Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation

Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has be...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 23; no. 10; p. 1368
Main Authors: Bac, Jonathan, Mirkes, Evgeny M., Gorban, Alexander N., Tyukin, Ivan, Zinovyev, Andrei
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 19.10.2021
MDPI
Subjects:
ISSN:1099-4300, 1099-4300
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data.
AbstractList Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data.
Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data.Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data.
Author Zinovyev, Andrei
Bac, Jonathan
Gorban, Alexander N.
Mirkes, Evgeny M.
Tyukin, Ivan
AuthorAffiliation 2 INSERM, U900, 75248 Paris, France
3 CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75272 Paris, France
5 Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky University, 603105 Nizhniy Novgorod, Russia
4 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK; em322@leicester.ac.uk (E.M.M.); a.n.gorban@leicester.ac.uk (A.N.G.); i.tyukin@leicester.ac.uk (I.T.)
1 Institut Curie, PSL Research University, 75248 Paris, France
AuthorAffiliation_xml – name: 5 Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky University, 603105 Nizhniy Novgorod, Russia
– name: 3 CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75272 Paris, France
– name: 1 Institut Curie, PSL Research University, 75248 Paris, France
– name: 4 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK; em322@leicester.ac.uk (E.M.M.); a.n.gorban@leicester.ac.uk (A.N.G.); i.tyukin@leicester.ac.uk (I.T.)
– name: 2 INSERM, U900, 75248 Paris, France
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Bac
  fullname: Bac, Jonathan
– sequence: 2
  givenname: Evgeny M.
  orcidid: 0000-0003-1474-1734
  surname: Mirkes
  fullname: Mirkes, Evgeny M.
– sequence: 3
  givenname: Alexander N.
  orcidid: 0000-0001-6224-1430
  surname: Gorban
  fullname: Gorban, Alexander N.
– sequence: 4
  givenname: Ivan
  orcidid: 0000-0002-7359-7966
  surname: Tyukin
  fullname: Tyukin, Ivan
– sequence: 5
  givenname: Andrei
  orcidid: 0000-0002-9517-7284
  surname: Zinovyev
  fullname: Zinovyev, Andrei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34682092$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03445133$$DView record in HAL
BookMark eNptkk1vEzEQhi1URD_gwB9AK3Ghh1DbY-_aHJCiktJIkagEnC2vPxKnm3Vrbyr13-MkJbQRJ4_Gz7zvjD2n6KiPvUPoPcGfASS-cBQIJlCLV-iEYClHDDA-ehYfo9OclxhToKR-g46B1YJiSU_Q5KcJt2EYfQsr1-cQ-y_VuLp5HBaxr260udVzV_mYqmk_pFAAU-3JapKHsNJDCd-i11532b17Os_Q76vJr8vr0ezH9-nleDYyHMMwsr4F8Jq20riWGeBa-BbX2FtKjRWN8a3nTAjXCNMIXzNg3mBaM8m5tZ7DGZrudG3US3WXin16VFEHtU3ENFc6DcF0TrWt5GBr76R1DAsvKWHSiBYaZpvakKL1dad1t25XzhpXJtTdC9GXN31YqHl8UIID45wVgfOdwOKg7Ho8U5scBsY4AXjYmH16Mkvxfu3yoFYhG9d1undxnRXlgjWSEL6Z8eMBuozr1Jdn3VLQUC5loT48737v__dn_3VnUsw5Ob9HCFabrVH7rSnsxQFrwrD92DJ46P5T8QeW0MGb
CitedBy_id crossref_primary_10_3390_data10050070
crossref_primary_10_1016_j_ecoinf_2025_103322
crossref_primary_10_1016_j_neuron_2025_01_022
crossref_primary_10_1088_2632_2153_ade94d
crossref_primary_10_1162_neco_a_23
crossref_primary_10_3389_fmolb_2021_793912
crossref_primary_10_1016_j_patcog_2023_109580
crossref_primary_10_1038_s41598_023_43821_4
crossref_primary_10_1088_2632_2153_add3bc
crossref_primary_10_1109_TNNLS_2022_3172276
crossref_primary_10_1016_j_jksuci_2024_102219
crossref_primary_10_1371_journal_pcbi_1012892
crossref_primary_10_1145_3709729
