622 – ident: e_1_2_16_75_1 – ident: e_1_2_16_89_1 doi: 10.1016/j.cell.2020.05.015 – ident: e_1_2_16_122_1 doi: 10.1101/2022.03.03.22271812 – ident: e_1_2_16_22_1 doi: 10.1038/s41598‐021‐94463‐3 – ident: e_1_2_16_88_1 doi: 10.1016/j.cell.2021.01.007 – ident: e_1_2_16_79_1 doi: 10.1080/19420862.2021.1922134 – ident: e_1_2_16_114_1 – year: 2021 ident: e_1_2_16_40_1 article-title: Persistent SARS‐CoV‐2 infection and intra‐host evolution in association with advanced HIV infection publication-title: medRxiv – ident: e_1_2_16_126_1 doi: 10.1101/2021.12.22.21268273 – ident: e_1_2_16_53_1 doi: 10.1101/2022.02.22.21268475 – ident: e_1_2_16_59_1 doi: 10.1136/bmjopen‐2020‐044618 – ident: e_1_2_16_76_1 doi: 10.1016/j.cell.2020.06.025 – ident: e_1_2_16_21_1 doi: 10.3389/fmed.2020.607786 – ident: e_1_2_16_119_1 doi: 10.1038/d41586‐022‐00149‐9 – ident: e_1_2_16_62_1 – ident: e_1_2_16_78_1 doi: 10.1016/j.immuni.2021.10.019 – volume-title: Statement on Omicron Sublineage BA.2 year: 2022 ident: e_1_2_16_24_1 – ident: e_1_2_16_104_1 doi: 10.1101/2021.12.08.21267417 – ident: e_1_2_16_99_1 – ident: e_1_2_16_124_1 – volume-title: COVID‐19 severity from Omicron and Delta SARS‐CoV‐2 variants ident: e_1_2_16_54_1 – ident: e_1_2_16_68_1 doi: 10.1101/2022.04.29.22274477 – year: 2022 ident: e_1_2_16_33_1 article-title: Where did Omicron come from? Three key theories publication-title: Nat News – ident: e_1_2_16_36_1 doi: 10.1126/science.acx9738 – ident: e_1_2_16_16_1 doi: 10.1016/j.cell.2021.06.020 – ident: e_1_2_16_77_1 doi: 10.1126/science.abc6952 – ident: e_1_2_16_5_1 doi: 10.1101/2022.03.13.484129 – ident: e_1_2_16_93_1 doi: 10.1101/2021.12.06.471446 – ident: e_1_2_16_84_1 doi: 10.1038/s41591‐022‐01792‐5 – ident: e_1_2_16_132_1 doi: 10.1038/s41591‐021‐01678‐y – ident: e_1_2_16_45_1 – ident: e_1_2_16_50_1 doi: 10.1038/s41591‐022‐01887‐z – ident: e_1_2_16_55_1 doi: 10.1001/jama.2022.2274 – ident: e_1_2_16_130_1 doi: 10.1126/science.abn8652 – ident: e_1_2_16_10_1 doi: 10.1016/j.tmaid.2021.102234 – ident: e_1_2_16_64_1 – ident: e_1_2_16_91_1 doi: 10.1126/sciimmunol.abj1750 – ident: e_1_2_16_3_1 – ident: e_1_2_16_61_1 – ident: e_1_2_16_70_1 doi: 10.1001/jama.2022.0470 – ident: e_1_2_16_39_1 doi: 10.3389/fmicb.2022.826883 – ident: e_1_2_16_97_1 doi: 10.1001/jama.2021.22898 – ident: e_1_2_16_30_1 doi: 10.3390/ijms23041987 – volume-title: Birth of the Omicron Family: BA.1, BA.2, BA.3. Each as Different