Facial expression recognition based on AAM-SIFT and adaptive regional weighting

The active appearance model (AAM), one of the most effective facial feature localization methods, is widely used in frontal facial expression recognition. However, non‐frontal facial expression recognition is important in many scenarios. Thus, we propose a new method for facial expression recognitio...

Full description

Saved in:
Bibliographic Details
Published in:IEEJ transactions on electrical and electronic engineering Vol. 10; no. 6; pp. 713 - 722
Main Authors: Ren, Fuji, Huang, Zhong
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2015
Wiley Subscription Services, Inc
Subjects:
ISSN:1931-4973, 1931-4981
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The active appearance model (AAM), one of the most effective facial feature localization methods, is widely used in frontal facial expression recognition. However, non‐frontal facial expression recognition is important in many scenarios. Thus, we propose a new method for facial expression recognition based on AAM‐SIFT and adaptive regional weighting. First, multi‐pose AAM templates are used for pose estimation and feature point location of the facial expression image. For effective and efficient description of these feature points, a hybrid representation, which integrates gradient direction histograms based on the descriptors of scale‐invariant feature transform (SIFT) and AAM, is utilized to form AAM‐SIFT features. Meanwhile, according to different expression regions, AAM‐SIFT features are divided into different groups and the obtained adaptive weights by means of a regional weighted method based on the fuzzy C‐means (FCM) clustering algorithm. Finally, the membership degree computed by FCM, which represents the possibility for each class, is regarded as the input feature vector for support vector machine (SVM) classifier. Extensive experiments on BU‐3DFE database with six facial expressions and seven poses demonstrate the effectiveness of different types of weighting strategies and the influence of different features. Comparison with other state‐of‐art methods illustrates that the proposed method not only improves the recognition rates of the frontal face but also has better robustness for non‐frontal facial expressions. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
AbstractList The active appearance model (AAM), one of the most effective facial feature localization methods, is widely used in frontal facial expression recognition. However, non‐frontal facial expression recognition is important in many scenarios. Thus, we propose a new method for facial expression recognition based on AAM‐SIFT and adaptive regional weighting. First, multi‐pose AAM templates are used for pose estimation and feature point location of the facial expression image. For effective and efficient description of these feature points, a hybrid representation, which integrates gradient direction histograms based on the descriptors of scale‐invariant feature transform (SIFT) and AAM, is utilized to form AAM‐SIFT features. Meanwhile, according to different expression regions, AAM‐SIFT features are divided into different groups and the obtained adaptive weights by means of a regional weighted method based on the fuzzy C‐means (FCM) clustering algorithm. Finally, the membership degree computed by FCM, which represents the possibility for each class, is regarded as the input feature vector for support vector machine (SVM) classifier. Extensive experiments on BU‐3DFE database with six facial expressions and seven poses demonstrate the effectiveness of different types of weighting strategies and the influence of different features. Comparison with other state‐of‐art methods illustrates that the proposed method not only improves the recognition rates of the frontal face but also has better robustness for non‐frontal facial expressions. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
