Identification of predictive patient characteristics for assessing the probability of COVID-19 in-hospital mortality

As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful action...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLOS digital health Ročník 3; číslo 4; s. e0000327
Hlavní autoři: Rajwa, Bartek, Naved, Md Mobasshir Arshed, Adibuzzaman, Mohammad, Grama, Ananth Y., Khan, Babar A., Dundar, M. Murat, Rochet, Jean-Christophe
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 01.04.2024
Public Library of Science (PLoS)
Témata:
ISSN:2767-3170, 2767-3170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.
AbstractList As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death. Gaining insight into the patient attributes that are indicative of poor outcomes resulting from infections caused by highly lethal viruses such as SARS-CoV-2 is of paramount importance for hospitals and healthcare systems in order to adequately anticipate and address forthcoming outbreaks. Approximately 20% of the infections in the initial phase of the COVID-19 pandemic resulted in severe respiratory complications triggered by inflammatory responses. Moreover, individuals with severe COVID-19, particularly those with pre-existing neurodegenerative conditions, who were at a heightened risk, frequently displayed neurologic symptoms. Although there is a documented association between severe COVID-19 and neurologic issues, the underlying causes remain elusive. In this study, we examined the electronic health records of 471 patients with severe COVID-19 to identify clinical indicators that could predict mortality. Through machine learning models, we discovered a series of clinical features, notably those associated with cognitive dysfunction, that accurately predict mortality (area under the ROC curve > 0.85). These results underscore the significance of specific clinical indicators in recognizing patients at increased risk of mortality from COVID-19, thus enabling more focused and effective healthcare strategies.
As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.
As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.
Author Adibuzzaman, Mohammad
Khan, Babar A.
Rajwa, Bartek
Naved, Md Mobasshir Arshed
Dundar, M. Murat
Rochet, Jean-Christophe
Grama, Ananth Y.
AuthorAffiliation 5 Regenstrief Institute, Indianapolis, Indiana, United States of America
6 Dept. of Computer and Information Science, IUPUI, Indianapolis, Indiana, United States of America
7 Borch Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
2 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
CSL Behring / Swiss Institute for Translational and Entrepreneurial Medicine (SITEM), SWITZERLAND
3 Dept. of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
1 Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
4 Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States of America
AuthorAffiliation_xml – name: 1 Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
– name: 4 Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States of America
– name: 2 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
– name: CSL Behring / Swiss Institute for Translational and Entrepreneurial Medicine (SITEM), SWITZERLAND
– name: 7 Borch Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
– name: 5 Regenstrief Institute, Indianapolis, Indiana, United States of America
– name: 6 Dept. of Computer and Information Science, IUPUI, Indianapolis, Indiana, United States of America
– name: 3 Dept. of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
Author_xml – sequence: 1
  givenname: Bartek
  orcidid: 0000-0001-7540-8236
  surname: Rajwa
  fullname: Rajwa, Bartek
– sequence: 2
  givenname: Md Mobasshir Arshed
  surname: Naved
  fullname: Naved, Md Mobasshir Arshed
– sequence: 3
  givenname: Mohammad
  surname: Adibuzzaman
  fullname: Adibuzzaman, Mohammad
– sequence: 4
  givenname: Ananth Y.
  surname: Grama
  fullname: Grama, Ananth Y.
– sequence: 5
  givenname: Babar A.
  surname: Khan
  fullname: Khan, Babar A.
