p53 and p21 regulate error-prone DNA repair to yield a lower mutation load

Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular cell Ročník 22; číslo 3; s. 407
Hlavní autoři: Avkin, Sharon, Sevilya, Ziv, Toube, Leanne, Geacintov, Nicholas, Chaney, Stephen G, Oren, Moshe, Livneh, Zvi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 05.05.2006
Témata:
ISSN:1097-2765
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability.
AbstractList Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability.
Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability.Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability.
Author Chaney, Stephen G
Sevilya, Ziv
Oren, Moshe
Livneh, Zvi
Geacintov, Nicholas
Avkin, Sharon
Toube, Leanne
Author_xml – sequence: 1
  givenname: Sharon
  surname: Avkin
  fullname: Avkin, Sharon
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 2
  givenname: Ziv
  surname: Sevilya
  fullname: Sevilya, Ziv
– sequence: 3
  givenname: Leanne
  surname: Toube
  fullname: Toube, Leanne
– sequence: 4
  givenname: Nicholas
  surname: Geacintov
  fullname: Geacintov, Nicholas
– sequence: 5
  givenname: Stephen G
  surname: Chaney
  fullname: Chaney, Stephen G
– sequence: 6
  givenname: Moshe
  surname: Oren
  fullname: Oren, Moshe
– sequence: 7
  givenname: Zvi
  surname: Livneh
  fullname: Livneh, Zvi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16678112$$D View this record in MEDLINE/PubMed
BookMark eNo1T8lOwzAU9KGILvAHCPnELcFb7ORYFcqiCi5wjl7sF5TKiYOTCPXviUQ5jUYzmmVNFl3okJAbzlLOuL4_pm3wFn0qGNMpkykTYkFWnBUmEUZnS7IehiNjXGV5cUmWXGuTcy5W5LXPJIXO0V5wGvFr8jAixRhDTPo4t9CHt-0s9NBEOgZ6atA7CtSHH4y0nUYYm9DNFNwVuajBD3h9xg353D9-7J6Tw_vTy257SGzG5JjUslaSi9qwCgBdYYHJorLKFFpbLp2xoJjEDERWVxqNA5HbSuWcAa85KLEhd3-5877vCYexbJthPu-hwzANpTaFklLks_H2bJyqFl3Zx6aFeCr_34tf1nxdAg
CitedBy_id crossref_primary_10_1182_blood_2009_10_248278
crossref_primary_10_1093_nar_gkn014
crossref_primary_10_1093_nar_gkp632
crossref_primary_10_3389_fimmu_2022_998975
crossref_primary_10_1093_nar_gkac545
crossref_primary_10_1002_em_22359
crossref_primary_10_1016_j_mrgentox_2021_503352
crossref_primary_10_1016_j_mrfmmm_2015_08_002
crossref_primary_10_1016_j_tiv_2009_05_009
crossref_primary_10_1371_journal_pgen_1002262
crossref_primary_10_1016_j_molimm_2021_08_005
crossref_primary_10_1038_s41467_023_44390_w
crossref_primary_10_1093_nar_gkt475
crossref_primary_10_1038_ncomms6437
crossref_primary_10_1016_j_molimm_2010_05_291
crossref_primary_10_1128_MMBR_00034_08
crossref_primary_10_1158_0008_5472_CAN_14_2249
crossref_primary_10_1007_s00204_014_1430_4
crossref_primary_10_1074_jbc_M112_380998
crossref_primary_10_1128_MCB_00071_09
crossref_primary_10_4028_www_scientific_net_KEM_330_332_287
crossref_primary_10_1134_S0012496613060100
crossref_primary_10_3390_ijms12128513
crossref_primary_10_1002_stem_1177
crossref_primary_10_1016_j_molcel_2007_11_005
crossref_primary_10_1080_10409238_2019_1687420
crossref_primary_10_1134_S1990519X1702002X
crossref_primary_10_1186_s13059_024_03451_z
crossref_primary_10_1016_j_colsurfb_2006_11_003
crossref_primary_10_1016_j_fsi_2015_07_022
crossref_primary_10_1093_nar_gkae061
crossref_primary_10_1016_j_bbapap_2009_06_010
crossref_primary_10_1016_j_mam_2007_06_002
crossref_primary_10_1073_pnas_1216894110
crossref_primary_10_1111_php_13279
crossref_primary_10_1016_j_molimm_2011_01_004
crossref_primary_10_1038_s41420_025_02416_w
crossref_primary_10_1093_nar_gkt1400
crossref_primary_10_1089_ars_2010_3673
crossref_primary_10_1134_S0006297910070138
crossref_primary_10_1016_j_biosystems_2010_07_005
crossref_primary_10_1186_s13059_018_1401_9
crossref_primary_10_1111_j_1600_0781_2008_00319_x
crossref_primary_10_1093_nar_gkr596
crossref_primary_10_1073_pnas_1605828113
crossref_primary_10_3390_ijms22136957
crossref_primary_10_1042_BST0380104
crossref_primary_10_3390_ijms23137058
crossref_primary_10_1242_jcs_027730
crossref_primary_10_1016_j_molcel_2021_06_011
crossref_primary_10_1158_0008_5472_CAN_09_0627
crossref_primary_10_1038_cdd_2011_19
crossref_primary_10_1083_jcb_201408017
crossref_primary_10_1016_j_dnarep_2016_05_007
crossref_primary_10_1186_1476_4598_13_205
crossref_primary_10_1517_17460440903055032
crossref_primary_10_3390_genes11060593
crossref_primary_10_1038_onc_2011_237
crossref_primary_10_1016_j_mrfmmm_2015_06_006
crossref_primary_10_1016_j_mrfmmm_2012_11_002