The active appearance model (AAM), one of the most effective facial feature localization methods, is widely used in frontal facial expression recognition. However, non-frontal facial expression recognition is important in many scenarios. Thus, we propose a new method for facial expression recognition based on AAM-SIFT and adaptive regional weighting. First, multi-pose AAM templates are used for pose estimation and feature point location of the facial expression image. For effective and efficient description of these feature points, a hybrid representation, which integrates gradient direction histograms based on the descriptors of scale-invariant feature transform (SIFT) and AAM, is utilized to form AAM-SIFT features. Meanwhile, according to different expression regions, AAM-SIFT features are divided into different groups and the obtained adaptive weights by means of a regional weighted method based on the fuzzy C-means (FCM) clustering algorithm. Finally, the membership degree computed by FCM, which represents the possibility for each class, is regarded as the input feature vector for support vector machine (SVM) classifier. Extensive experiments on BU-3DFE database with six facial expressions and seven poses demonstrate the effectiveness of different types of weighting strategies and the influence of different features. Comparison with other state-of-art methods illustrates that the proposed method not only improves the recognition rates of the frontal face but also has better robustness for non-frontal facial expressions. copyright 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Author Ren, Fuji
Huang, Zhong
Author_xml – sequence: 1
  givenname: Fuji
  surname: Ren
  fullname: Ren, Fuji
  email: ren@is.tokushima-u.ac.jp
  organization: School of information and computer, Hefei University of Technology, No. 193 Tunxi Road, Hefei, Anhui 230009, China
– sequence: 2
  givenname: Zhong
  surname: Huang
  fullname: Huang, Zhong
  organization: School of information and computer, Hefei University of Technology, No. 193 Tunxi Road, Hefei, Anhui 230009, China
BookMark eNp1kD1PwzAURS1UJCgw8A8iscAQsGM7TsZS2oLEx0ApbJZrvxRDmhQ7pfDvcSl0qGB6dzjn6um2UauqK0DokOBTgnFy1gCcJgnhZAvtkpySmOUZaa2zoDuo7f0LxiylWbaL7vpKW1VG8DFz4L2tq8iBrieVbZZ5rDyYKIRO5ya-v-oPI1WZSBk1a-w7BHQSqKAvwE6eG1tN9tF2oUoPBz93Dz30e8PuZXx9N7jqdq5jzTEjsTCmYMpojHWaiPCi0pqKQnOghDOWqqIw1DDIjBYC8gxznrLxmGFgmKZFQvfQ8ap35uq3OfhGTq3XUJaqgnruJRFpgvOEchLQow30pZ678PWSSjDDIuNpoM5WlHa19w4KqW2jliM0TtlSEiyXA8swsPweOBgnG8bM2alyn3-yP-0LW8Ln_6Ac9nq_RrwyrG_gY20o9ypTQQWXj7cDKe77o4vReS6f6Bd7M5pY
CitedBy_id crossref_primary_10_1007_s10489_019_01500_w
crossref_primary_10_1007_s00500_019_04380_x
crossref_primary_10_1002_cpe_7137
crossref_primary_10_1080_03019233_2020_1816806
crossref_primary_10_1109_TIP_2019_2948728
crossref_primary_10_1109_TAFFC_2022_3208309
crossref_primary_10_1155_2016_7696035
crossref_primary_10_1049_iet_ipr_2019_0023
crossref_primary_10_1088_1361_6501_ac85d1
crossref_primary_10_1007_s11831_018_9270_7
crossref_primary_10_1007_s00371_019_01660_3
crossref_primary_10_1109_THMS_2016_2599495
crossref_primary_10_1007_s10489_018_1388_7
crossref_primary_10_1016_j_comcom_2020_10_004
crossref_primary_10_1109_ACCESS_2021_3054332
crossref_primary_10_1007_s10846_024_02074_7
crossref_primary_10_1007_s12193_019_00308_9
crossref_primary_10_1155_2020_8886872
crossref_primary_10_1049_iet_ipr_2017_0499
Cites_doi 10.1016/j.cviu.2013.07.005
10.1007/978-3-642-15567-3_36
10.1016/j.patrec.2013.03.022
10.1016/S0262-8856(02)00055-0
10.1109/CVPR.2006.14
10.1109/TPAMI.2012.233
10.1109/34.927467
10.1016/j.neucom.2013.09.046
10.1016/j.eswa.2012.07.074
10.1007/978-3-642-33885-4_58
10.1016/j.patcog.2008.08.034
10.1016/j.compeleceng.2011.10.016
10.1109/TSMCB.2008.2004818
10.1016/j.patcog.2011.05.006
10.1109/ICPR.2010.1002
10.1016/j.patcog.2013.11.025
10.1109/ICCV.2009.5459421
10.1016/j.proeng.2012.07.177
10.1023/B:VISI.0000029664.99615.94
10.1109/ICASSP.2007.366305
10.1016/j.imavis.2014.02.009
10.1016/j.patcog.2007.02.021
10.1109/ICPR.2008.4761052
10.1016/j.patrec.2013.03.021
10.1007/s00371-011-0611-x
10.1016/j.imavis.2013.03.003
10.1016/j.engappai.2012.09.002
10.1109/ICRA.2012.6224590
10.1016/j.patcog.2008.10.010
10.1016/j.cviu.2010.12.001
ContentType Journal Article
Copyright 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Copyright_xml – notice: 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/tee.22151
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1931-4981
EndPage 722
ExternalDocumentID 3831041231
10_1002_tee_22151
TEE22151
ark_67375_WNG_7SFVDVB9_X
Genre article
GrantInformation_xml – fundername: Ministry of Education, Science, Sports and Culture
  funderid: 22240021
– fundername: National High‐Tech Research & Development Program of China 863 Program
  funderid: 2012AA011103
– fundername: State Education Ministry
– fundername: Key Science and Technology Program of Anhui Province
  funderid: 1206c0805039
– fundername: National Natural Science Foundation of China
  funderid: 61432004
– fundername: Scientific Research Foundation for the Returned Overseas Chinese Scholars
GroupedDBID .3N
.GA
.Y3
05W
0R~
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5GY
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
AAYXX
CITATION
O8X
7SP
8FD
L7M
ID FETCH-LOGICAL-c5041-7ddf4adc00c627981acc37fc5e315446affd3d4e8dc77e9805564bb40e4036f23
IEDL.DBID DRFUL
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362748500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1931-4973
IngestDate Fri Jul 11 09:53:26 EDT 2025
Fri Jul 25 12:20:13 EDT 2025
Tue Nov 18 21:30:51 EST 2025
Sat Nov 29 07:47:33 EST 2025
Wed Jan 22 17:03:10 EST 2025
Tue Nov 11 03:31:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5041-7ddf4adc00c627981acc37fc5e315446affd3d4e8dc77e9805564bb40e4036f23
Notes Key Science and Technology Program of Anhui Province - No. 1206c0805039
Scientific Research Foundation for the Returned Overseas Chinese Scholars
National High-Tech Research & Development Program of China 863 Program - No. 2012AA011103
State Education Ministry
Ministry of Education, Science, Sports and Culture - No. 22240021
ark:/67375/WNG-7SFVDVB9-X
National Natural Science Foundation of China - No. 61432004
ArticleID:TEE22151
istex:BA75BE6B9F595186F8850C0EFED16E7F94C9225F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1720407856
PQPubID 996339
PageCount 10
ParticipantIDs proquest_miscellaneous_1762092351
proquest_journals_1720407856
crossref_citationtrail_10_1002_tee_22151
crossref_primary_10_1002_tee_22151
wiley_primary_10_1002_tee_22151_TEE22151
istex_primary_ark_67375_WNG_7SFVDVB9_X
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Tokyo
PublicationTitle IEEJ transactions on electrical and electronic engineering
PublicationTitleAlternate IEEJ Trans Elec Electron Eng
PublicationYear 2015
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Khan RA, Meyer A, Konik H. Framework for reliable, real-time facial expression recognition for low resolution images. Journal of Pattern Recognition Letters 2013; 34(10):1159-1168.
Tong Y, Wang Y, Zhu ZW, Ji Q. Robust facial feature tracking under varying face pose and facial expression. Journal of Pattern Recognition 2007; 40(11):3195-3208.
Rudovic O, Pantic M, Patras L. Coupled gaussian processes for pose-Invariant facial expression recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2013; 35(6):1357-1369.
Soyel H, Demirel H. Localized discriminative scale invariant feature transform based facial expression recognition. Journal of Computers and Electrical Engineering 2012; 38(5):1299-1309.
Liu J, Liu B, Zhang S, Yang F, Yang P, Metaxas D, Neidle C. Non-manual grammatical marker recognition based on multi-scale, spatio-temporal analysis of head pose and facial expressions. Journal of Image and Vision Computing 2014; 32(10):671-681.
Lowe DG. Distinctive image features from scale-invariant key points. International Journal of Computer Vision 2004; 60(2):91-110.
Berretti S, Amor B, Daoudi M, Bimbo A. 3D facial expression recognition using SIFT descriptors of automatically detected keypoints. Journal of Visual Computer 2011; 27(11):1021-1036.
Xie X, Lam K-M. Facial expression recognition based on shape and texture. Journal of Pattern Recognition 42(5):1003-1011.
Cheon Y, Kim D. Natural facial expression recognition using differential-AAM and manifold learning. Journal of Pattern Recognition 2009; 42(1):1340-1350.
Liao K, Liu G, Hui Y. An improvement to the SIFT descriptor for image representation and matching. Journal of Pattern Recognition Letters 2013; 34(11):1211-1220.
Wu YW, Liu H, Zha HB. Facial expression recognition by weighted clustering of grouped features. Journal of Computer-aided Design and Computer Graphics 2005; 17(11):2394-2401.
Wan S, Aggarwal J-K. Spontaneous facial expression recognition: a robust metric learning approach. Journal of Pattern Recognition 2014; 47(5):1859-1868.
Zhu L, Chuang F, Wang S. Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on System, Man, and Cybernetics, Part B, Cybernetics 2009; 39(3):578-591.
Moore S, Bowden R. Local binary patterns for multi-view facial expression recognition. Journal of Computer Vision and Image Understanding 2011; 115(4):241-558.
Dornaika F, Moujahid A, Raducanu B. Facial expression recognition using tracked facial actions: classifier performance analysis. Journal of Engineering Applications of Artificial Intelligence 2013; 26(1):467-477.
Ren F. From cloud computing to language engineering, affective computing and advanced intelligence. International Journal of Advanced Intelligence 2010; 2(1):1-14.
Cootes TF, Wheeler GV, Walker KN, Taylor CJ. View-based active appearance models. Journal of Image and vision computing 2002; 20(9):657-664.
Gu W, Xiang C, Venkatesh YV, Huang D, Lin H. Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Journal of Pattern Recognition 45(1):80-91.
Ptucha R, Savakis A. Manifold based sparse representation for facial understanding in natural images. Journal of Image and Vision Computing 2013; 31(5):365-378.
Cootes T, Edwards G, Taylor C. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001; 23(6):681-685.
Alitappeh RJ, Saravi KJ, Mahmoudi F. A new illumination invariant feature based on SIFT descriptor in color space. Journal of Procedia Engineering 2012; 41:305-311.
Wang J, Yin L, Wei X, Sun Y. 3D facial expression recognition based on primitive surface feature distribution. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006,) 2006; 2:1399-1406.
Friguid H, Nasraoui O. Unsupervised learning of prototypes and attribute weights. Journal of Pattern Recognition 2004; 37(3):576-581.
Zavaschi T-H, Britto A-S, Oliveira L-E, Koerich A-L. Fusion of feature sets and classifiers for facial expression recognition. Expert Systems with Applications 2013; 40(2):646-655.
Soladié C, Stoiber N, Séguier R. Invariant representation of facial expressions for blended expression recognition on unknown subjects. Journal of Computer Vision and Image Understanding 2013; 117(7):1598-1609.
Tariq U, Yang J, Huang T-S. Multi-view facial expression recognition analysis with generic sparse coding feature, computer. Journal of Vision-ECCV 2012. Workshops and Demonstrations Lecture Notes in Computer Science 2012; 7585:578-588.
Yu K, Wang Z, Hagenbuchner M, Feng D. Spectral embedding based facial expression recognition with multiple features. Journal of Neurocomputing 2014; 129:136-145.
45
2011; 115
2013; 26
2004; 60
2009; 42
2012
2010
2013; 40
2009
2008
2014; 47
2007
2012; 38
2006; 2
2001; 23
2014; 129
2002; 20
2013; 35
2013; 34
2004; 37
2013; 31
2013; 117
2007; 40
2012; 7585
2010; 2
2011; 27
2005; 17
2014; 32
42
2012; 41
2009; 39
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Ren F. (e_1_2_9_4_1) 2010; 2
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Friguid H (e_1_2_9_34_1) 2004; 37
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
Gu W (e_1_2_9_14_1); 45
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
Xie X (e_1_2_9_29_1); 42
e_1_2_9_9_1
Wu YW (e_1_2_9_35_1) 2005; 17
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – reference: Cheon Y, Kim D. Natural facial expression recognition using differential-AAM and manifold learning. Journal of Pattern Recognition 2009; 42(1):1340-1350.
– reference: Wang J, Yin L, Wei X, Sun Y. 3D facial expression recognition based on primitive surface feature distribution. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006,) 2006; 2:1399-1406.
– reference: Cootes T, Edwards G, Taylor C. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001; 23(6):681-685.
– reference: Liu J, Liu B, Zhang S, Yang F, Yang P, Metaxas D, Neidle C. Non-manual grammatical marker recognition based on multi-scale, spatio-temporal analysis of head pose and facial expressions. Journal of Image and Vision Computing 2014; 32(10):671-681.
– reference: Yu K, Wang Z, Hagenbuchner M, Feng D. Spectral embedding based facial expression recognition with multiple features. Journal of Neurocomputing 2014; 129:136-145.
– reference: Tariq U, Yang J, Huang T-S. Multi-view facial expression recognition analysis with generic sparse coding feature, computer. Journal of Vision-ECCV 2012. Workshops and Demonstrations Lecture Notes in Computer Science 2012; 7585:578-588.
– reference: Lowe DG. Distinctive image features from scale-invariant key points. International Journal of Computer Vision 2004; 60(2):91-110.
– reference: Soladié C, Stoiber N, Séguier R. Invariant representation of facial expressions for blended expression recognition on unknown subjects. Journal of Computer Vision and Image Understanding 2013; 117(7):1598-1609.
– reference: Friguid H, Nasraoui O. Unsupervised learning of prototypes and attribute weights. Journal of Pattern Recognition 2004; 37(3):576-581.
– reference: Zavaschi T-H, Britto A-S, Oliveira L-E, Koerich A-L. Fusion of feature sets and classifiers for facial expression recognition. Expert Systems with Applications 2013; 40(2):646-655.
– reference: Gu W, Xiang C, Venkatesh YV, Huang D, Lin H. Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Journal of Pattern Recognition 45(1):80-91.
– reference: Alitappeh RJ, Saravi KJ, Mahmoudi F. A new illumination invariant feature based on SIFT descriptor in color space. Journal of Procedia Engineering 2012; 41:305-311.
– reference: Tong Y, Wang Y, Zhu ZW, Ji Q. Robust facial feature tracking under varying face pose and facial expression. Journal of Pattern Recognition 2007; 40(11):3195-3208.