– sequence: 6
  givenname: M. Murat
  surname: Dundar
  fullname: Dundar, M. Murat
– sequence: 7
  givenname: Jean-Christophe
  surname: Rochet
  fullname: Rochet, Jean-Christophe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38652722$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQQC1UREvpP0BoJS5cNvhzvcsFoVAgUqVegKtle8eJo816sZ1K_fd4mwS1PeCLrfGbp7FnXqOzMYyA0FuCF4RJ8nEb9nHUw2Lq_XqBy2JUvkAXVDayZkTis0fnc3SV0rYwtCVYduQVOmdtI6ik9ALlVQ9j9s5bnX0Yq-CqKULvbfZ3UE0lWK4ru9FR2wzRp-xtqlyIlU4JUvLjusqbQsZgtPGDz_ezY3n7e_W1Jl3lx3oT0uSzHqpdiGUrxBv00ukhwdVxv0S_vl3_XP6ob26_r5ZfbmorMMu1cVITCozxTmIA23aG9qx3xjZaAm6Z44RLxrmQlBlqHZBONw1roTM9dYJdotXB2we9VVP0Ox3vVdBePQRCXCsdy4MGUJ3lILAWHQjDdc-LwZgGlxDVwpLZ9fngmvZmB70t3xL18ET69Gb0G7UOd4oQzKRgTTF8OBpi-LOHlNXOJwvDoEcI-6QY5oKQFjekoO-foceGz1TLupaSpi3Uu8cl_avl1N0CfDoANoaUIjhlSyPmPpcK_aAIVvM0neRqniZ1nKaSzJ8ln_z_TfsLuX_UVw
CitedBy_id crossref_primary_10_1136_bmjph_2024_001888
crossref_primary_10_1177_20552076241287919
Cites_doi 10.1097/00006199-198707000-00002
10.1145/2939672.2939785
10.1016/j.ijantimicag.2020.106110
10.1080/00325481.2020.1786964
10.1007/s00415-021-10735-y
10.1016/j.ijid.2020.07.029
10.1056/NEJMsb2021088
10.3390/jpm11090893
10.1016/j.eswa.2021.114832
10.1111/j.1532-5415.2005.53120.x
10.1109/TPAMI.2011.177
10.1097/00006416-200401000-00010
10.1038/s41379-020-00700-x
10.3390/ijerph20010775
10.1002/alz.12556
10.3928/00989134-20150723-01
10.1016/j.eururo.2020.05.013
10.1093/jamia/ocab004
10.1111/j.1467-9868.2005.00503.x
10.1038/nmeth0409-237
10.52964/AMJA.0825
10.1111/wvn.12526
10.1016/S0140-6736(21)02796-3
10.1017/CBO9780511528446.003
10.1016/S0140-6736(13)60592-9
10.1111/j.2517-6161.1996.tb02080.x
10.12788/jhm.3097
10.1371/journal.pone.0241742
10.1038/s41591-022-02156-9
10.1007/s10618-012-0295-5
10.1016/j.jinf.2021.01.022
10.1371/journal.pmed.1003571
10.1371/journal.pone.0247461
10.1007/s42399-020-00363-4
10.1097/CIN.0000000000000943
10.1017/ice.2022.13
10.1038/s41598-022-18725-4
10.35755/jmedassocthai.2021.06.12671
10.1137/15M1048070
10.33192/Smj.2022.17
10.1097/WCO.0000000000000944
10.1038/s41586-020-2521-4
10.1016/j.cyto.2020.155404
10.1371/journal.pone.0243262
10.1016/S2215-0366(21)00084-5
10.7326/0003-4819-113-12-941
10.1371/journal.pcbi.1009121
10.1002/jmv.26300
10.2196/24018
10.1137/16M1097717
10.1080/00401706.1970.10488634
10.1136/jim-2021-002278
ContentType Journal Article
Copyright Copyright: © 2024 Rajwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2024 Rajwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Rajwa et al 2024 Rajwa et al
Copyright_xml – notice: Copyright: © 2024 Rajwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2024 Rajwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Rajwa et al 2024 Rajwa et al
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1371/journal.pdig.0000327
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Predictive patient characteristics for COVID-19 in-hospital mortality assessment
EISSN 2767-3170
ExternalDocumentID oai_doaj_org_article_9c4e50a59e5b4ad49bdbb6050a2a5c15
PMC11037536
38652722
10_1371_journal_pdig_0000327
Genre Journal Article
GeographicLocations United States--US
Indianapolis Indiana
GeographicLocations_xml – name: United States--US
– name: Indianapolis Indiana
GrantInformation_xml – fundername: ;
  grantid: IN-US-983-6060
GroupedDBID 53G
7X7
8C1
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABUWG
ACCTH
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EIHBH
FPL
FYUFA
GROUPED_DOAJ
HMCUK
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c503t-bf7a12e334970eec89b2d3dfbc6a7e083f41473445723b2cfe19a6638e9bd2f53
IEDL.DBID 8C1
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001416902100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2767-3170
