Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice
We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain se...
Uloženo v:
| Vydáno v: | Plant and cell physiology Ročník 52; číslo 2; s. 344 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Japan
01.02.2011
|
| Témata: | |
| ISSN: | 1471-9053, 1471-9053 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis. |
|---|---|
| AbstractList | We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis. We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis. |
| Author | Nuruzzaman, Mohammed Sasaya, Takahide Sharoni, Akhter Most Omura, Toshihiro Satoh, Kouji Kikuchi, Shoshi Kondoh, Hiroaki Choi, Il-Ryong Shimizu, Takumi |
| Author_xml | – sequence: 1 givenname: Akhter Most surname: Sharoni fullname: Sharoni, Akhter Most organization: Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, 305-8602 Japan – sequence: 2 givenname: Mohammed surname: Nuruzzaman fullname: Nuruzzaman, Mohammed – sequence: 3 givenname: Kouji surname: Satoh fullname: Satoh, Kouji – sequence: 4 givenname: Takumi surname: Shimizu fullname: Shimizu, Takumi – sequence: 5 givenname: Hiroaki surname: Kondoh fullname: Kondoh, Hiroaki – sequence: 6 givenname: Takahide surname: Sasaya fullname: Sasaya, Takahide – sequence: 7 givenname: Il-Ryong surname: Choi fullname: Choi, Il-Ryong – sequence: 8 givenname: Toshihiro surname: Omura fullname: Omura, Toshihiro – sequence: 9 givenname: Shoshi surname: Kikuchi fullname: Kikuchi, Shoshi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21169347$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLAzEUhYNU7EM3_gDJzo1jM0lmMlnWUqtQsIiuhzS5wZR5NcmA_feOWsHF5buHc-5dnCkaNW0DCF2n5D4lks073Q1zSGV-hiYpF2kiScZG__YxmoawJ4SIgpELNKZpmkvGxQTt19AADtH3OvYewh3WlQrBWadVdG2DVWMwfHaDFb5l3RqoAm4tjh-AF1s6X72uHrY4etUE7V33c2SVjq0fULvqiF2DvdNwic6tqgJcnThD74-rt-VTsnlZPy8Xm0RnhMUEBMsyYogVSoq8yAvJQDGrc060MSTjOWdUQMEll4JaQ3fcCqmtNJwq0JrO0O3v3863hx5CLGsXNFSVaqDtQ1lkQy8iz9MheXNK9rsaTNl5Vyt_LP_qoV8kgmlI |
| CitedBy_id | crossref_primary_10_1186_s12870_025_06938_4 crossref_primary_10_1371_journal_pone_0218552 crossref_primary_10_1100_2012_821062 crossref_primary_10_1007_s00299_024_03223_w crossref_primary_10_1016_S2095_3119_15_61203_5 crossref_primary_10_1016_j_ijbiomac_2024_139314 crossref_primary_10_3390_ijms20246127 crossref_primary_10_1007_s10535_013_0355_8 crossref_primary_10_1007_s11103_018_0761_6 crossref_primary_10_1111_1755_0998_13529 crossref_primary_10_1007_s11103_011_9841_6 crossref_primary_10_1111_nph_18439 crossref_primary_10_1002_tpg2_20422 crossref_primary_10_1093_jxb_erz340 crossref_primary_10_3390_ijms13032744 crossref_primary_10_1007_s13562_017_0405_y crossref_primary_10_1007_s11240_016_1130_2 crossref_primary_10_3390_ijms21239253 crossref_primary_10_1371_journal_pone_0314135 crossref_primary_10_1007_s11103_015_0393_z crossref_primary_10_1016_j_plantsci_2022_111446 crossref_primary_10_1186_s12864_023_09262_z crossref_primary_10_1093_jxb_ery264 crossref_primary_10_1186_s12870_015_0661_8 crossref_primary_10_3389_fpls_2019_00820 crossref_primary_10_3390_life15081269 crossref_primary_10_1093_plcell_koad244 crossref_primary_10_3390_genes14040811 crossref_primary_10_1016_j_bcab_2021_102160 crossref_primary_10_1016_j_indcrop_2024_118361 crossref_primary_10_1007_s10126_012_9475_y crossref_primary_10_1016_j_plgene_2017_04_001 crossref_primary_10_3390_plants14182842 crossref_primary_10_1371_journal_pone_0252367 crossref_primary_10_1007_s11032_019_1073_5 crossref_primary_10_1007_s11033_013_2836_4 crossref_primary_10_1007_s00299_017_2134_z crossref_primary_10_1007_s11103_017_0623_7 crossref_primary_10_1371_journal_pone_0118056 crossref_primary_10_1007_s11103_018_0762_5 crossref_primary_10_1094_PHYTO_10_19_0395_R crossref_primary_10_7717_peerj_11647 crossref_primary_10_1007_s10535_015_0498_x crossref_primary_10_1016_j_plantsci_2017_10_006 crossref_primary_10_1016_S2095_3119_16_61521_6 crossref_primary_10_3389_fpls_2022_936602 crossref_primary_10_3389_fpls_2016_01964 crossref_primary_10_3389_fpls_2019_00297 crossref_primary_10_1089_omi_2012_0074 crossref_primary_10_1016_j_ygeno_2020_10_037 crossref_primary_10_3390_ijms231912013 crossref_primary_10_1016_j_gene_2018_10_066 crossref_primary_10_1016_j_plantsci_2011_11_015 crossref_primary_10_3389_fpls_2014_00702 crossref_primary_10_1007_s11816_020_00608_7 crossref_primary_10_1016_j_sjbs_2021_01_028 crossref_primary_10_1016_j_envexpbot_2021_104664 crossref_primary_10_1186_s12870_019_1922_8 crossref_primary_10_1016_j_fob_2015_02_002 crossref_primary_10_1016_j_jbiotec_2020_12_020 crossref_primary_10_3389_fpls_2017_00316 crossref_primary_10_1016_j_jia_2025_02_022 crossref_primary_10_1186_s41065_016_0008_y crossref_primary_10_3389_fpls_2024_1521758 crossref_primary_10_3390_plants11040502 crossref_primary_10_3389_fpls_2018_00094 crossref_primary_10_1371_journal_pone_0126657 crossref_primary_10_1186_s42483_024_00247_8 crossref_primary_10_1007_s00425_021_03799_7 crossref_primary_10_1093_plphys_kiaf018 crossref_primary_10_1111_ppl_13350 crossref_primary_10_3389_fpls_2020_00367 crossref_primary_10_1371_journal_pone_0150879 crossref_primary_10_1007_s11033_021_06826_8 crossref_primary_10_1007_s12033_014_9828_z crossref_primary_10_1371_journal_pone_0216068 crossref_primary_10_3390_ijms252312849 crossref_primary_10_4137_EBO_S9369 crossref_primary_10_1371_journal_pone_0083444 crossref_primary_10_1371_journal_pone_0146946 crossref_primary_10_1111_pbi_70307 crossref_primary_10_7717_peerj_10014 crossref_primary_10_3724_SP_J_1006_2011_01771 crossref_primary_10_1371_journal_pone_0049652 crossref_primary_10_1186_s12284_020_00405_4 crossref_primary_10_1155_2014_745091 crossref_primary_10_3390_plants12040823 crossref_primary_10_3390_agronomy10121904 crossref_primary_10_1007_s13205_018_1454_1 crossref_primary_10_1371_journal_pone_0077454 crossref_primary_10_3389_fpls_2015_00676 crossref_primary_10_1038_s41598_018_33744_w crossref_primary_10_1111_ppl_13805 crossref_primary_10_1155_2021_5578727 crossref_primary_10_1016_j_plaphy_2025_110176 crossref_primary_10_1007_s13562_018_0440_3 crossref_primary_10_1186_s12870_022_03632_7 crossref_primary_10_1371_journal_pone_0146242 crossref_primary_10_3390_ijms23020606 crossref_primary_10_3390_ijms25158025 crossref_primary_10_1016_j_cj_2016_01_004 crossref_primary_10_1111_ppl_70356 crossref_primary_10_1007_s00425_013_1880_6 crossref_primary_10_3389_fgene_2021_750761 crossref_primary_10_3390_plants12050994 crossref_primary_10_1007_s12374_014_0177_z crossref_primary_10_1139_gen_2018_0036 crossref_primary_10_1186_s12864_017_3517_9 crossref_primary_10_1515_biolog_2015_0092 crossref_primary_10_1186_1939_8433_5_35 crossref_primary_10_1007_s11738_013_1329_3 crossref_primary_10_1016_j_pmpp_2014_01_002 