as Alpha Is from Delta year: 2022 ident: e_1_2_16_23_1 – ident: e_1_2_16_12_1 doi: 10.1016/j.cell.2021.12.033 – ident: e_1_2_16_109_1 doi: 10.1056/nejmc2202542 – ident: e_1_2_16_118_1 doi: 10.1371/journal.ppat.1009849 – ident: e_1_2_16_87_1 doi: 10.1038/s41586‐022‐04980‐y – ident: e_1_2_16_67_1 doi: 10.1056/nejmc2200133 – volume-title: Severity of disease associated with Omicron variant as compared with Delta variant in hospitalized patients with suspected or confirmed SARS‐CoV‐2 infection year: 2022 ident: e_1_2_16_57_1 – ident: e_1_2_16_29_1 doi: 10.1038/d41586‐021‐03825‐4 – ident: e_1_2_16_6_1 doi: 10.1093/bioinformatics/bty407 |
| SSID | ssj0010104 |
| Score | 2.712169 |
| SecondaryResourceType | review_article |
| Snippet | The first dominant SARS‐CoV‐2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS‐CoV‐2 variant that emerged late 2019. Soon... The first dominant SARS-CoV-2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS-CoV-2 variant that emerged late 2019. Soon... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2381 |
| SubjectTerms | Antibodies, Monoclonal - therapeutic use Antibodies, Monoclonal, Humanized Antibodies, Neutralizing Antibodies, Viral COVID-19 Evolution Humans Immune evasion Infectivity Monoclonal antibodies Mutation omicron Public health Recombination Review SARS-CoV-2 - genetics SARS‐COV‐2 Severe acute respiratory syndrome coronavirus 2 Spike protein Syncytia Vaccines |
| Title | Evolution of the SARS‐CoV‐2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frmv.2381 https://www.ncbi.nlm.nih.gov/pubmed/35856385 https://www.proquest.com/docview/2711754708 https://www.proquest.com/docview/2692076524 https://pubmed.ncbi.nlm.nih.gov/PMC9349777 |
| Volume | 32 |
| WOSCitedRecordID | wos000827683000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-1654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010104 issn: 1052-9276 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6xDRAvA8ZgGWMyEoKnbKkT52LeylgF0jZNHav6FjmOIypBMrVdJd74CfxGfgl3SRpWDSQkXuIHn5PIPsff5e6-A3gljbVkNhifFjj2owIzP5G55AXhenCRcnXW--gEz86S8Vift1GVnAvT8EN0P9x4Z9Tfa97gJpsd_iYNnX5dHPB5swYbnFNFGr3xfji4POl8CGxp1L5OJX0tMV5SzwbycDl29TC6hTBvB0reBLD1CTR4-D_v_gg2W9wp-o2iPIY7rtyCe00lym9bcP-09bE_gfJ40aqjqApB-FBc9IcXP7__OKpGdJWC85in1LsgM5ujaMS7_kFPzCtu1Vvx8UaMuiBILCacguKEm3GslTBlLuZ8QJKC8Z-6bbgcHH86-uC3VRl8q4Ko5yeaEJdTmcqRbDeZZ1a5PMLc6CwJnc3ihF2lYWgymxMYzLTStlfQ_DuColjo8