IngestDate Fri Oct 03 12:51:34 EDT 2025
Tue Nov 04 02:05:44 EST 2025
Fri Sep 05 07:22:23 EDT 2025
Tue Oct 07 07:07:31 EDT 2025
Mon Jul 21 05:57:11 EDT 2025
Sat Nov 29 06:23:55 EST 2025
Tue Nov 18 22:00:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright: © 2024 Rajwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-bf7a12e334970eec89b2d3dfbc6a7e083f41473445723b2cfe19a6638e9bd2f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-7540-8236
OpenAccessLink https://www.proquest.com/docview/3083982168?pq-origsite=%requestingapplication%
PMID 38652722
PQID 3083982168
PQPubID 6980581
ParticipantIDs doaj_primary_oai_doaj_org_article_9c4e50a59e5b4ad49bdbb6050a2a5c15
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11037536
proquest_miscellaneous_3045118061
proquest_journals_3083982168
pubmed_primary_38652722
crossref_citationtrail_10_1371_journal_pdig_0000327
crossref_primary_10_1371_journal_pdig_0000327
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLOS digital health
PublicationTitleAlternate PLOS Digit Health
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References SF Farhadian (pdig.0000327.ref007) 2021; 34
pdig.0000327.ref053
C Li (pdig.0000327.ref004) 2022; 12
pdig.0000327.ref010
Y Zhou (pdig.0000327.ref001) 2020; 99
E Lovicu (pdig.0000327.ref035) 2021; 18
A Sanyaolu (pdig.0000327.ref051) 2020; 2
M Smith (pdig.0000327.ref014) 2021; 176
JA Belsky (pdig.0000327.ref003) 2021; 82
F Bottino (pdig.0000327.ref022) 2021; 11
N Bergstrom (pdig.0000327.ref032) 1987; 36
V Swatesutipun (pdig.0000327.ref040) 2022; 74
JA Frontera (pdig.0000327.ref005) 2022; 18
(pdig.0000327.ref045) 2009; 6
M Cavallaro (pdig.0000327.ref019) 2021; 17
S Ma (pdig.0000327.ref060) 2020
JN Mumm (pdig.0000327.ref038) 2020; 78
BE Dixon (pdig.0000327.ref054) 2021; 28
A Vaid (pdig.0000327.ref017) 2020; 22
SM Lundberg (pdig.0000327.ref026) 2017; 30
D Bertsimas (pdig.0000327.ref018) 2020; 15
BM Cilingir (pdig.0000327.ref044) 2022; 68
MR Puelle (pdig.0000327.ref028) 2015; 41
P Thepmankorn (pdig.0000327.ref008) 2021; 138
F Ok (pdig.0000327.ref042) 2021; 93
R Tibshirani (pdig.0000327.ref024) 1996; 58
M Taquet (pdig.0000327.ref006) 2021; 8
AL Booth (pdig.0000327.ref015) 2021; 34
A Booth (pdig.0000327.ref046) 2021; 16
T Banerjee (pdig.0000327.ref020) 2022; 12
H Zou (pdig.0000327.ref009) 2005; 67
LS Shapley (pdig.0000327.ref011) 1988
M Ikram (pdig.0000327.ref021) 2023; 20
AE Mesas (pdig.0000327.ref002) 2020; 15
J Alderden (pdig.0000327.ref034) 2022; 40
G Menardi (pdig.0000327.ref027) 2014; 28
A Buoite Stella (pdig.0000327.ref041) 2022; 269
AC Stokes (pdig.0000327.ref057) 2021; 18
M Shahrokhi (pdig.0000327.ref031) 2022
CD Russell (pdig.0000327.ref050) 2023; 29
H Xu (pdig.0000327.ref025) 2012; 34
Wj Guan (pdig.0000327.ref048) 2020; 55
E Song (pdig.0000327.ref012) 2016; 4
MS Gold (pdig.0000327.ref047) 2020; 132
SK Inouye (pdig.0000327.ref030) 1990; 113
AE Hoerl (pdig.0000327.ref023) 1970; 12
SJ Brown (pdig.0000327.ref033) 2004; 23
WH Ng (pdig.0000327.ref049) 2021; 12
A Ramón (pdig.0000327.ref016) 2022; 70
AB Owen (pdig.0000327.ref013) 2017; 5
EJ Williamson (pdig.0000327.ref052) 2020; 584
V Swatesutipun (pdig.0000327.ref039) 2021; 104
H Wang (pdig.0000327.ref058) 2022; 399
NR Fillmore (pdig.0000327.ref059) 2022; 43
SK Inouye (pdig.0000327.ref029) 2005; 53
D Bozaan (pdig.0000327.ref037) 2019; 14
B Riley (pdig.0000327.ref056) 2020; 19
A Cheng (pdig.0000327.ref043) 2020; 56
D Blumenthal (pdig.0000327.ref055) 2020; 383
V Chopra (pdig.0000327.ref036) 2013; 382
References_xml – volume: 36
  start-page: 205
  issue: 4
  year: 1987
  ident: pdig.0000327.ref032
  article-title: The Braden Scale for Predicting Pressure Sore Risk
  publication-title: Nursing Research
  doi: 10.1097/00006199-198707000-00002
– ident: pdig.0000327.ref010
  doi: 10.1145/2939672.2939785