crossref_primary_10_1038_emboj_2008_281
crossref_primary_10_1093_neuonc_now132
crossref_primary_10_1016_j_dnarep_2021_103230
crossref_primary_10_1038_cr_2011_34
crossref_primary_10_1093_nar_gkae078
crossref_primary_10_1016_j_febslet_2011_06_005
crossref_primary_10_1093_nar_gkab526
crossref_primary_10_1007_s00018_023_04919_0
crossref_primary_10_1016_S1016_8478_23_13956_2
crossref_primary_10_1371_journal_pone_0052348
crossref_primary_10_1002_jcp_30155
crossref_primary_10_1093_nar_gkp703
crossref_primary_10_1016_j_dnarep_2010_02_011
crossref_primary_10_1016_j_dnarep_2015_04_027
crossref_primary_10_7554_eLife_18020
crossref_primary_10_1038_sj_jid_5700988
crossref_primary_10_1093_nar_gks612
crossref_primary_10_1124_mol_111_074708
crossref_primary_10_1111_raq_12613
crossref_primary_10_4061_2010_761217
crossref_primary_10_7124_bc_000762
crossref_primary_10_1007_s10555_011_9329_5
crossref_primary_10_1016_j_dnarep_2009_02_005
crossref_primary_10_1083_jcb_201002124
crossref_primary_10_3390_genes15101271
crossref_primary_10_3390_cancers10080250
crossref_primary_10_1016_j_febslet_2011_04_044
crossref_primary_10_26508_lsa_202302230
crossref_primary_10_1073_pnas_0812548106
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2006.03.022
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 16678112
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA099194
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
0SF
123
1~5
2WC
3O-
4.4
457
4G.
53G
5RE
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
NPM
O-L
O9-
OK1
OZT
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
X7M
5VS
7X8
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c503t-f3f4312f70baaed9ca039bc47966c13d7ca403e5a25fb6e7da28cb4810a1f1a42
IEDL.DBID 7X8
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000237618200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-2765
IngestDate Sun Nov 09 14:19:35 EST 2025
Sat Sep 28 07:45:42 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-f3f4312f70baaed9ca039bc47966c13d7ca403e5a25fb6e7da28cb4810a1f1a42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.molcel.2006.03.022
PMID 16678112
PQID 67943328
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67943328
pubmed_primary_16678112
PublicationCentury 2000
PublicationDate 2006-05-05
PublicationDateYYYYMMDD 2006-05-05
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-05
  day: 05
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2006
SSID ssj0014589
Score 2.2155795
Snippet Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 407
SubjectTerms Animals
Cyclin-Dependent Kinase Inhibitor p21 - deficiency
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
DNA - biosynthesis
DNA Repair - genetics
Gene Expression Regulation, Neoplastic
Humans
Mice
Mice, Knockout
Mutagenesis - genetics
Mutation - genetics
Proliferating Cell Nuclear Antigen - chemistry
Proliferating Cell Nuclear Antigen - metabolism
Protein Binding
Protein Structure, Tertiary
Tumor Suppressor Protein p53 - deficiency
Tumor Suppressor Protein p53 - metabolism
Ubiquitin - metabolism
Ultraviolet Rays
Title p53 and p21 regulate error-prone DNA repair to yield a lower mutation load
URI https://www.ncbi.nlm.nih.gov/pubmed/16678112
https://www.proquest.com/docview/67943328
Volume 22
WOSCitedRecordID wos000237618200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwGA2jo-DFfRnXHLxG02ZpCoKIOohgmYPC3Eq2wsBMWzszwvx7ky54Eg9CKZSQNHx8TV7zXvIAuA4s57HxmiqbMUSVxkgKwZDhMVWKCzdpZbXZRJQkYjyORz1w1-2F8bLKbkysB2pTaL9Gfsv9SWYkFPflJ_KeUZ5bbQ001kCfOCDjBV3R-IdDoKw2wPMUKwojzrqNc7W6a1ZMtZ22ZAS5wd489zeIWU81w53_dXIXbLcQEz40ObEHejbfB5uN6eTqALyWjECZG1iGAawaK3oLbVUVFXKvyy18Sh5cQSknFVwUcOU1blDCqfdTg7Nlw927R2kOwcfw-f3xBbWOCkgzTBYoI5kDDGEWYSWlNbGWmMRK08j99OiAmEhLiollMmSZ4jYyMhRaURFgGWSBpOERWM9dR04A5JTzKLBYUFdHS-L5UqO4azemMafxAFx1IUpdxnoaQua2WM7TLkgDcNxEOS2bgzXSwDUpHAA8_bPuGdhq1kKYu85BP3Pfqr0AG_prMZlXl3UiuHsyevsGH5q8Fg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p53+and+p21+regulate+error-prone+DNA+repair+to+yield+a+lower+mutation+load&rft.jtitle=Molecular+cell&rft.au=Avkin%2C+Sharon&rft.au=Sevilya%2C+Ziv&rft.au=Toube%2C+Leanne&rft.au=Geacintov%2C+Nicholas&rft.date=2006-05-05&rft.issn=1097-2765&rft.volume=22&rft.issue=3&rft.spage=407&rft_id=info:doi/10.1016%2Fj.molcel.2006.03.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon