Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice

We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Plant and cell physiology Ročník 52; číslo 2; s. 344
Hlavní autori: Sharoni, Akhter Most, Nuruzzaman, Mohammed, Satoh, Kouji, Shimizu, Takumi, Kondoh, Hiroaki, Sasaya, Takahide, Choi, Il-Ryong, Omura, Toshihiro, Kikuchi, Shoshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Japan 01.02.2011
Predmet:
ISSN:1471-9053, 1471-9053
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.
AbstractList We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.
We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.
Author Nuruzzaman, Mohammed
Sasaya, Takahide
Sharoni, Akhter Most
Omura, Toshihiro
Satoh, Kouji
Kikuchi, Shoshi
Kondoh, Hiroaki
Choi, Il-Ryong
Shimizu, Takumi
Author_xml – sequence: 1
  givenname: Akhter Most
  surname: Sharoni
  fullname: Sharoni, Akhter Most
  organization: Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, 305-8602 Japan
– sequence: 2
  givenname: Mohammed
  surname: Nuruzzaman
  fullname: Nuruzzaman, Mohammed
– sequence: 3
  givenname: Kouji
  surname: Satoh
  fullname: Satoh, Kouji
– sequence: 4
  givenname: Takumi
  surname: Shimizu
  fullname: Shimizu, Takumi
– sequence: 5
  givenname: Hiroaki
  surname: Kondoh
  fullname: Kondoh, Hiroaki
– sequence: 6
  givenname: Takahide
  surname: Sasaya
  fullname: Sasaya, Takahide
– sequence: 7
  givenname: Il-Ryong
  surname: Choi
  fullname: Choi, Il-Ryong
– sequence: 8
  givenname: Toshihiro
  surname: Omura
  fullname: Omura, Toshihiro
– sequence: 9
  givenname: Shoshi
  surname: Kikuchi
  fullname: Kikuchi, Shoshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21169347$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EM3_gDJzo1jM0lmMlnWUqtQsIiuhzS5wZR5NcmA_feOWsHF5buHc-5dnCkaNW0DCF2n5D4lks073Q1zSGV-hiYpF2kiScZG__YxmoawJ4SIgpELNKZpmkvGxQTt19AADtH3OvYewh3WlQrBWadVdG2DVWMwfHaDFb5l3RqoAm4tjh-AF1s6X72uHrY4etUE7V33c2SVjq0fULvqiF2DvdNwic6tqgJcnThD74-rt-VTsnlZPy8Xm0RnhMUEBMsyYogVSoq8yAvJQDGrc060MSTjOWdUQMEll4JaQ3fcCqmtNJwq0JrO0O3v3863hx5CLGsXNFSVaqDtQ1lkQy8iz9MheXNK9rsaTNl5Vyt_LP_qoV8kgmlI
CitedBy_id crossref_primary_10_1186_s12870_025_06938_4
crossref_primary_10_1371_journal_pone_0218552
crossref_primary_10_1100_2012_821062
crossref_primary_10_1007_s00299_024_03223_w
crossref_primary_10_1016_S2095_3119_15_61203_5
crossref_primary_10_1016_j_ijbiomac_2024_139314
crossref_primary_10_3390_ijms20246127
crossref_primary_10_1007_s10535_013_0355_8
crossref_primary_10_1007_s11103_018_0761_6
crossref_primary_10_1111_1755_0998_13529
crossref_primary_10_1007_s11103_011_9841_6
crossref_primary_10_1111_nph_18439
crossref_primary_10_1002_tpg2_20422
crossref_primary_10_1093_jxb_erz340
crossref_primary_10_3390_ijms13032744
crossref_primary_10_1007_s13562_017_0405_y
crossref_primary_10_1007_s11240_016_1130_2
crossref_primary_10_3390_ijms21239253
crossref_primary_10_1371_journal_pone_0314135
crossref_primary_10_1007_s11103_015_0393_z
crossref_primary_10_1016_j_plantsci_2022_111446
crossref_primary_10_1186_s12864_023_09262_z
crossref_primary_10_1093_jxb_ery264
crossref_primary_10_1186_s12870_015_0661_8
crossref_primary_10_3389_fpls_2019_00820
crossref_primary_10_3390_life15081269
crossref_primary_10_1093_plcell_koad244
crossref_primary_10_3390_genes14040811