crossref_primary_10_1186_s12870_023_04180_4 crossref_primary_10_3390_antiox11040693 crossref_primary_10_1016_j_jplph_2012_02_018 crossref_primary_10_1093_pcp_pcv090 crossref_primary_10_3390_ijms22042080 crossref_primary_10_3390_f16081353 crossref_primary_10_1007_s00438_011_0659_3 crossref_primary_10_1111_ppl_13268 crossref_primary_10_1016_j_envexpbot_2020_104188 crossref_primary_10_1007_s11033_013_3004_6 crossref_primary_10_1016_j_ijbiomac_2023_128426 crossref_primary_10_1016_j_indcrop_2025_121753 crossref_primary_10_1016_j_tplants_2013_10_010 crossref_primary_10_3389_fmicb_2022_897589 crossref_primary_10_1080_19315260_2025_2487022 crossref_primary_10_1016_j_plgene_2021_100294 crossref_primary_10_1371_journal_pone_0121041 crossref_primary_10_1007_s00438_012_0686_8 crossref_primary_10_3390_plants14172771 crossref_primary_10_1016_j_plaphy_2025_110303 crossref_primary_10_1186_s12863_015_0213_0 crossref_primary_10_3390_ijms23042091 crossref_primary_10_48130_ph_0025_0008 crossref_primary_10_1104_pp_113_216044 crossref_primary_10_3390_ijms25052654 crossref_primary_10_3390_plants10091874 crossref_primary_10_3390_ijms24129813 crossref_primary_10_1038_srep36463 crossref_primary_10_1016_j_plaphy_2018_12_017 crossref_primary_10_3390_genes11060640 crossref_primary_10_1038_srep21623 crossref_primary_10_1007_s11033_020_05598_x crossref_primary_10_7717_peerj_9551 crossref_primary_10_1016_j_plantsci_2024_112012 crossref_primary_10_1007_s00425_013_1852_x crossref_primary_10_1111_pce_15250 crossref_primary_10_1016_j_plantsci_2013_04_003 crossref_primary_10_1007_s11295_013_0600_5 crossref_primary_10_1186_s12284_024_00734_8 crossref_primary_10_3390_agriculture12111879 crossref_primary_10_3390_plants11212829 crossref_primary_10_1007_s12374_013_0480_0 crossref_primary_10_1016_j_plaphy_2023_107849 crossref_primary_10_3390_ijms241914441 crossref_primary_10_1080_07391102_2015_1073630 crossref_primary_10_1007_s11738_014_1545_5 crossref_primary_10_3390_f14122300 crossref_primary_10_1002_csc2_20290 crossref_primary_10_1111_plb_13411 crossref_primary_10_1016_j_envexpbot_2019_05_015 crossref_primary_10_1016_j_hpj_2025_02_014 crossref_primary_10_1111_pbi_13056 crossref_primary_10_3389_fpls_2015_00640 crossref_primary_10_3390_horticulturae9020191 crossref_primary_10_1007_s00425_019_03222_2 crossref_primary_10_1007_s12374_016_0597_z crossref_primary_10_3389_fgene_2022_946834 crossref_primary_10_1007_s00709_016_0960_4 crossref_primary_10_1111_pbi_12520 crossref_primary_10_3390_ijms22062821 crossref_primary_10_1186_s12870_022_03521_z crossref_primary_10_1016_S1875_2780_11_60048_5 crossref_primary_10_3390_plants13243525 crossref_primary_10_1007_s00606_017_1407_x crossref_primary_10_3390_genes11121464 crossref_primary_10_3390_genes8120362 crossref_primary_10_1371_journal_pone_0127831 crossref_primary_10_3389_fpls_2015_01064 crossref_primary_10_1186_s12864_021_08119_7 crossref_primary_10_1016_j_hpj_2025_06_005 crossref_primary_10_1016_j_scitotenv_2021_152322 crossref_primary_10_1038_s41438_019_0165_z crossref_primary_10_1007_s11105_012_0456_0 crossref_primary_10_1007_s11105_012_0531_6 crossref_primary_10_3390_plants14040621 crossref_primary_10_1007_s00122_019_03494_y crossref_primary_10_1080_17429145_2019_1618503 crossref_primary_10_1186_s12870_022_03767_7 crossref_primary_10_1371_journal_pone_0165732 crossref_primary_10_1038_s41437_022_00500_w