Cmsl1XpdkDIQKPKC4uoLFc9MUi3QBPQWJWEVnrwZrk8qW0py7lyxpe0IVuWKU1kyhPpwctO8qqh6fiDzN5yhdN2o85SicxVGmGQ0C26bpoB9puY0lXXJBNrGWCsZOTBs0YhuoeEZG7RJ0x5gCuq0gkwffdqTzn5XNN46zAi8I0evK5V5a_vnQ5PR9zu_qvgc3ggOUmjjoTbg_X59Nq9gLt2MZ_MpvuwJqNzuuI42W-3zC-Sthjw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ8gqPiCigIV1DUx-lTobXe7XXk6CQTi3YUAXnhr2u02XAItuTsu4Y2P4Gf0kzjTf3JBExNf2oedtpud2c7MzsxvAD7y2Bh0G2IXGRy4IlOJG_KUE0OoH5yQtqx6H_bUYBCen-vjBdhtamEqfIj2wI12Rvm_pg1OB9I7v1FDx1ezbVI4j2BJoFIiz4uL4zaEQI5GGeqU3NVcBQ3yrMd3mifnddEDA_NhnuR9-7VUQAfP_2vqL2CltjtZtxKUl7Bg81V4UnWivF2Fp_06xv4K8v1ZLY6syBjah-y0e3L68-7HXjHEK2dUxzzG0Rm62ZRFw752tztsWtBdfmFH93LUGZrEbEQlKJbZCeVasThP2ZQUJAoYndS9hu8H-2d7h27dlcE10hMdN9RocVmZyFSh78bTxEibCpXGOgl9a5IgpFCp78eJSdEYTLTUppMhAyyaoirT_hos5kVuN4BxTyuZZkYpaajrSazwFSr28FkZ-oY78LnhT2RqyHLqnHEZVWDLPMKFjGghHfjQUl5XMB1_oNlqWBzVG3UScUVYpUJ5Ib6iHcYVoLhJnNviBmkCzT0VSC4cWK8kov2Ij-4W_sKkA2pOVloCgu-eH8lHFyWMt_YFGt_KgU-lrPx13tFJf0j3N_9K-B6WD8_6vah3NPi2Cc84FWyUWXFbsDgd39i38NjMpqPJ-F25Y34BAV4Zhg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VAhUXHgVKoICREJzSZh07jstpKV1R0a5WLax6ixLbUVdqk2p3uxI3fgK_kV_SmbzoqiAhcUkOnjzkGcffZGa-AXjLU2PQbUh9VHDki1xlfswtJ4VQPzghXVX1Pj5Qw2F8cqJHK_ChrYWp-SG6H260MqrvNS1wd2Hz7d-sodPzxRZtOLfgtpDoaxGtsxh1IQRyNKpQp-S-5ipqmWcDvt1eubwX3QCYN_Mkr-PXagMaPPivV38I9xvcyfq1oTyCFVesw926E-X3dVg7bGLsj6HYWzTmyMqcIT5kx_2j418_fu6WYzxyRnXMUxxdoJtNWTTsY3-rx-YlneUO27-Wo84QErMJlaA45maUa8XSwrI5bZBoYPSn7gl8G-x93f3sN10ZfCMD0fNjjYjLyUxahb4bt5mRzgplU53FoTNZFFOoNAzTzFgEg5mW2vRyVIBDKKpyHT6F1aIs3DNgPNBK2twoJQ11PUkV3kKlAV4r49BwD963-klMQ1lOnTPOkppsmSc4kQlNpAdvOsmLmqbjDzKbrYqTZqHOEq6Iq1SoIMZbdMM4AxQ3SQtXXqJMpHmgIsmFBxu1RXQPCdHdwk-Y9EAt2UonQPTdyyPF5LSi8dahQPCtPHhX2cpf3zs5OhzT-fm_Cr6GtdGnQXKwP_zyAu5xqteokuI2YXU-vXQv4Y5ZzCez6atqwVwBaLAZAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+the+SARS-CoV-2+omicron+variants+BA.1+to+BA.5%3A+Implications+for+immune+escape+and+transmission&rft.jtitle=Reviews+in+medical+virology&rft.au=Shrestha%2C+Lok+Bahadur&rft.au=Foster%2C+Charles&rft.au=Rawlinson%2C+William&rft.au=Tedla%2C+Nicodemus&rft.date=2022-09-01&rft.eissn=1099-1654&rft.volume=32&rft.issue=5&rft.spage=e2381&rft_id=info:doi/10.1002%2Frmv.2381&rft_id=info%3Apmid%2F35856385&rft.externalDocID=35856385 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-9276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-9276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-9276&client=summon |