crossref_primary_10_1051_epjn_2025025
crossref_primary_10_3390_e25050801
crossref_primary_10_3390_jcm11072061
crossref_primary_10_1186_s13244_023_01564_w
crossref_primary_10_3390_e24111597
crossref_primary_10_3389_fnhum_2023_1134012
crossref_primary_10_3892_ol_2022_13270
crossref_primary_10_3390_ijms231710169
crossref_primary_10_1002_minf_202400265
crossref_primary_10_1002_jcc_27295
crossref_primary_10_1029_2023MS003918
crossref_primary_10_1109_LSENS_2024_3425760
crossref_primary_10_1186_s12967_023_04443_6
crossref_primary_10_3390_en16031437
crossref_primary_10_3389_fneur_2022_1005650
crossref_primary_10_1099_jgv_0_001802
crossref_primary_10_1038_s41598_025_91676_8
crossref_primary_10_1109_TKDE_2024_3468629
crossref_primary_10_1186_s12884_023_05819_8
crossref_primary_10_1021_acs_jpcc_3c07398
crossref_primary_10_1186_s40537_024_00898_6
crossref_primary_10_3390_e25010033
crossref_primary_10_1186_s40644_023_00549_8
crossref_primary_10_1016_j_heliyon_2024_e34410
crossref_primary_10_3389_fmolb_2022_967510
crossref_primary_10_1016_j_ijbiomac_2022_09_151
crossref_primary_10_1111_2041_210X_70066
crossref_primary_10_1038_s41392_023_01515_3
crossref_primary_10_1186_s13321_025_01045_w
crossref_primary_10_1016_j_ejca_2025_115608
crossref_primary_10_1016_j_swevo_2025_102058
crossref_primary_10_3389_fnbot_2022_1120167
crossref_primary_10_3389_fnhum_2023_1111645
Cites_doi 10.1155/2015/759567
10.1109/IJCNN48605.2020.9207096
10.1101/2021.06.14.448414
10.1038/s41598-017-11873-y
10.1145/2833157.2833162
10.1145/1102351.1102388
10.3390/e22030296
10.1109/TSP.2009.2031722
10.1016/j.drudis.2017.01.005
10.1038/s41598-020-72222-0
10.1016/j.ins.2018.07.040
10.1142/S0129065710002383
10.1109/SSP.2009.5278634
10.1016/j.patcog.2014.02.013
10.3390/e22101105
10.1016/0893-9659(93)90023-G
10.32614/RJ-2017-054
10.1016/j.ins.2015.08.029
10.1007/s10994-012-5294-7
10.1186/1752-0509-2-86
10.1038/s41592-019-0686-2
10.1007/s10618-018-0578-6
10.1137/1.9781611975673.21
10.1109/IJCNN48605.2020.9207472
10.1016/j.aml.2006.04.022
10.1145/1081870.1081880
10.1038/s41586-020-2649-2
10.1145/2641190.2641198
10.1109/MCSE.2007.55
10.1016/S0169-7161(82)02018-5
10.1109/TPAMI.2014.2343220
10.1101/2021.03.18.435808
10.1145/1273496.1273530
10.1007/s11263-008-0144-6
10.1016/0022-0981(76)90076-9
10.1109/T-C.1971.223208
10.1186/1745-6150-2-2
10.1016/0167-2789(83)90298-1
10.1109/IJCNN.2019.8852450
10.2307/1939574
10.1016/S0006-3495(00)76580-5
10.1098/rsta.2017.0237
10.20944/preprints202106.0718.v1
10.1214/aos/1176343247
10.1177/001316446002000116
10.1126/science.aax0249
10.3389/fnbot.2019.00110
10.1093/oso/9780198538493.001.0001
10.1016/j.plrev.2018.09.005
10.1016/j.neunet.2021.01.034
10.1093/gigascience/giaa128
10.1073/pnas.2100473118
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
5PM
DOA
DOI 10.3390/e23101368
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection (via ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_bb953d6fe9de408f92149c8b374d76c1
PMC8534554
oai:HAL:hal-03445133v1
34682092
10_3390_e23101368
Genre Journal Article
GrantInformation_xml – fundername: Institut de Recherches Internationales Servier
  grantid: N/A
– fundername: UKRI Turing AI Acceleration Fellowship
  grantid: EP/V025295/1
– fundername: Agence Nationale de la Recherche
  grantid: ANR-19-P3IA-0001
– fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: 075-15-2021-634
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
1XC
C1A
CH8
IPNFZ
RIG
5PM