– volume: 55
  issue: 5
  year: 2020
  ident: pdig.0000327.ref048
  article-title: Comorbidity and Its Impact on 1590 Patients with COVID-19 in China: A Nationwide Analysis
  publication-title: European Respiratory Journal
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: pdig.0000327.ref004
  article-title: COVID-19 and Risk of Neurodegenerative Disorders: A Mendelian Randomization Study
  publication-title: Translational Psychiatry
– start-page: 23
  volume-title: Proceedings of the 2020 KDD Workshop on Causal Discovery
  year: 2020
  ident: pdig.0000327.ref060
– volume: 56
  start-page: 106110
  issue: 3
  year: 2020
  ident: pdig.0000327.ref043
  article-title: Diagnostic Performance of Initial Blood Urea Nitrogen Combined with D-dimer Levels for Predicting in-Hospital Mortality in COVID-19 Patients
  publication-title: International Journal of Antimicrobial Agents
  doi: 10.1016/j.ijantimicag.2020.106110
– ident: pdig.0000327.ref053
– volume: 132
  start-page: 749
  issue: 8
  year: 2020
  ident: pdig.0000327.ref047
  article-title: COVID-19 and Comorbidities: A Systematic Review and Meta-Analysis
  publication-title: Postgraduate Medicine
  doi: 10.1080/00325481.2020.1786964
– volume: 269
  start-page: 587
  issue: 2
  year: 2022
  ident: pdig.0000327.ref041
  article-title: Autonomic Dysfunction in Post-COVID Patients with and Witfhout Neurological Symptoms: A Prospective Multidomain Observational Study
  publication-title: Journal of Neurology
  doi: 10.1007/s00415-021-10735-y
– volume: 99
  start-page: 47
  year: 2020
  ident: pdig.0000327.ref001
  article-title: Comorbidities and the Risk of Severe or Fatal Outcomes Associated with Coronavirus Disease 2019: A Systematic Review and Meta-Analysis
  publication-title: International Journal of Infectious Diseases
  doi: 10.1016/j.ijid.2020.07.029
– volume: 383
  start-page: 1483
  issue: 15
  year: 2020
  ident: pdig.0000327.ref055
  article-title: Covid-19—Implications for the Health Care System
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMsb2021088
– volume: 11
  start-page: 893
  issue: 9
  year: 2021
  ident: pdig.0000327.ref022
  article-title: COVID Mortality Prediction with Machine Learning Methods: A Systematic Review and Critical Appraisal
  publication-title: Journal of Personalized Medicine
  doi: 10.3390/jpm11090893
– volume-title: StatPearls
  year: 2022
  ident: pdig.0000327.ref031
– volume: 176
  start-page: 114832
  year: 2021
  ident: pdig.0000327.ref014
  article-title: Identifying Mortality Factors from Machine Learning Using Shapley Values—a Case of COVID19
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114832
– volume: 68
  issue: 1
  year: 2022
  ident: pdig.0000327.ref044
  article-title: Can B-type Natriuretic Peptide (BNP) Levels Serve as an Early Predictor of Clinical Severity in Patients with COVID-19 Pneumonia
  publication-title: Clinical laboratory
– volume: 53
  start-page: 312
  issue: 2
  year: 2005
  ident: pdig.0000327.ref029
  article-title: A Chart-Based Method for Identification of Delirium: Validation Compared with Interviewer Ratings Using the Confusion Assessment Method
  publication-title: Journal of the American Geriatrics Society
  doi: 10.1111/j.1532-5415.2005.53120.x
– volume: 34
  start-page: 187
  issue: 1
  year: 2012
  ident: pdig.0000327.ref025
  article-title: Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.177
– volume: 23
  start-page: 30
  issue: 1
  year: 2004
  ident: pdig.0000327.ref033
  article-title: The Braden Scale: A Review of the Research Evidence
  publication-title: Orthopaedic Nursing
  doi: 10.1097/00006416-200401000-00010
– volume: 34
  start-page: 522
  issue: 3
  year: 2021
  ident: pdig.0000327.ref015