– reference: Dornaika F, Moujahid A, Raducanu B. Facial expression recognition using tracked facial actions: classifier performance analysis. Journal of Engineering Applications of Artificial Intelligence 2013; 26(1):467-477.
– reference: Rudovic O, Pantic M, Patras L. Coupled gaussian processes for pose-Invariant facial expression recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2013; 35(6):1357-1369.
– reference: Ptucha R, Savakis A. Manifold based sparse representation for facial understanding in natural images. Journal of Image and Vision Computing 2013; 31(5):365-378.
– reference: Soyel H, Demirel H. Localized discriminative scale invariant feature transform based facial expression recognition. Journal of Computers and Electrical Engineering 2012; 38(5):1299-1309.
– reference: Wu YW, Liu H, Zha HB. Facial expression recognition by weighted clustering of grouped features. Journal of Computer-aided Design and Computer Graphics 2005; 17(11):2394-2401.
– reference: Berretti S, Amor B, Daoudi M, Bimbo A. 3D facial expression recognition using SIFT descriptors of automatically detected keypoints. Journal of Visual Computer 2011; 27(11):1021-1036.
– reference: Khan RA, Meyer A, Konik H. Framework for reliable, real-time facial expression recognition for low resolution images. Journal of Pattern Recognition Letters 2013; 34(10):1159-1168.
– reference: Wan S, Aggarwal J-K. Spontaneous facial expression recognition: a robust metric learning approach. Journal of Pattern Recognition 2014; 47(5):1859-1868.
– reference: Xie X, Lam K-M. Facial expression recognition based on shape and texture. Journal of Pattern Recognition 42(5):1003-1011.
– reference: Moore S, Bowden R. Local binary patterns for multi-view facial expression recognition. Journal of Computer Vision and Image Understanding 2011; 115(4):241-558.
– reference: Ren F. From cloud computing to language engineering, affective computing and advanced intelligence. International Journal of Advanced Intelligence 2010; 2(1):1-14.
– reference: Zhu L, Chuang F, Wang S. Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on System, Man, and Cybernetics, Part B, Cybernetics 2009; 39(3):578-591.
– reference: Cootes TF, Wheeler GV, Walker KN, Taylor CJ. View-based active appearance models. Journal of Image and vision computing 2002; 20(9):657-664.
– reference: Liao K, Liu G, Hui Y. An improvement to the SIFT descriptor for image representation and matching. Journal of Pattern Recognition Letters 2013; 34(11):1211-1220.
– volume: 41
  start-page: 305
  year: 2012
  end-page: 311
  article-title: A new illumination invariant feature based on SIFT descriptor in color space
  publication-title: Journal of Procedia Engineering
– volume: 23
  start-page: 681
  issue: 6
  year: 2001
  end-page: 685
  article-title: Active appearance models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 40
  start-page: 3195
  issue: 11
  year: 2007
  end-page: 3208
  article-title: Robust facial feature tracking under varying face pose and facial expression
  publication-title: Journal of Pattern Recognition
– volume: 31
  start-page: 365
  issue: 5
  year: 2013
  end-page: 378
  article-title: Manifold based sparse representation for facial understanding in natural images
  publication-title: Journal of Image and Vision Computing
– volume: 35
  start-page: 1357
  issue: 6
  year: 2013
  end-page: 1369
  article-title: Coupled gaussian processes for pose‐Invariant facial expression recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 40
  start-page: 646
  issue: 2
  year: 2013
  end-page: 655
  article-title: Fusion of feature sets and classifiers for facial expression recognition
  publication-title: Expert Systems with Applications
– volume: 34
  start-page: 1159
  issue: 10
  year: 2013
  end-page: 1168
  article-title: Framework for reliable, real‐time facial expression recognition for low resolution images
  publication-title: Journal of Pattern Recognition Letters
– volume: 34
  start-page: 1211
  issue: 11