crossref_primary_10_3389_fpls_2021_692955 crossref_primary_10_3390_app11156668 crossref_primary_10_3390_ijms24087102 crossref_primary_10_1111_plb_12349 crossref_primary_10_1111_jpi_12454 crossref_primary_10_1186_s12864_024_10515_8 crossref_primary_10_1007_s11033_014_3396_y crossref_primary_10_1186_s12864_018_5288_3 crossref_primary_10_1186_1471_2164_12_514 crossref_primary_10_3390_plants11081062 crossref_primary_10_1016_j_envexpbot_2016_10_015 crossref_primary_10_1016_j_envexpbot_2023_105401 crossref_primary_10_1186_s12864_017_4306_1 crossref_primary_10_1016_j_plaphy_2025_109598 crossref_primary_10_1016_j_molp_2017_09_015 crossref_primary_10_1093_aob_mcaf006 crossref_primary_10_3389_fpls_2016_01029 crossref_primary_10_1016_j_gene_2013_08_048 crossref_primary_10_1080_07391102_2021_1894980 crossref_primary_10_1007_s10142_014_0399_7 crossref_primary_10_1016_j_plaphy_2019_04_009 crossref_primary_10_1186_s12870_024_05244_9 crossref_primary_10_1371_journal_pone_0214964 crossref_primary_10_1186_s12864_016_2845_5 crossref_primary_10_3390_ijms24065416 crossref_primary_10_7717_peerj_7211 crossref_primary_10_1007_s11033_014_3297_0 crossref_primary_10_1371_journal_pone_0151697 crossref_primary_10_1080_07388551_2020_1768509 crossref_primary_10_3389_fpls_2016_00067 crossref_primary_10_1038_s41598_020_75069_7 crossref_primary_10_1016_j_bbagrm_2011_08_004 crossref_primary_10_1007_s00344_014_9443_z crossref_primary_10_1186_s12870_016_0859_4 crossref_primary_10_1155_2013_954640 crossref_primary_10_3390_genes14010194 crossref_primary_10_3390_ijms21196984 crossref_primary_10_3390_ijms140611444 crossref_primary_10_1016_j_scienta_2022_111255 crossref_primary_10_3389_fpls_2022_849048 crossref_primary_10_1080_11263504_2018_1492989 crossref_primary_10_3390_plants14182922 crossref_primary_10_3389_fgene_2015_00256 crossref_primary_10_1080_07352689_2016_1265357 crossref_primary_10_1371_journal_pone_0037040 crossref_primary_10_1093_plphys_kiac125 crossref_primary_10_3390_plants8020034 crossref_primary_10_3389_fpls_2016_01383 crossref_primary_10_1111_j_1744_7909_2011_01062_x crossref_primary_10_1007_s11105_019_01171_4 crossref_primary_10_1093_plphys_kiad683 crossref_primary_10_3389_fpls_2022_848766 crossref_primary_10_3390_ijms21249755 crossref_primary_10_1007_s11738_015_1929_1 crossref_primary_10_3390_ijms241813748 crossref_primary_10_1111_jipb_12130 crossref_primary_10_1007_s11105_014_0784_3 crossref_primary_10_3390_genes11080851 crossref_primary_10_1007_s00299_016_2030_y crossref_primary_10_1186_1471_2164_15_950 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/pcp/pcq196 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology Botany |
| EISSN | 1471-9053 |
| ExternalDocumentID | 21169347 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -E4 -~X .2P .I3 0R~ 123 1TH 29O 2WC 4.4 482 48X 53G 5VS 5WD 6P2 7.U 70D A8Z AAHBH AAIMJ AAJKP AAJQQ AAKDD AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABDBF ABDFA ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABMNT ABNGD ABNKS ABPIB ABPQP ABPTD ABQLI ABQTQ ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFS ACIWK ACKIV ACNCT ACPQN ACPRK ACUFI ACUHS ACUKT ACUTJ ACVCV ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHXPO AIDBO AIJHB AJDVS AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CAG CDBKE CGR COF CS3 CUY CVF CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K EBD EBS ECGQY ECM EDH EE~ EIF EJD ELUNK EMOBN ESX F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 MBTAY N9A NGC NLBLG NOMLY NPM NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SV3 TCN TEORI TLC TN5 TUS TWZ W8F WHG X7H Y6R YAYTL YKOAZ YNT YSK YXANX ZCG ZJWQK ZKX ~91 ~KM 7X8 AJBYB ESTFP |