crossref_primary_10_1016_j_bcab_2021_102160
crossref_primary_10_1016_j_indcrop_2024_118361
crossref_primary_10_1007_s10126_012_9475_y
crossref_primary_10_1016_j_plgene_2017_04_001
crossref_primary_10_3390_plants14182842
crossref_primary_10_1371_journal_pone_0252367
crossref_primary_10_1007_s11032_019_1073_5
crossref_primary_10_1007_s11033_013_2836_4
crossref_primary_10_1007_s00299_017_2134_z
crossref_primary_10_1007_s11103_017_0623_7
crossref_primary_10_1371_journal_pone_0118056
crossref_primary_10_1007_s11103_018_0762_5
crossref_primary_10_1094_PHYTO_10_19_0395_R
crossref_primary_10_7717_peerj_11647
crossref_primary_10_1007_s10535_015_0498_x
crossref_primary_10_1016_j_plantsci_2017_10_006
crossref_primary_10_1016_S2095_3119_16_61521_6
crossref_primary_10_3389_fpls_2022_936602
crossref_primary_10_3389_fpls_2016_01964
crossref_primary_10_3389_fpls_2019_00297
crossref_primary_10_1089_omi_2012_0074
crossref_primary_10_1016_j_ygeno_2020_10_037
crossref_primary_10_3390_ijms231912013
crossref_primary_10_1016_j_gene_2018_10_066
crossref_primary_10_1016_j_plantsci_2011_11_015
crossref_primary_10_3389_fpls_2014_00702
crossref_primary_10_1007_s11816_020_00608_7
crossref_primary_10_1016_j_sjbs_2021_01_028
crossref_primary_10_1016_j_envexpbot_2021_104664
crossref_primary_10_1186_s12870_019_1922_8
crossref_primary_10_1016_j_fob_2015_02_002
crossref_primary_10_1016_j_jbiotec_2020_12_020
crossref_primary_10_3389_fpls_2017_00316
crossref_primary_10_1016_j_jia_2025_02_022
crossref_primary_10_1186_s41065_016_0008_y
crossref_primary_10_3389_fpls_2024_1521758
crossref_primary_10_3390_plants11040502
crossref_primary_10_3389_fpls_2018_00094
crossref_primary_10_1371_journal_pone_0126657
crossref_primary_10_1186_s42483_024_00247_8
crossref_primary_10_1007_s00425_021_03799_7
crossref_primary_10_1093_plphys_kiaf018
crossref_primary_10_1111_ppl_13350
crossref_primary_10_3389_fpls_2020_00367
crossref_primary_10_1371_journal_pone_0150879
crossref_primary_10_1007_s11033_021_06826_8
crossref_primary_10_1007_s12033_014_9828_z
crossref_primary_10_1371_journal_pone_0216068
crossref_primary_10_3390_ijms252312849
crossref_primary_10_4137_EBO_S9369
crossref_primary_10_1371_journal_pone_0083444
crossref_primary_10_1371_journal_pone_0146946
crossref_primary_10_1111_pbi_70307
crossref_primary_10_7717_peerj_10014
crossref_primary_10_3724_SP_J_1006_2011_01771
crossref_primary_10_1371_journal_pone_0049652
crossref_primary_10_1186_s12284_020_00405_4
crossref_primary_10_1155_2014_745091
crossref_primary_10_3390_plants12040823
crossref_primary_10_3390_agronomy10121904
crossref_primary_10_1007_s13205_018_1454_1
crossref_primary_10_1371_journal_pone_0077454
crossref_primary_10_3389_fpls_2015_00676
crossref_primary_10_1038_s41598_018_33744_w
crossref_primary_10_1111_ppl_13805
crossref_primary_10_1155_2021_5578727
crossref_primary_10_1016_j_plaphy_2025_110176
crossref_primary_10_1007_s13562_018_0440_3
crossref_primary_10_1186_s12870_022_03632_7
crossref_primary_10_1371_journal_pone_0146242
crossref_primary_10_3390_ijms23020606
crossref_primary_10_3390_ijms25158025
crossref_primary_10_1016_j_cj_2016_01_004
crossref_primary_10_1111_ppl_70356
crossref_primary_10_1007_s00425_013_1880_6
crossref_primary_10_3389_fgene_2021_750761
crossref_primary_10_3390_plants12050994
crossref_primary_10_1007_s12374_014_0177_z
crossref_primary_10_1139_gen_2018_0036
crossref_primary_10_1186_s12864_017_3517_9
crossref_primary_10_1515_biolog_2015_0092
crossref_primary_10_1186_1939_8433_5_35
crossref_primary_10_1007_s11738_013_1329_3
crossref_primary_10_1016_j_pmpp_2014_01_002
crossref_primary_10_1186_s12870_023_04180_4
crossref_primary_10_3390_antiox11040693
crossref_primary_10_1016_j_jplph_2012_02_018
crossref_primary_10_1093_pcp_pcv090
crossref_primary_10_3390_ijms22042080
crossref_primary_10_3390_f16081353
crossref_primary_10_1007_s00438_011_0659_3
crossref_primary_10_1111_ppl_13268
crossref_primary_10_1016_j_envexpbot_2020_104188
crossref_primary_10_1007_s11033_013_3004_6
crossref_primary_10_1016_j_ijbiomac_2023_128426
crossref_primary_10_1016_j_indcrop_2025_121753
crossref_primary_10_1016_j_tplants_2013_10_010
crossref_primary_10_3389_fmicb_2022_897589
crossref_primary_10_1080_19315260_2025_2487022
crossref_primary_10_1016_j_plgene_2021_100294
crossref_primary_10_1371_journal_pone_0121041
crossref_primary_10_1007_s00438_012_0686_8
crossref_primary_10_3390_plants14172771
crossref_primary_10_1016_j_plaphy_2025_110303
crossref_primary_10_1186_s12863_015_0213_0
crossref_primary_10_3390_ijms23042091
crossref_primary_10_48130_ph_0025_0008
crossref_primary_10_1104_pp_113_216044
crossref_primary_10_3390_ijms25052654
crossref_primary_10_3390_plants10091874
crossref_primary_10_3390_ijms24129813
crossref_primary_10_1038_srep36463
crossref_primary_10_1016_j_plaphy_2018_12_017
crossref_primary_10_3390_genes11060640
crossref_primary_10_1038_srep21623
crossref_primary_10_1007_s11033_020_05598_x
crossref_primary_10_7717_peerj_9551
crossref_primary_10_1016_j_plantsci_2024_112012
crossref_primary_10_1007_s00425_013_1852_x
crossref_primary_10_1111_pce_15250
crossref_primary_10_1016_j_plantsci_2013_04_003
crossref_primary_10_1007_s11295_013_0600_5
crossref_primary_10_1186_s12284_024_00734_8
crossref_primary_10_3390_agriculture12111879
crossref_primary_10_3390_plants11212829
crossref_primary_10_1007_s12374_013_0480_0
crossref_primary_10_1016_j_plaphy_2023_107849
crossref_primary_10_3390_ijms241914441
crossref_primary_10_1080_07391102_2015_1073630
crossref_primary_10_1007_s11738_014_1545_5
crossref_primary_10_3390_f14122300
crossref_primary_10_1002_csc2_20290
crossref_primary_10_1111_plb_13411
crossref_primary_10_1016_j_envexpbot_2019_05_015
crossref_primary_10_1016_j_hpj_2025_02_014
crossref_primary_10_1111_pbi_13056
crossref_primary_10_3389_fpls_2015_00640
crossref_primary_10_3390_horticulturae9020191
crossref_primary_10_1007_s00425_019_03222_2
crossref_primary_10_1007_s12374_016_0597_z
crossref_primary_10_3389_fgene_2022_946834
crossref_primary_10_1007_s00709_016_0960_4
crossref_primary_10_1111_pbi_12520
crossref_primary_10_3390_ijms22062821
crossref_primary_10_1186_s12870_022_03521_z
crossref_primary_10_1016_S1875_2780_11_60048_5
crossref_primary_10_3390_plants13243525
crossref_primary_10_1007_s00606_017_1407_x
crossref_primary_10_3390_genes11121464
crossref_primary_10_3390_genes8120362
crossref_primary_10_1371_journal_pone_0127831
crossref_primary_10_3389_fpls_2015_01064
crossref_primary_10_1186_s12864_021_08119_7
crossref_primary_10_1016_j_hpj_2025_06_005
crossref_primary_10_1016_j_scitotenv_2021_152322
crossref_primary_10_1038_s41438_019_0165_z