ID FETCH-LOGICAL-c503t-dfb33fa2b9ceb4c35a8fb060fd22cd87cfbf5488e78c78f6434fc0264955ddf53
IEDL.DBID DOA
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:44:21 EDT 2025
Tue Nov 04 01:56:11 EST 2025
Sat Nov 01 11:33:47 EDT 2025
Wed Oct 01 14:45:13 EDT 2025
Fri Jul 25 11:52:24 EDT 2025
Thu Apr 03 06:53:21 EDT 2025
Tue Nov 18 21:49:50 EST 2025
Sat Nov 29 07:20:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords method benchmarking
effective dimension
Python package
intrinsic dimension
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-dfb33fa2b9ceb4c35a8fb060fd22cd87cfbf5488e78c78f6434fc0264955ddf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC8534554
ORCID 0000-0002-9517-7284
0000-0003-1474-1734
0000-0001-6224-1430
0000-0002-7359-7966
OpenAccessLink https://doaj.org/article/bb953d6fe9de408f92149c8b374d76c1
PMID 34682092
PQID 2584372599
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_bb953d6fe9de408f92149c8b374d76c1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8534554
hal_primary_oai_HAL_hal_03445133v1
proquest_miscellaneous_2584791155
proquest_journals_2584372599
pubmed_primary_34682092
crossref_primary_10_3390_e23101368
crossref_citationtrail_10_3390_e23101368
PublicationCentury 2000
PublicationDate 20211019
PublicationDateYYYYMMDD 2021-10-19
PublicationDate_xml – month: 10
  year: 2021
  text: 20211019
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Gorban (ref_51) 2019; 29
Gorban (ref_68) 2018; 376
ref_14
Gorban (ref_60) 2007; 20
ref_13
ref_57
Golovenkin (ref_16) 2020; 9
Palla (ref_6) 2012; Volume 4
Giuliani (ref_54) 2017; 22
ref_19
ref_17
Facco (ref_31) 2017; 7
ref_15
Chen (ref_63) 2019; 10
Bac (ref_9) 2020; 13
ref_61
Haro (ref_26) 2008; 80
ref_25
ref_24
ref_23
Johnsson (ref_56) 2015; 37
ref_65
Ceruti (ref_29) 2014; 47
Szczurek (ref_62) 2020; 21
Jackson (ref_21) 1993; 74
Gorban (ref_66) 2010; 20
Pedregosa (ref_1) 2011; 12
Carter (ref_27) 2010; 58
Gulati (ref_53) 2020; 24
Camastra (ref_12) 2016; 328
Frontier (ref_59) 1976; 25
ref_72
ref_71
ref_70
Harris (ref_34) 2020; 585
Krishnaiah (ref_3) 1982; Volume 2
Grassberger (ref_18) 1983; 9
ref_36
Giuliani (ref_7) 2000; 78
ref_33
ref_30
ref_73
Kaiser (ref_58) 1960; 20
ref_39
ref_37
Vanschoren (ref_52) 2013; 15
Grechuk (ref_75) 2021; 138
Campadelli (ref_11) 2015; 2015
Cangelosi (ref_55) 2007; 2
Allegra (ref_74) 2020; 10
Gorban (ref_32) 2018; 466
Hunter (ref_35) 2007; 9
ref_47
Hino (ref_10) 2017; 9
ref_46
ref_45
ref_44
ref_43
Virtanen (ref_38) 2020; 17
ref_42
ref_41
ref_40
Donoho (ref_67) 2000; 1
ref_2
Sritharan (ref_64) 2021; 118
Amsaleg (ref_20) 2018; 32
ref_49
Fukunaga (ref_22) 1971; C-20
ref_48
ref_8
ref_5
ref_4
Rozza (ref_28) 2012; 89
Kainen (ref_69) 1993; 6
References_xml – volume: 2015
  start-page: 759567
  year: 2015
  ident: ref_11
  article-title: Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/759567
– ident: ref_50
  doi: 10.1109/IJCNN48605.2020.9207096
– ident: ref_17
  doi: 10.1101/2021.06.14.448414
– ident: ref_49
– ident: ref_5
– volume: 7
  start-page: 12140
  year: 2017
  ident: ref_31
  article-title: Estimating the intrinsic dimension of datasets by a minimal neighborhood information
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11873-y
– ident: ref_37
  doi: 10.1145/2833157.2833162
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_1
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_39
– ident: ref_14
  doi: 10.1145/1102351.1102388
– ident: ref_42
– ident: ref_61
  doi: 10.3390/e22030296
– ident: ref_23
– volume: 58
  start-page: 650