  year: 2013
  end-page: 1220
  article-title: An improvement to the SIFT descriptor for image representation and matching
  publication-title: Journal of Pattern Recognition Letters
– volume: 2
  start-page: 1
  issue: 1
  year: 2010
  end-page: 14
  article-title: From cloud computing to language engineering, affective computing and advanced intelligence
  publication-title: International Journal of Advanced Intelligence
– start-page: 3533
  year: 2012
  end-page: 3536
  article-title: Multi‐view facial expression recognition using local appearance features
– volume: 117
  start-page: 1598
  issue: 7
  year: 2013
  end-page: 1609
  article-title: Invariant representation of facial expressions for blended expression recognition on unknown subjects
  publication-title: Journal of Computer Vision and Image Understanding
– volume: 20
  start-page: 657
  issue: 9
  year: 2002
  end-page: 664
  article-title: View‐based active appearance models
  publication-title: Journal of Image and vision computing
– volume: 32
  start-page: 671
  issue: 10
  year: 2014
  end-page: 681
  article-title: Non‐manual grammatical marker recognition based on multi‐scale, spatio‐temporal analysis of head pose and facial expressions
  publication-title: Journal of Image and Vision Computing
– start-page: 4125
  year: 2010
  end-page: 4128
  article-title: A set of selected SIFT features for 3D facial expression recognition
– volume: 26
  start-page: 467
  issue: 1
  year: 2013
  end-page: 477
  article-title: Facial expression recognition using tracked facial actions: classifier performance analysis
  publication-title: Journal of Engineering Applications of Artificial Intelligence
– start-page: 4450
  year: 2012
  end-page: 4455
  article-title: 3D AAM based face alignment under wide angular variations using 2D and 3D data
– volume: 27
  start-page: 1021
  issue: 11
  year: 2011
  end-page: 1036
  article-title: 3D facial expression recognition using SIFT descriptors of automatically detected keypoints
  publication-title: Journal of Visual Computer
– start-page: 490
  year: 2010
  end-page: 503
  article-title: Emotion recognition from arbitrary view facial images
– start-page: 593
  year: 2007
  end-page: 596
  article-title: Person‐specific SIFT features for face recognition
– volume: 45
  start-page: 80
  issue: 1
  end-page: 91
  article-title: Facial expression recognition using radial encoding of local Gabor features and classifier synthesis
  publication-title: Journal of Pattern Recognition
– volume: 129
  start-page: 136
  year: 2014
  end-page: 145
  article-title: Spectral embedding based facial expression recognition with multiple features
  publication-title: Journal of Neurocomputing
– volume: 17
  start-page: 2394
  issue: 11
  year: 2005
  end-page: 2401
  article-title: Facial expression recognition by weighted clustering of grouped features
  publication-title: Journal of Computer‐aided Design and Computer Graphics
– start-page: 1901
  year: 2009
  end-page: 1908
  article-title: A novel approach to expression recognition from non‐frontal face images
– volume: 39
  start-page: 578
  issue: 3
  year: 2009
  end-page: 591
  article-title: Generalized fuzzy c‐means clustering algorithm with improved fuzzy partitions
  publication-title: IEEE Transactions on System, Man, and Cybernetics, Part B, Cybernetics
– start-page: 691
  year: 2010
  end-page: 694
  article-title: Adaptation of SIFT features for face recognition under varying illumination
– volume: 47
  start-page: 1859
  issue: 5
  year: 2014
  end-page: 1868
  article-title: Spontaneous facial expression recognition: a robust metric learning approach
  publication-title: Journal of Pattern Recognition
– volume: 37
  start-page: 576
  issue: 3
  year: 2004
  end-page: 581
  article-title: Unsupervised learning of prototypes and attribute weights
  publication-title: Journal of Pattern Recognition
– start-page: 1
  year: 2008
  end-page: 4
  article-title: A study of non‐frontalview facial expressions recognition