crossref_primary_10_1007_s11105_012_0456_0
crossref_primary_10_1007_s11105_012_0531_6
crossref_primary_10_3390_plants14040621
crossref_primary_10_1007_s00122_019_03494_y
crossref_primary_10_1080_17429145_2019_1618503
crossref_primary_10_1186_s12870_022_03767_7
crossref_primary_10_1371_journal_pone_0165732
crossref_primary_10_1038_s41437_022_00500_w
crossref_primary_10_3389_fpls_2021_692955
crossref_primary_10_3390_app11156668
crossref_primary_10_3390_ijms24087102
crossref_primary_10_1111_plb_12349
crossref_primary_10_1111_jpi_12454
crossref_primary_10_1186_s12864_024_10515_8
crossref_primary_10_1007_s11033_014_3396_y
crossref_primary_10_1186_s12864_018_5288_3
crossref_primary_10_1186_1471_2164_12_514
crossref_primary_10_3390_plants11081062
crossref_primary_10_1016_j_envexpbot_2016_10_015
crossref_primary_10_1016_j_envexpbot_2023_105401
crossref_primary_10_1186_s12864_017_4306_1
crossref_primary_10_1016_j_plaphy_2025_109598
crossref_primary_10_1016_j_molp_2017_09_015
crossref_primary_10_1093_aob_mcaf006
crossref_primary_10_3389_fpls_2016_01029
crossref_primary_10_1016_j_gene_2013_08_048
crossref_primary_10_1080_07391102_2021_1894980
crossref_primary_10_1007_s10142_014_0399_7
crossref_primary_10_1016_j_plaphy_2019_04_009
crossref_primary_10_1186_s12870_024_05244_9
crossref_primary_10_1371_journal_pone_0214964
crossref_primary_10_1186_s12864_016_2845_5
crossref_primary_10_3390_ijms24065416
crossref_primary_10_7717_peerj_7211
crossref_primary_10_1007_s11033_014_3297_0
crossref_primary_10_1371_journal_pone_0151697
crossref_primary_10_1080_07388551_2020_1768509
crossref_primary_10_3389_fpls_2016_00067
crossref_primary_10_1038_s41598_020_75069_7
crossref_primary_10_1016_j_bbagrm_2011_08_004
crossref_primary_10_1007_s00344_014_9443_z
crossref_primary_10_1186_s12870_016_0859_4
crossref_primary_10_1155_2013_954640
crossref_primary_10_3390_genes14010194
crossref_primary_10_3390_ijms21196984
crossref_primary_10_3390_ijms140611444
crossref_primary_10_1016_j_scienta_2022_111255
crossref_primary_10_3389_fpls_2022_849048
crossref_primary_10_1080_11263504_2018_1492989
crossref_primary_10_3390_plants14182922
crossref_primary_10_3389_fgene_2015_00256
crossref_primary_10_1080_07352689_2016_1265357
crossref_primary_10_1371_journal_pone_0037040
crossref_primary_10_1093_plphys_kiac125
crossref_primary_10_3390_plants8020034
crossref_primary_10_3389_fpls_2016_01383
crossref_primary_10_1111_j_1744_7909_2011_01062_x
crossref_primary_10_1007_s11105_019_01171_4
crossref_primary_10_1093_plphys_kiad683
crossref_primary_10_3389_fpls_2022_848766
crossref_primary_10_3390_ijms21249755
crossref_primary_10_1007_s11738_015_1929_1
crossref_primary_10_3390_ijms241813748
crossref_primary_10_1111_jipb_12130
crossref_primary_10_1007_s11105_014_0784_3
crossref_primary_10_3390_genes11080851
crossref_primary_10_1007_s00299_016_2030_y
crossref_primary_10_1186_1471_2164_15_950
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/pcp/pcq196
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1471-9053
ExternalDocumentID 21169347
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.I3
0R~
123
1TH
29O
2WC
4.4
482
48X
53G
5VS
5WD
6P2
7.U
70D
A8Z
AAHBH
AAIMJ
AAJKP
AAJQQ
AAKDD
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABMNT
ABNGD