  year: 2010
  ident: ref_27
  article-title: On Local Intrinsic Dimension Estimation and Its Applications
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2031722
– volume: 22
  start-page: 1069
  year: 2017
  ident: ref_54
  article-title: The application of principal component analysis to drug discovery and biomedical data
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.01.005
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_74
  article-title: Data segmentation based on the local intrinsic dimension
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72222-0
– volume: 466
  start-page: 303
  year: 2018
  ident: ref_32
  article-title: Correction of AI systems by linear discriminants: Probabilistic foundations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.07.040
– ident: ref_8
– ident: ref_48
– volume: 20
  start-page: 219
  year: 2010
  ident: ref_66
  article-title: Principal manifolds and graphs in practice: From molecular biology to dynamical systems
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065710002383
– ident: ref_41
– ident: ref_13
  doi: 10.1109/SSP.2009.5278634
– ident: ref_45
– volume: 47
  start-page: 2569
  year: 2014
  ident: ref_29
  article-title: DANCo: An intrinsic dimensionality estimator exploiting angle and norm concentration
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.02.013
– volume: 21
  start-page: 1
  year: 2020
  ident: ref_62
  article-title: Eleven grand challenges in single-cell data science
  publication-title: Genome Biol.
– ident: ref_15
  doi: 10.3390/e22101105
– volume: 6
  start-page: 7
  year: 1993
  ident: ref_69
  article-title: Quasiorthogonal dimension of euclidean spaces
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(93)90023-G
– volume: 9
  start-page: 329
  year: 2017
  ident: ref_10
  article-title: ider: Intrinsic Dimension Estimation with R
  publication-title: R J.
  doi: 10.32614/RJ-2017-054
– volume: 328
  start-page: 26
  year: 2016
  ident: ref_12
  article-title: Intrinsic dimension estimation: Advances and open problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.08.029
– volume: 89
  start-page: 37
  year: 2012
  ident: ref_28
  article-title: Novel high intrinsic dimensionality estimators
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5294-7
– ident: ref_65
  doi: 10.1186/1752-0509-2-86
– ident: ref_30
– volume: 17
  start-page: 261
  year: 2020
  ident: ref_38
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 32
  start-page: 1768
  year: 2018
  ident: ref_20
  article-title: Extreme-value-theoretic estimation of local intrinsic dimensionality
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-018-0578-6
– ident: ref_33
  doi: 10.1137/1.9781611975673.21
– ident: ref_70
  doi: 10.1109/IJCNN48605.2020.9207472
– ident: ref_47
– volume: Volume 4
  start-page: 2987
  year: 2012
  ident: ref_6
  article-title: A nonparametric variable clustering model
  publication-title: Advances in Neural Information Processing Systems
– volume: 20
  start-page: 382
  year: 2007
  ident: ref_60
  article-title: Topological grammars for data approximation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.04.022
– ident: ref_73
  doi: 10.1145/1081870.1081880
– volume: 585
  start-page: 357
  year: 2020
  ident: ref_34
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 15
  start-page: 49
  year: 2013
  ident: ref_52
  article-title: OpenML: Networked Science in Machine Learning
  publication-title: SIGKDD Explor.
  doi: 10.1145/2641190.2641198
– volume: 9
  start-page: 90
  year: 2007
  ident: ref_35
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: Volume 2
  start-page: 347
  year: 1982
  ident: ref_3
  article-title: Intrinsic dimensionality extraction
  publication-title: Pattern Recognition and Reduction of Dimensionality, Handbook of Statistics
  doi: 10.1016/S0169-7161(82)02018-5
– ident: ref_40
– volume: 37
  start-page: 196
  year: 2015
  ident: ref_56
  article-title: Low Bias Local Intrinsic Dimension Estimation from Expected Simplex Skewness
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2343220
– ident: ref_72
  doi: 10.1101/2021.03.18.435808
– ident: ref_19
  doi: 10.1145/1273496.1273530
– volume: 80
  start-page: 358
  year: 2008
  ident: ref_26
  article-title: Translated poisson mixture model for stratification learning
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0144-6
– ident: ref_44
– volume: 25
  start-page: 67
  year: 1976
  ident: ref_59
  article-title: Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé
  publication-title: J. Exp. Mar. Biol. Ecol.
  doi: 10.1016/0022-0981(76)90076-9
– volume: C-20
  start-page: 176
  year: 1971
  ident: ref_22
  article-title: An Algorithm for Finding Intrinsic Dimensionality of Data
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1971.223208
– volume: 2
  start-page: 2
  year: 2007
  ident: ref_55
  article-title: Component retention in principal component analysis with application to cDNA microarray data
  publication-title: Biol. Direct
  doi: 10.1186/1745-6150-2-2
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_63
  article-title: Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
  publication-title: Nat. Commun.
– volume: 9
  start-page: 189
  year: 1983
  ident: ref_18
  article-title: Measuring the strangeness of strange attractors
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(83)90298-1
– ident: ref_4
  doi: 10.1109/IJCNN.2019.8852450
– volume: 74
  start-page: 2204
  year: 1993
  ident: ref_21
  article-title: Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches
  publication-title: Ecology
  doi: 10.2307/1939574
– ident: ref_25
– volume: 78
  start-page: 136
  year: 2000
  ident: ref_7
  article-title: Nonlinear Methods in the Analysis of Protein Sequences: A Case Study in Rubredoxins
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76580-5
– volume: 376
  start-page: 20170237
  year: 2018
  ident: ref_68
  article-title: Blessing of dimensionality: Mathematical foundations of the statistical physics of data
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2017.0237
– ident: ref_46
– ident: ref_71
  doi: 10.20944/preprints202106.0718.v1
– ident: ref_24
  doi: 10.1214/aos/1176343247
– volume: 20
  start-page: 141
  year: 1960
  ident: ref_58
  article-title: The Application of Electronic Computers to Factor Analysis
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000116
– volume: 24
  start-page: 405
  year: 2020
  ident: ref_53
  article-title: Single-cell transcriptional diversity is a hallmark of developmental potential
  publication-title: Science
  doi: 10.1126/science.aax0249
– volume: 13
  start-page: 110
  year: 2020
  ident: ref_9
  article-title: Lizard Brain: Tackling Locally Low-Dimensional Yet Globally Complex Organization of Multi-Dimensional Datasets
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2019.00110
– ident: ref_36
– ident: ref_43
– ident: ref_2
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 29
  start-page: 55
  year: 2019
  ident: ref_51
  article-title: The unreasonable effectiveness of small neural ensembles in high-dimensional brain
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2018.09.005
– volume: 138
  start-page: 33
  year: 2021
  ident: ref_75
  article-title: General stochastic separation theorems with optimal bounds
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.01.034
– ident: ref_57
– volume: 9
  start-page: giaa128
  year: 2020
  ident: ref_16
  article-title: Trajectories, bifurcations, and pseudo-time in large clinical datasets: Applications to myocardial infarction and diabetes data
  publication-title: GigaScience
  doi: 10.1093/gigascience/giaa128
– volume: 118
  start-page: e2100473118
  year: 2021
  ident: ref_64
  article-title: Computing the Riemannian curvature of image patch and single-cell RNA sequencing data manifolds using extrinsic differential geometry
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2100473118
– volume: 1
  start-page: 1
  year: 2000
  ident: ref_67
  article-title: High-dimensional data analysis: The curses and blessings of dimensionality
  publication-title: AMS Math Challenges Lect.