  article-title: Development of a Prognostic Model for Mortality in COVID-19 Infection Using Machine Learning
  publication-title: Modern Pathology
  doi: 10.1038/s41379-020-00700-x
– volume: 20
  start-page: 775
  issue: 1
  year: 2023
  ident: pdig.0000327.ref021
  article-title: Leading Predictors of COVID-19-related Poor Mental Health in Adult Asian Indians: An Application of Extreme Gradient Boosting and Shapley Additive Explanations
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph20010775
– volume: 18
  start-page: 899
  issue: 5
  year: 2022
  ident: pdig.0000327.ref005
  article-title: Comparison of Serum Neurodegenerative Biomarkers among Hospitalized COVID-19 Patients versus Non-COVID Subjects with Normal Cognition, Mild Cognitive Impairment, or Alzheimer’s Dementia
  publication-title: Alzheimer’s & Dementia
  doi: 10.1002/alz.12556
– volume: 41
  start-page: 34
  issue: 8
  year: 2015
  ident: pdig.0000327.ref028
  article-title: The Language of Delirium: Keywords for Identifying Delirium from Medical Records
  publication-title: Journal of Gerontological Nursing
  doi: 10.3928/00989134-20150723-01
– volume: 78
  start-page: 624
  issue: 4
  year: 2020
  ident: pdig.0000327.ref038
  article-title: Urinary Frequency as a Possibly Overlooked Symptom in COVID-19 Patients: Does SARS-CoV-2 Cause Viral Cystitis?
  publication-title: European Urology
  doi: 10.1016/j.eururo.2020.05.013
– volume: 28
  start-page: 1363
  issue: 7
  year: 2021
  ident: pdig.0000327.ref054
  article-title: Leveraging Data Visualization and a Statewide Health Information Exchange to Support COVID-19 Surveillance and Response: Application of Public Health Informatics
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1093/jamia/ocab004
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: pdig.0000327.ref009
  article-title: Regularization and Variable Selection via the Elastic Net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 6
  start-page: 237
  issue: 4
  year: 2009
  ident: pdig.0000327.ref045
  article-title: Defining the Scientific Method
  publication-title: Nature Methods
  doi: 10.1038/nmeth0409-237
– volume: 19
  start-page: 176
  issue: 4
  year: 2020
  ident: pdig.0000327.ref056
  article-title: Acute, Non-COVID Related Medical Admissions during the First Wave of COVID-19: A Retrospective Comparison of Changing Patterns of Disease
  publication-title: Acute medicine
  doi: 10.52964/AMJA.0825
– volume: 18
  start-page: 247
  issue: 5
  year: 2021
  ident: pdig.0000327.ref035
  article-title: Admission Braden Scale Score as an Early Independent Predictor of In-Hospital Mortality among Inpatients with COVID-19: A Retrospective Cohort Study
  publication-title: Worldviews on Evidence-Based Nursing
  doi: 10.1111/wvn.12526
– volume: 399
  start-page: 1513
  issue: 10334
  year: 2022
  ident: pdig.0000327.ref058
  article-title: Estimating Excess Mortality Due to the COVID-19 Pandemic: A Systematic Analysis of COVID-19-related Mortality, 2020–21
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(21)02796-3
– start-page: 31
  volume-title: The Shapley Value: Essays in Honor of Lloyd S. Shapley
  year: 1988
  ident: pdig.0000327.ref011
  doi: 10.1017/CBO9780511528446.003
– volume: 382
  start-page: 311
  issue: 9889
  year: 2013
  ident: pdig.0000327.ref036
  article-title: Risk of Venous Thromboembolism Associated with Peripherally Inserted Central Catheters: A Systematic Review and Meta-Analysis
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(13)60592-9
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: pdig.0000327.ref024
  article-title: Regression Shrinkage and Selection via the LASSO
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 14
  start-page: 42
  issue: 1
  year: 2019
  ident: pdig.0000327.ref037