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQTQ
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFS
ACIWK
ACKIV
ACNCT
ACPQN
ACPRK
ACUFI
ACUHS
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHMBA
AHXPO
AIDBO
AIJHB
AJDVS
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
EBD
EBS
ECGQY
ECM
EDH
EE~
EIF
EJD
ELUNK
EMOBN
ESX
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
N9A
NGC
NLBLG
NOMLY
NPM
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SV3
TCN
TEORI
TLC
TN5
TUS
TWZ
W8F
WHG
X7H
Y6R
YAYTL
YKOAZ
YNT
YSK
YXANX
ZCG
ZJWQK
ZKX
~91
~KM
7X8
AJBYB
ESTFP
ID FETCH-LOGICAL-c503t-e73550d0f7a97686893ea3fc640cdd05464327e8494972fd2b4f79cf9d42aecc2
IEDL.DBID 7X8
ISICitedReferencesCount 277
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287254000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-9053
IngestDate Sun Sep 28 09:18:44 EDT 2025
Thu Apr 03 07:09:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-e73550d0f7a97686893ea3fc640cdd05464327e8494972fd2b4f79cf9d42aecc2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/pcp/article-pdf/52/2/344/17114310/pcq196.pdf
PMID 21169347
PQID 851477661
PQPubID 23479
ParticipantIDs proquest_miscellaneous_851477661
pubmed_primary_21169347
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Plant and cell physiology
PublicationTitleAlternate Plant Cell Physiol
PublicationYear 2011
SSID ssj0007830
Score 2.493126
Snippet We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 344
SubjectTerms Chromosome Mapping
Databases, Genetic
DNA, Plant - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Exons
Gene Duplication
Gene Expression Profiling
Gene Expression Regulation, Plant
Introns
Multigene Family
Oryza - genetics
Oryza - metabolism
Oryza - virology
Phylogeny
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Viruses - pathogenicity
Sequence Alignment
Stress, Physiological
Title Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice
URI https://www.ncbi.nlm.nih.gov/pubmed/21169347
https://www.proquest.com/docview/851477661
Volume 52
WOSCitedRecordID wos000287254000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ27T8MwEMYtoEVi4VFe5SUPjERN7SSOJ9SiVixUEQKpW-T4IZUhSUmL6H_POU5gQgwMyWYpsi93P9un70PoVseED7O6uVVnXsB97UEZ0l4UKqDvLKaBcWYTbDaL53OeNL05VdNW2ebEOlGrQtoz8gGQQcAYVJP7culZ0yh7udo4aGyjDgWSsUHN5j9i4SyurUZgnO1CCGmrTsrpoJQlPMshj34ny7rCTA_--W2HaL9BSzxysXCEtnTeQ7vObHLTQ91xASC4OUZvVmoaO-HYNey277C0CG17huplwiJXWH82HbI5rs1yKlwYDLCIRwkZTJ4n4wSvbJlrkw52xj3YHZjgRY6tWtEJep1OXh4evcZywZOhT1eeZsAfvvINE8ApcQQ0owU1Mgp8qRTgHQAMYTq2mjaMGEWywDAuDVcBERAN5BTt5EWuzxH2KROhAoJTFEYTJSAoeCwE01LFKsv6CLeTmUJI23sKketiXaXf09lHZ25B0tJJb6SwXY04DdjF34Mv0Z47_7WtJ1eoY-B31teoKz9Wi-r9pg4VeM-Spy8Q_8ms
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+structures%2C+classification+and+expression+models+of+the+AP2%2FEREBP+transcription+factor+family+in+rice&rft.jtitle=Plant+and+cell+physiology&rft.au=Sharoni%2C+Akhter+Most&rft.au=Nuruzzaman%2C+Mohammed&rft.au=Satoh%2C+Kouji&rft.au=Shimizu%2C+Takumi&rft.date=2011-02-01&rft.issn=1471-9053&rft.eissn=1471-9053&rft.volume=52&rft.issue=2&rft.spage=344&rft_id=info:doi/10.1093%2Fpcp%2Fpcq196&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-9053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-9053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-9053&client=summon