SSID ssj0023216
Score 2.5656493
Snippet Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1368
SubjectTerms Algorithms
Application programming interface
Artificial Intelligence
Computer Science
Datasets
Documentation
effective dimension
Fractals
intrinsic dimension
Life Sciences
Machine Learning
method benchmarking
Methods
Open source software
Principal components analysis
Public domain
Python package
Quality assessment
Quantitative Methods
Technical Note
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOACRbwWWmQQBy5RE9uJbS5oabcqUlWtxEO9RX5NuyrKlt1tJf49M0k2dAFx4ZqM4pHH4_nGnnzD2JvgAwjqEZYKkJnSMWXeWZcZDE3a-2RMS1_89VifnJjTUzvtD9yWfVnlek9sN-o4D3RGvicwUkqNYN2-v_yeUdcoul3tW2jcZneIJaFoS_c-DQmXFEXVsQlJTO33EmGZQhKr6o0Y1FL1Y2Q5p0LIP1Hm78WSN6LP4YP_1Xub3e9xJx93C-Uhu5WaR2yCnn0xW2UHRPFPx2bv-JhPfxCdAJ-6cIF7DUdQyz-iTjMUCHyQ5BPcG7rfHh-zL4eTz_tHWd9XIQtlLldZBC8lOOFtSF4FWToDPq9yiEKEaHQAD5jImKRN0AYQsygImKthLlXGCKV8wraaeZOeMZ4M5CFE5aNzqrTeW-0duKICMN6AGLG365muQ086Tr0vvtWYfJBR6sEoI_Z6EL3smDb-JvSBzDUIEDl2-2C-OKt7X6tRi1LGCpKNSeUGrMA0MBgvtYq6CgWOhMbe-MbR-LimZ0SASB1vrlFoZ23PunfrZf3LmCP2aniNDkm3LK5J86tORmMIKcsRe9otnWEoqSpEXBanRW8sqg1dNt80s_OW9BthlULo9_zfar1g9wQV3VDJjd1hW6vFVdpld8P1arZcvGy94yeJ8BuR
  priority: 102
  providerName: ProQuest
Title Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
URI https://www.ncbi.nlm.nih.gov/pubmed/34682092
https://www.proquest.com/docview/2584372599
https://www.proquest.com/docview/2584791155
https://hal.science/hal-03445133
https://pubmed.ncbi.nlm.nih.gov/PMC8534554
https://doaj.org/article/bb953d6fe9de408f92149c8b374d76c1
Volume 23
WOSCitedRecordID wos000714951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCQLyWlpVBHLhEzcZObPe2hVStVFYRLy2nyK9RV0UpareVeulvZybJRrstEhcuOdgjJ5rJxN-XTL5h7L13HjLqERYnIBKpQkycNTbRuDUp56LWrXzxj2M1m-n53FRrrb6oJqyTB-4ct-ucyUUoIJoQZarBZIjpvXZCyaAK3xKfVJkVmeqplsgmRacjJJDU70ZCMRNBeqpru08r0o97ygmVQN7Fl7fLJNf2nYMn7HEPGPm0u9Cn7F5snrESU_J0sUw-kTY_ve_a41NeXZMOAK-sP8WHBEc0yo9wyQUaeD5Y8hKTuvtf8Tn7flB--3iY9A0REp-nYpkEcEKAzZzx0UkvcqvBpUUKIct80MqDA2QgOirtlQYEGxI8kiwkQXkIkIsXbKs5a-IrxqOG1PsgXbBW5ga9rJwFOykAtNOQjdiHlaNq36uFU9OKXzWyBvJpPfh0xN4Npr87iYy_Ge2TtwcDUrVuBzDWdR_r-l-xxjNhrDbWOJwe1zRGyoXUquYKjXZWoaz7fLyoM8RZQiHVMyP2dpjGTKLPI7aJZ5edjcJnf56P2Msu8sOphCwQKhl0i9q4JzauZXOmWZy0at2IhyRittf_wwHb7FFGNTVUUWN22Nby_DK-YQ_91XJxcT5m99Vcj9mD_XJWfRm3CTGmWtavdLwpcaY6-lz9_AOe8hP3