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant key points
  publication-title: International Journal of Computer Vision
– volume: 38
  start-page: 1299
  issue: 5
  year: 2012
  end-page: 1309
  article-title: Localized discriminative scale invariant feature transform based facial expression recognition
  publication-title: Journal of Computers and Electrical Engineering
– volume: 2
  start-page: 1399
  year: 2006
  end-page: 1406
  article-title: 3D facial expression recognition based on primitive surface feature distribution
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006,)
– volume: 42
  start-page: 1340
  issue: 1
  year: 2009
  end-page: 1350
  article-title: Natural facial expression recognition using differential‐AAM and manifold learning
  publication-title: Journal of Pattern Recognition
– volume: 42
  start-page: 1003
  issue: 5
  end-page: 1011
  article-title: Facial expression recognition based on shape and texture
  publication-title: Journal of Pattern Recognition
– volume: 7585
  start-page: 578
  year: 2012
  end-page: 588
  article-title: Multi‐view facial expression recognition analysis with generic sparse coding feature, computer
  publication-title: Journal of Vision–ECCV 2012. Workshops and Demonstrations Lecture Notes in Computer Science
– volume: 115
  start-page: 241
  issue: 4
  year: 2011
  end-page: 558
  article-title: Local binary patterns for multi‐view facial expression recognition
  publication-title: Journal of Computer Vision and Image Understanding
– ident: e_1_2_9_18_1
  doi: 10.1016/j.cviu.2013.07.005
– ident: e_1_2_9_25_1
  doi: 10.1007/978-3-642-15567-3_36
– volume: 17
  start-page: 2394
  issue: 11
  year: 2005
  ident: e_1_2_9_35_1
  article-title: Facial expression recognition by weighted clustering of grouped features
  publication-title: Journal of Computer‐aided Design and Computer Graphics
– ident: e_1_2_9_3_1
  doi: 10.1016/j.patrec.2013.03.022
– volume: 37
  start-page: 576
  issue: 3
  year: 2004
  ident: e_1_2_9_34_1
  article-title: Unsupervised learning of prototypes and attribute weights
  publication-title: Journal of Pattern Recognition
– ident: e_1_2_9_28_1
  doi: 10.1016/S0262-8856(02)00055-0
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2006.14
– ident: e_1_2_9_5_1
  doi: 10.1109/TPAMI.2012.233
– ident: e_1_2_9_8_1
  doi: 10.1109/34.927467
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neucom.2013.09.046
– ident: e_1_2_9_26_1
  doi: 10.1016/j.eswa.2012.07.074
– ident: e_1_2_9_36_1
– ident: e_1_2_9_7_1
  doi: 10.1007/978-3-642-33885-4_58
– volume: 42
  start-page: 1003
  issue: 5
  ident: e_1_2_9_29_1
  article-title: Facial expression recognition based on shape and texture
  publication-title: Journal of Pattern Recognition
  doi: 10.1016/j.patcog.2008.08.034
– ident: e_1_2_9_21_1
  doi: 10.1016/j.compeleceng.2011.10.016
– ident: e_1_2_9_19_1
– ident: e_1_2_9_10_1
  doi: 10.1109/TSMCB.2008.2004818
– volume: 45
  start-page: 80
  issue: 1
  ident: e_1_2_9_14_1
  article-title: Facial expression recognition using radial encoding of local Gabor features and classifier synthesis
  publication-title: Journal of Pattern Recognition
  doi: 10.1016/j.patcog.2011.05.006
– ident: e_1_2_9_32_1
  doi: 10.1109/ICPR.2010.1002
– ident: e_1_2_9_2_1
  doi: 10.1016/j.patcog.2013.11.025
– ident: e_1_2_9_22_1
  doi: 10.1109/ICCV.2009.5459421
– volume: 2
  start-page: 1
  issue: 1
  year: 2010
  ident: e_1_2_9_4_1
  article-title: From cloud computing to language engineering, affective computing and advanced intelligence
  publication-title: International Journal of Advanced Intelligence
– ident: e_1_2_9_31_1
  doi: 10.1016/j.proeng.2012.07.177
– ident: e_1_2_9_9_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_9_33_1
  doi: 10.1109/ICASSP.2007.366305
– ident: e_1_2_9_6_1
  doi: 10.1016/j.imavis.2014.02.009
– ident: e_1_2_9_11_1
  doi: 10.1016/j.patcog.2007.02.021
– ident: e_1_2_9_24_1
  doi: 10.1109/ICPR.2008.4761052
– ident: e_1_2_9_30_1
  doi: 10.1016/j.patrec.2013.03.021
– ident: e_1_2_9_20_1
  doi: 10.1007/s00371-011-0611-x
– ident: e_1_2_9_16_1
  doi: 10.1016/j.imavis.2013.03.003
– ident: e_1_2_9_13_1
  doi: 10.1016/j.engappai.2012.09.002
– ident: e_1_2_9_27_1
  doi: 10.1109/ICRA.2012.6224590
– ident: e_1_2_9_17_1
  doi: 10.1016/j.patcog.2008.10.010
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cviu.2010.12.001
SSID ssj0046388
Score 2.1805656
Snippet The active appearance model (AAM), one of the most effective facial feature localization methods, is widely used in frontal facial expression recognition....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 713
SubjectTerms Algorithms
appearance model
Face recognition
Facial
Fuzzy
fuzzy c-means clustering
gradient direction histogram
non-frontal facial image
Regional
scale-invariant feature transform
Support vector machines
Weighting
Title Facial expression recognition based on AAM-SIFT and adaptive regional weighting
URI https://api.istex.fr/ark:/67375/WNG-7SFVDVB9-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftee.22151
https://www.proquest.com/docview/1720407856
https://www.proquest.com/docview/1762092351
Volume 10
WOSCitedRecordID wos000362748500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1931-4981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046388
  issn: 1931-4973
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JThwxEC2RGQ7kkLAEMWGRiRDi0tCLu-1WTgNMQ6RkxDLA3Cy37ZYiUINmhuXIP-QP8yW4egMkIiHlZqnLbqtc5XreXgFsRIpJi4Mjh1r0bRcoqXRiHkrHy3TE09h4GddFsgnW7_PhMD6agu_1W5iSH6LZcEPPKOZrdHCZjneeSUMnxmz7GLA-QNu3dktb0N4_Sc5-1hMxtabFy0NlDxOpBTWxkOvvNJVfhaM2avbhFdZ8iViLkJN8_q_OzsKnCmmSbmkaczBl8nn4-IJ_cAGOE4k75sQ8VNdhc9JcKLJljHCa2EK3--vv45_TH8mAyFwTqeUNzpIEszogkif3xQarbfMLnCW9wd6hU-VYcFToUs9hWmdUauW6KvJZzD2pVMAyFZoAeXoimWU60NRwrRgzMUfuHZqm1DXUxr7MDxahlV_nZgkI1y4ud7xIm4yawNhlt63uejpWKTMy7cBWrWqhKgJyzINxJUrqZF9YLYlCSx341ojelKwbbwltFuPVSMjRJV5TY6G46B8Idpqc75_vxmLYgZV6QEXloWPhYXYei4_CqAPrzWfrW3hgInNzfYsyke9aBIz_2iqG99-9EYNeryh8fb_oMsxY_BWWTxtXoDUZ3ZpVmFZ3k9_j0Vplzk_6V_gU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BLhLtoeVVsS0tpkIVl0AeTuxIXBbYAGJZtWUX9mY5tiOhVgEtS8ux_6H_sL-knrwAqZWQuFnJOLHGHs_nsf0NwGakmLQ4OHKoRd92gZJKJ-ahdLxMRzyNjZdxXSSbYIMBH4_jzzOwW9-FKfkhmoAbWkYxX6OBY0B65541dGrMto8eaxba1A6jsAXtg6_JqF_PxPiQl7vKHmZSC2pmIdffaSo_8kdtVO3dI7D5ELIWPid5_bzWLsCrCmuSbjk4FmHG5Evw8gED4TJ8SSTGzIm5qw7E5qQ5UmTL6OM0sYVu9_TPr99nx8mQyFwTqeU1zpME8zoglic_ixCr_eYKjJLecP_IqbIsOCp0qecwrTMqtXJdFfks5p5UKmCZCk2ATD2RzDIdaGq4VoyZmCP7Dk1T6hpqvV_mB2-glV_lZhUI1y4ueLxIm4yawNiFt63uejpWKTMy7cBWrWuhKgpyzITxXZTkyb6wWhKFljrwsRG9Lnk3_iX0qeiwRkJOvuFBNRaKi8GhYGfJ-cH5XizGHVire1RUNnojPMzPYxFSGHVgo3ltrQu3TGRurm5RJvJdi4HxX1tF__6_NWLY6xWFt08XXYf5o-FpX_SPByfv4IVFY2F50XENWtPJrXkPc-rH9PJm8qEa238B05z8BA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFD5B1hh8ULyFRdRqjOFlZC6dtpP4sro7QMANyoL71nR6SQhm2CwL8uh_8B_6S-yZm5BoYuJbkzntNKc9PV9P2-8AvGaaK4-DWUA9-vYblEIFmUhVEDnDRJHZyAlTJZvg47GYTrODJXjXvoWp-SG6gBtaRrVeo4HbmXFbv1lDF9a-jdFj3YIeTTPmzbI3_Jwf7bcrMfVzS9SnyhFmUktaZqEw3uoq3_BHPVTt1Q2weR2yVj4nv_9_vV2Few3WJIN6cjyAJVs-hLvXGAgfwadcYcyc2KvmQmxJuitFvow-zhBfGAw-_vz-43A3nxBVGqKMmuE6STCvA2J58q0Ksfo2H8NRPpp82AmaLAuBTkMaBdwYR5XRYahZzDMRKa0T7nRqE2TqYco5kxhqhdGc20wg-w4tChpa6r2fi5MnsFyelXYNiDAhbngiZqyjNrF-4-2rh5HJdMGtKvqw2epa6oaCHDNhfJU1eXIsvZZkpaU-vOpEZzXvxp-E3lQD1kmo-SleVOOp_DLelvwwPx4ev8_ktA8b7YjKxkbPZYT5eTxCSlkfXnafvXXhkYkq7dkFyrA49BgY_7VZje_feyMno1FVWP930Rdw52CYy_3d8d5TWPFgLK3fOW7A8mJ-YZ_BbX25ODmfP2-m9i9kxPt_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+expression+recognition+based+on+AAM-SIFT+and+adaptive+regional+weighting&rft.jtitle=IEEJ+transactions+on+electrical+and+electronic+engineering&rft.au=Ren%2C+Fuji&rft.au=Huang%2C+Zhong&rft.date=2015-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1931-4973&rft.eissn=1931-4981&rft.volume=10&rft.issue=6&rft.spage=713&rft.epage=722&rft_id=info:doi/10.1002%2Ftee.22151&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_7SFVDVB9_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-4973&client=summon