| ID | FETCH-LOGICAL-c503t-e73550d0f7a97686893ea3fc640cdd05464327e8494972fd2b4f79cf9d42aecc2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 277 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287254000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-9053 |
| IngestDate | Sun Sep 28 09:18:44 EDT 2025 Thu Apr 03 07:09:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c503t-e73550d0f7a97686893ea3fc640cdd05464327e8494972fd2b4f79cf9d42aecc2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/pcp/article-pdf/52/2/344/17114310/pcq196.pdf |
| PMID | 21169347 |
| PQID | 851477661 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_851477661 pubmed_primary_21169347 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-02-01 |
| PublicationDateYYYYMMDD | 2011-02-01 |
| PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Japan |
| PublicationPlace_xml | – name: Japan |
| PublicationTitle | Plant and cell physiology |
| PublicationTitleAlternate | Plant Cell Physiol |
| PublicationYear | 2011 |
| SSID | ssj0007830 |
| Score | 2.4927537 |
| Snippet | We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 344 |
| SubjectTerms | Chromosome Mapping Databases, Genetic DNA, Plant - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Exons Gene Duplication Gene Expression Profiling Gene Expression Regulation, Plant Introns Multigene Family Oryza - genetics Oryza - metabolism Oryza - virology Phylogeny Plant Proteins - genetics Plant Proteins - metabolism Plant Viruses - pathogenicity Sequence Alignment Stress, Physiological |
| Title | Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21169347 https://www.proquest.com/docview/851477661 |
| Volume | 52 |
| WOSCitedRecordID | wos000287254000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwFIUtoEVi4VFe5SUPjERNYyd2JtSiVgxQRQikbpHjhwRDkpIW0X_PdZzAhBgYks2SZV_7fravzkHo2lfAodqHhaRC7tEwtG6AQno0EyYTNOaZrl1LHthsxufzOGlqc6qmrLLdE-uNWhXS3pEPgAwoY5BNbsuFZ02j7ONq46CxiToESMYGNZv_iIUzXluNQDtbhRCSVp00JoNSlvAthnH0O1nWGWa698--7aPdBi3xyMXCAdrQeQ9tO7PJdQ91xwWA4PoQvVmpaeyEY1dw2r7B0iK0rRmqpwmLXGH92VTI5rg2y6lwYTDAIh4lwWDyNBkneGnTXLvpYGfcg92FCX7NsVUrOkIv08nz3b3XWC54MvTJ0tMM-MNXvmECOIVHQDNaECMj6kulAO8AYAKmudW0YYFRQUYNi6WJFQ0ERENwjLbyItenCHPN45BAKhgGhkZaCUK1HjIujKGS8rCPcDuYKYS0facQuS5WVfo9nH104iYkLZ30RgrH1SgmlJ393fgc7bj7X1t6coE6BpazvkRd-bF8rd6v6lCB_yx5_AKd5cpU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+structures%2C+classification+and+expression+models+of+the+AP2%2FEREBP+transcription+factor+family+in+rice&rft.jtitle=Plant+and+cell+physiology&rft.au=Sharoni%2C+Akhter+Most&rft.au=Nuruzzaman%2C+Mohammed&rft.au=Satoh%2C+Kouji&rft.au=Shimizu%2C+Takumi&rft.date=2011-02-01&rft.eissn=1471-9053&rft.volume=52&rft.issue=2&rft.spage=344&rft_id=info:doi/10.1093%2Fpcp%2Fpcq196&rft_id=info%3Apmid%2F21169347&rft_id=info%3Apmid%2F21169347&rft.externalDocID=21169347 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-9053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-9053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-9053&client=summon |