  article-title: Less Lumens-less Risk: A Pilot Intervention to Increase the Use of Single-lumen Peripherally Inserted Central Catheters
  publication-title: Journal of Hospital Medicine
  doi: 10.12788/jhm.3097
– volume: 15
  start-page: e0241742
  issue: 11
  year: 2020
  ident: pdig.0000327.ref002
  article-title: Predictors of In-Hospital COVID-19 Mortality: A Comprehensive Systematic Review and Meta-Analysis Exploring Differences by Age, Sex and Health Conditions
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0241742
– volume: 29
  start-page: 334
  issue: 2
  year: 2023
  ident: pdig.0000327.ref050
  article-title: Comorbidities, Multimorbidity and COVID-19
  publication-title: Nature Medicine
  doi: 10.1038/s41591-022-02156-9
– volume: 28
  start-page: 92
  issue: 1
  year: 2014
  ident: pdig.0000327.ref027
  article-title: Training and Assessing Classification Rules with Imbalanced Data
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-012-0295-5
– volume: 82
  start-page: 329
  issue: 3
  year: 2021
  ident: pdig.0000327.ref003
  article-title: COVID-19 in Immunocompromised Patients: A Systematic Review of Cancer, Hematopoietic Cell and Solid Organ Transplant Patients
  publication-title: Journal of Infection
  doi: 10.1016/j.jinf.2021.01.022
– volume: 18
  start-page: e1003571
  issue: 5
  year: 2021
  ident: pdig.0000327.ref057
  article-title: COVID-19 and Excess Mortality in the United States: A County-Level Analysis
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1003571
– volume: 12
  issue: 1
  year: 2021
  ident: pdig.0000327.ref049
  article-title: Comorbidities in SARS-CoV-2 Patients: A Systematic Review and Meta-Analysis
  publication-title: mBio
– volume: 16
  start-page: e0247461
  issue: 3
  year: 2021
  ident: pdig.0000327.ref046
  article-title: Population Risk Factors for Severe Disease and Mortality in COVID-19: A Global Systematic Review and Meta-Analysis
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0247461
– volume: 2
  start-page: 1069
  issue: 8
  year: 2020
  ident: pdig.0000327.ref051
  article-title: Comorbidity and Its Impact on Patients with COVID-19
  publication-title: SN Comprehensive Clinical Medicine
  doi: 10.1007/s42399-020-00363-4
– volume: 40
  start-page: 659
  issue: 10
  year: 2022
  ident: pdig.0000327.ref034
  article-title: Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
  publication-title: Computers, Informatics, Nursing
  doi: 10.1097/CIN.0000000000000943
– volume: 43
  start-page: 1767
  issue: 12
  year: 2022
  ident: pdig.0000327.ref059
  article-title: The COVID-19 Hospitalization Metric in the Pre- and Postvaccination Eras as a Measure of Pandemic Severity: A Retrospective, Nationwide Cohort Study
  publication-title: Infection Control & Hospital Epidemiology
  doi: 10.1017/ice.2022.13
– volume: 12
  start-page: 15827
  issue: 1
  year: 2022
  ident: pdig.0000327.ref020
  article-title: Causal Connections between Socioeconomic Disparities and COVID-19 in the USA
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-18725-4
– volume: 104
  start-page: 1045
  issue: 6
  year: 2021
  ident: pdig.0000327.ref039
  article-title: Lower Urinary Tract Symptoms (LUTS) Related to COVID-19: Review Article
  publication-title: Journal of the Medical Association of Thailand
  doi: 10.35755/jmedassocthai.2021.06.12671
– volume: 4
  start-page: 1060
  issue: 1
  year: 2016
  ident: pdig.0000327.ref012
  article-title: Shapley Effects for Global Sensitivity Analysis: Theory and Computation
  publication-title: SIAM/ASA Journal on Uncertainty Quantification
  doi: 10.1137/15M1048070
– volume: 74
  start-page: 134
  issue: 2
  year: 2022
  ident: pdig.0000327.ref040
  article-title: The Prevalence and Risk Factors of Storage Urinary Symptoms in Symptomatic COVID-19 Patients Who Were Treated in Cohort Ward and Field Hospital
  publication-title: Siriraj Medical Journal
  doi: 10.33192/Smj.2022.17
– volume: 34
  start-page: 417
  issue: 3
  year: 2021
  ident: pdig.0000327.ref007
  article-title: Neuropathogenesis of Acute Coronavirus Disease 2019
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0000000000000944
– volume: 584
  start-page: 430
  issue: 7821
  year: 2020
  ident: pdig.0000327.ref052
  article-title: Factors Associated with COVID-19-related Death Using OpenSAFELY
  publication-title: Nature
  doi: 10.1038/s41586-020-2521-4
– volume: 138
  start-page: 155404
  year: 2021
  ident: pdig.0000327.ref008
  article-title: Cytokine Storm Induced by SARS-CoV-2 Infection: The Spectrum of Its Neurological Manifestations
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2020.155404
– volume: 15
  start-page: e0243262
  issue: 12
  year: 2020
  ident: pdig.0000327.ref018
  article-title: COVID-19 Mortality Risk Assessment: An International Multi-Center Study
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0243262
– volume: 30
  year: 2017
  ident: pdig.0000327.ref026
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in neural information processing systems
– volume: 8
  start-page: 416
  issue: 5
  year: 2021
  ident: pdig.0000327.ref006
  article-title: 6-Month Neurological and Psychiatric Outcomes in 236 379 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records
  publication-title: The Lancet Psychiatry
  doi: 10.1016/S2215-0366(21)00084-5
– volume: 113
  start-page: 941
  issue: 12
  year: 1990
  ident: pdig.0000327.ref030
  article-title: Clarifying Confusion: The Confusion Assessment Method
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-113-12-941
– volume: 17
  start-page: e1009121
  issue: 6
  year: 2021
  ident: pdig.0000327.ref019
  article-title: Contrasting Factors Associated with COVID-19-related ICU Admission and Death Outcomes in Hospitalised Patients by Means of Shapley Values
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1009121
– volume: 93
  start-page: 786
  issue: 2
  year: 2021
  ident: pdig.0000327.ref042
  article-title: Predictive Values of Blood Urea Nitrogen/Creatinine Ratio and Other Routine Blood Parameters on Disease Severity and Survival of COVID-19 Patients
  publication-title: Journal of Medical Virology
  doi: 10.1002/jmv.26300
– volume: 22
  start-page: e24018
  issue: 11
  year: 2020
  ident: pdig.0000327.ref017
  article-title: Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients with COVID-19 in New York City: Model Development and Validation
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/24018
– volume: 5
  start-page: 986
  issue: 1
  year: 2017
  ident: pdig.0000327.ref013
  article-title: On Shapley Value for Measuring Importance of Dependent Inputs
  publication-title: SIAM/ASA Journal on Uncertainty Quantification
  doi: 10.1137/16M1097717
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: pdig.0000327.ref023
  article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 70
  start-page: 1472
  issue: 7
  year: 2022
  ident: pdig.0000327.ref016
  article-title: eXtreme Gradient Boosting-based Method to Classify Patients with COVID-19
  publication-title: Journal of Investigative Medicine
  doi: 10.1136/jim-2021-002278
SSID ssj0002810791
Score 2.266141
Snippet As the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0000327
SubjectTerms Biology and life sciences
Cognitive ability
Computer and Information Sciences
COVID-19
Cytokine storm
Delirium
Electronic health records
Feature selection
Generalized linear models
Hospitals
Hypotheses
Infections
Machine learning
Medicine and Health Sciences
Mortality
Pandemics
Patients
Regression analysis
Severe acute respiratory syndrome coronavirus 2
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiEuCCiPQEGuxNXt-hXHRyit4EDbA1S9RX7SRZBdbbdI_PuOHe9qFyH1wjW2E2dmkvn8-j6Ad63izrIU8qyNoRIBMnVeB4rJ2WRph-CkLWIT-vS0u7w05xtSX3lP2EgPPBru0HgZ1cQqExU2C9K44Bxi8InlVvlyvJwj6tkYTP0oU0Y4rDGsnpUTmh1W1xzMw_R7IS0UWUhmIxcVyv5_4cy_t0tu5J-Tx_CoAkfyfuzwE7gXh6fw4EtdGt-FeuQ21Tk4Mktkvsil-X9GKn0q8dv8zAQhK7Fl3RdTGEEwSLLCzMjd_Sff4-js4vNHygyZDvSqaoyQXwWzY41n8O3k-OvRJ1olFahXE7GkLmnLeBRCGj2J0XfG8SBCcr61OiIcS5JJLaRUmgvHfYrMWAQlXUS786TEc9gZZkN8CQSxEjolYTYTTnqpu5ZZyZnwwQfVBtGAWBm395VvPMte_OzLIprGccdouT67pK8uaYCuW81Hvo076n_IflvXzWzZ5QLGUF9jqL8rhhrYW3l99ZDrXqA1TMdZ2zWwvy7Gjy-vqNghzm5ynUzv1iEmauDFGCTrnmQxVa45b6DbCp-trm6XDNOrQvDN8uFNJdpX_-PlXsNDjkBs3G20BzvLxU18A_f97-X0evG2fDa3ihciDQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification of predictive patient characteristics for assessing the probability of COVID-19 in-hospital mortality
URI https://www.ncbi.nlm.nih.gov/pubmed/38652722
https://www.proquest.com/docview/3083982168
https://www.proquest.com/docview/3045118061
https://pubmed.ncbi.nlm.nih.gov/PMC11037536
https://doaj.org/article/9c4e50a59e5b4ad49bdbb6050a2a5c15
Volume 3
WOSCitedRecordID wos001416902100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: 7X7
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: BENPR
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: PIMPY
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: 8C1
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: FPL
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoixAX3qULJTIS16Xxa22fEA2NqERDhACF08qvbSPBJk1SJP49Y68TGoTgwGUPa2d3NuPH5xn7-xB6UQlqDWl8jNrokgNALq2TvoTJWUdpB2-5SWITcjRSk4ke54DbMm-rXI-JaaD2Mxdj5EcMsIJWlFTq1fyyjKpRMbuaJTR20B6hfR47phqQTYyFKljcaJJPzDFJjrKDXs799DxRF7IoJ3NtRkrE_X9Cm79vmrw2Cw3v_q_999CdjD_x667B3Ec3QvsA3TrLGfaHKJ_cbXIoD88aPF_E0jgs4szCit02zTMG5ItNSh_DTIgBU-IoVNNRgP-Izxi8_3z6piQaT9vyIkuV4G8J-kONR-jT8OTj4G2ZlRlKJ_psVdpGGkIDY1zLfghOaUs98411lZEBvrThhEvGuZCUWeqaQLQBbKOCtp42gu2j3XbWhgOEAXIJHRqYFJnljktVEcMpYc47LyrPCsTW3qldpi2P6hlf65SLk7B86f65Ovq0zj4tULn51byj7fhH_ePo-E3dSLqdbswW53Xuw7V2PIi-AXMFtGDP4VusheVg31AjHBEFOly7fv2SZf3L7wV6vimGPhwTM6YNs6tYJ7LEKYBWBXrctbKNJVGTlUpKC6S22t-Wqdsl7fQi8YSTeAZUsOrJ3-16im5TQGrddqRDtLtaXIVn6Kb7vpouFz20IycyXVUv9a4e2js-GY0_9FL4Aq7D8Tu4Nz49G3_5CbLxNj8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqgoAL70eggJHgGLp-JI4PCEFL1VXbhUNBe0v9SrsSJMvuFtQ_xW9kJnGWLkJw6oFr7E2c7OeZb-zxfIQ8zzNuDas8rtroVAJBTq1TPgXnrFHawVtpWrEJNRoV47H-sEZ-9GdhMK2yt4mtofaNwzXyTQFcQRec5cXr6dcUVaNwd7WX0OhgsRfOvkPINn813Ib_9wXnO-8Ot3bTqCqQumwgFqmtlGE8CCG1GoTgCm25F76yLjcqwFMqyaQSUmaKC8tdFZg24JeLoK3nFapEgMm_BHZcYQqZGqvlmg4vIJjSLJ7QE4ptRkC8nPrJcVsqUaB8zTkP2AoF_Ind_p6kec7r7dz4377XTXI98mv6ppsQt8haqG-TKwcxg-AOiSeTq7hUSZuKTmfYimafxiqz1K2WsabA7Klpt8fB01PgzBSFeLoS52d4j633n4bbKdN0UqcnUYqFfmlDG-hxl3y8kHe-R9brpg4PCAVKmelQgdMXVjqpipwZyZlw3vks9yIhokdD6WJZdlQH-Vy2e40KwrPuy5WIoTJiKCHp8lfTrizJP_q_RaAt-2JR8fZCMzsuo40qtZMhGxgYbgYz1Et4F2sh3B0YbjLHsoRs9FDrHzIvf-EsIc-WzWCjcOPJ1KE5xT5YBa8A6piQ-x2qlyNBzVmuOE9IsYL3laGuttSTk7YOOsMzrpnIH_59XE_J1d3Dg_1yfzjae0SucWClXerVBllfzE7DY3LZfVtM5rMn7Wym5Oiip8NPKeiMsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+predictive+patient+characteristics+for+assessing+the+probability+of+COVID-19+in-hospital+mortality&rft.jtitle=PLOS+digital+health&rft.au=Rajwa%2C+Bartek&rft.au=Naved%2C+Md+Mobasshir+Arshed&rft.au=Adibuzzaman%2C+Mohammad&rft.au=Grama%2C+Ananth+Y&rft.date=2024-04-01&rft.issn=2767-3170&rft.eissn=2767-3170&rft.volume=3&rft.issue=4&rft.spage=e0000327&rft_id=info:doi/10.1371%2Fjournal.pdig.0000327&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-3170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-3170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-3170&client=summon