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQkuPMQrUGBBIHGxau_a3l0khAJNlaghikRBvbn7pFGRU5K0qH-K38iMXzSAuPXA1TuyV-tvZ77xjucj5IU1NjDUCPNJ4FEqnI-MVjqSEJqEMV7Kqn3x57GYTOTBgZpukB_tvzBYVtn6xMpRu7nFb-TbDCIlF0DW1duTbxGqRuHpaiuhUcNiz59_h5Rt-Wa0A-_3JWO7g_33w6hRFYhsFvNV5ILhPGhmlPUmtTzTMpg4j4NjzDopbDABaLz0QlohA0TsNFjIVCCTyJwLqBIBLv8K0AimqlLBj12Cx1mS192LOFfxtkfulHDs4noh5lXSABDJjrDw8k9W-3tx5oVot3vzf1unW-RGw6tpv94It8mGL--QAXiu49kq2kEJA_ws-Jr26fQc2yXQqbbH4EspkHY6gjWYgYGlnSUdgO-rf-u8Sz5dyszvkc1yXvoHhHoZYmtdapzWaaaMUcLooJM8BGlkYD3yqn2zhW2aqqO2x9cCkisEQdGBoEeed6YndSeRvxm9Q3h0Btj8u7owX3wpGl9SwCwy7vLglfNpLINikOZaabhInchtAk8CcK3dY9gfF3gNGzyios8ZGG21-Ckat7UsfoGnR551w-Bw8BRJl35-WtsICJFZ1iP3a6h2j-JpDoxSwbKINRCvzWV9pJwdVU3NgTamQG0f_ntaT8m14f6HcTEeTfYekesMC4ywvEhtkc3V4tQ_Jlft2Wq2XDypdiYlh5cN8Z_O5ns9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKUJceIhXSgGDQOJixd61vbtICAWSqFFD5AOgcnL3SaMip03Sov41fh0ztmMaQNx64Ood2av1tzPfeMfzEfLCaOMpaoS52LMw4daFWkkVCghNXGsnRNW--POET6fi4EDmW-TH-l8YLKtc-8TKUdu5wW_kPQqRknEg67Lnm7KIfDB6e3IaooIUnrSu5TRqiOy7i--Qvi3fjAfwrl9SOhp-fL8XNgoDoUkjtgqt14x5RbU0TieGpUp4HWWRt5QaK7jx2gOlF44Lw4WH6J14A1kLZBWptR4VI8D9bwMlT2iHbOfjD_mXNt1jNM7qXkaMyajnkEnFDHu6XoqAlVAAxLUjLMP8k-P-Xqp5KfaNbv3Pq3ab3GwYd9Cvt8gdsuXKu2QIPu14tgoHKG6AHwxfB_0gv8BGCkGuzDF42QDofDCG9ZiBgQlay2AIXrH-4fMe-XQlM79POuW8dA9J4ISPjLGJtkolqdRacq28ijPvhRaedsmr9VsuTNNuHVU_vhWQdiEgihYQXfK8NT2pe4z8zegdQqU1wLbg1YX54mvReJkCZpEym3knrUsi4SWFBNgIzXhieWZieBIAbeMee_1Jgdew9SNq_ZyD0e4aS0Xj0JbFLyB1ybN2GFwRni-p0s3PahsOwTNNu-RBDdv2USzJgGtKWBa-AeiNuWyOlLOjqt05EMoESO_Ov6f1lFwHZBeT8XT_EblBsfII647kLumsFmfuMblmzlez5eJJs00DcnjVGP8JIRSFcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scikit-Dimension%3A+A+Python+Package+for+Intrinsic+Dimension+Estimation&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Bac%2C+Jonathan&rft.au=Mirkes%2C+Evgeny+M.&rft.au=Gorban%2C+Alexander+N.&rft.au=Tyukin%2C+Ivan&rft.date=2021-10-19&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=23&rft.issue=10&rft.spage=1368&rft_id=info:doi/10.3390%2Fe23101368&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e23101368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon