Determining tree height and crown diameter from high-resolution UAV imagery

Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of remote sensing Ročník 38; číslo 8-10; s. 2392 - 2410
Hlavní autori: Panagiotidis, Dimitrios, Abdollahnejad, Azadeh, Surový, Peter, Chiteculo, Vasco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Taylor & Francis 19.05.2017
Taylor & Francis Ltd
Predmet:
ISSN:0143-1161, 1366-5901, 1366-5901
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 × 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42-12.62 for height and 14.29-18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter.
AbstractList Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 × 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42–12.62 for height and 14.29–18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter.
Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 × 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42-12.62 for height and 14.29-18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter.
Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42-12.62 for height and 14.29-18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter.
Author Chiteculo, Vasco
Panagiotidis, Dimitrios
Surový, Peter
Abdollahnejad, Azadeh
Author_xml – sequence: 1
  givenname: Dimitrios
  surname: Panagiotidis
  fullname: Panagiotidis, Dimitrios
  email: panagiotidis@fld.czu.cz
  organization: Department of Forest Management, Czech University of Life Sciences
– sequence: 2
  givenname: Azadeh
  surname: Abdollahnejad
  fullname: Abdollahnejad, Azadeh
  organization: Department of Forest Management, Czech University of Life Sciences
– sequence: 3
  givenname: Peter
  surname: Surový
  fullname: Surový, Peter
  organization: Department of Forest Management, Czech University of Life Sciences
– sequence: 4
  givenname: Vasco
  surname: Chiteculo
  fullname: Chiteculo, Vasco
  organization: Department of Forest Management, Czech University of Life Sciences
BookMark eNqNkUtrGzEUhUVIoc7jJxQE2XQz7r2j0chDNw1JXyTQTZytkCWNrTAjpZKM8b-PBicbL5qutNB3Dvecc0ZOffCWkE8Ic4QFfAFsGGKL8xqwnWPdNlAvTsgMWdtWvAM8JbOJqSboIzlL6QkAWsHFjNzd2mzj6Lzza5qjtXRj3XqTqfKG6hh2nhqnxgmifQwj3ZTfKtoUhm12wdPl9SN1o1rbuL8gH3o1JHv5-p6T5Y_vDze_qvs_P3_fXN9XmgPLlWIrbpTmYsWZaBWaDg3opmGLDkVbEgmldc0YsJVtoAcUnTG9gsYaVdCanZPPB9_nGP5ubcpydEnbYVDehm2SdUnHUBS_d1HsoKkbwUD8D4qCY2m6oFdH6FPYRl8yF6ouhyNfTGd-PVClxpSi7aV2WU2l5ajcIBHkNJ98m09O88nX-YqaH6mfY-k57t_VfTvonO9DHNUuxMHIrPZDiH1UXrsk2b8tXgADyLBW
CitedBy_id crossref_primary_10_1002_rse2_146
crossref_primary_10_1002_rse2_267
crossref_primary_10_1051_bioconf_20248907002
crossref_primary_10_3390_drones7060336
crossref_primary_10_3390_agriculture14030356
crossref_primary_10_3390_rs11141636
crossref_primary_10_1088_1755_1315_234_1_012022
crossref_primary_10_1007_s41348_021_00502_6
crossref_primary_10_3390_rs15020326
crossref_primary_10_1002_rse2_137
crossref_primary_10_1007_s11056_020_09827_w
crossref_primary_10_1109_TGRS_2023_3327128
crossref_primary_10_1016_j_rse_2023_113613
crossref_primary_10_33494_nzjfs492019x26x
crossref_primary_10_31548_forest2019_03_019
crossref_primary_10_3390_f11121324
crossref_primary_10_1016_j_compag_2021_106033
crossref_primary_10_1080_01431161_2018_1471551
crossref_primary_10_3390_f9070432
crossref_primary_10_3390_drones8030106
crossref_primary_10_1080_01431161_2018_1441570
crossref_primary_10_3389_frobt_2021_739173
crossref_primary_10_1016_j_rsase_2024_101266
crossref_primary_10_18359_rcin_7365
crossref_primary_10_3390_rs12081238
crossref_primary_10_3390_rs12030404
crossref_primary_10_3390_s24237559
crossref_primary_10_1080_10095020_2022_2090864
crossref_primary_10_1007_s10661_019_7628_4
crossref_primary_10_3390_rs13152971
crossref_primary_10_3390_rs11070800
crossref_primary_10_1590_0001_3765202120200712
crossref_primary_10_3390_agriculture10090385
crossref_primary_10_3390_f16071092
crossref_primary_10_3390_s21010301
crossref_primary_10_1016_j_rse_2020_111747
crossref_primary_10_1007_s11356_023_28910_1
crossref_primary_10_5194_essd_14_4967_2022
crossref_primary_10_3390_rs12244039
crossref_primary_10_3390_f16030453
crossref_primary_10_3390_f12060717
crossref_primary_10_3390_f14112231
crossref_primary_10_1016_j_jenvman_2021_113319
crossref_primary_10_1016_j_ufug_2022_127521
crossref_primary_10_3390_rs13122397
crossref_primary_10_1080_01431161_2018_1562255
crossref_primary_10_3389_ffgc_2024_1215734
crossref_primary_10_1109_ACCESS_2021_3077041
crossref_primary_10_3390_rs13183655
crossref_primary_10_1016_j_ufug_2025_128936
crossref_primary_10_1109_ACCESS_2020_2998806
crossref_primary_10_3390_drones6100267
crossref_primary_10_1080_23754931_2020_1831946
crossref_primary_10_3390_rs12223829
crossref_primary_10_1007_s10668_022_02820_7
crossref_primary_10_1016_j_compag_2023_108083
crossref_primary_10_3390_s23249907
crossref_primary_10_3390_rs15061634
crossref_primary_10_3390_rs12244081
crossref_primary_10_1016_j_foreco_2025_122660
crossref_primary_10_1016_j_foreco_2019_01_054
crossref_primary_10_1109_ACCESS_2020_2965216
crossref_primary_10_3390_rs14092287
crossref_primary_10_1016_j_ufug_2020_126862
crossref_primary_10_1109_JSTARS_2023_3271186
crossref_primary_10_1016_j_geomat_2025_100064
crossref_primary_10_3390_electronics13204139
crossref_primary_10_3389_fmars_2019_00784
crossref_primary_10_3390_f13081295
crossref_primary_10_1007_s12524_020_01139_y
crossref_primary_10_1016_j_atech_2021_100010
crossref_primary_10_1139_cjfr_2019_0375
crossref_primary_10_1093_forsci_fxac001
crossref_primary_10_3390_rs12223722
crossref_primary_10_3390_rs11121447
crossref_primary_10_1080_15226514_2022_2090500
crossref_primary_10_1016_j_jag_2020_102091
crossref_primary_10_1139_cjfr_2020_0433
crossref_primary_10_3390_rs17081456
crossref_primary_10_1007_s40010_017_0443_9
crossref_primary_10_3390_f14020233
crossref_primary_10_3390_rs10010013
crossref_primary_10_1016_j_foreco_2017_12_049
crossref_primary_10_3390_s21134442
crossref_primary_10_3390_rs15061543
crossref_primary_10_1080_01431161_2019_1591651
crossref_primary_10_3390_f9050237
crossref_primary_10_3390_rs14081931
crossref_primary_10_3390_rs14225894
crossref_primary_10_1016_j_compag_2024_109359
crossref_primary_10_1016_j_rse_2019_111404
crossref_primary_10_1080_02827581_2022_2084563
crossref_primary_10_3390_rs17132173
crossref_primary_10_3390_f14020242
crossref_primary_10_3390_f8080300
crossref_primary_10_3390_agriengineering4010015
crossref_primary_10_3390_f16091384
crossref_primary_10_1088_1755_1315_385_1_012015
crossref_primary_10_1016_j_ecoinf_2021_101303
crossref_primary_10_3390_rs13040626
crossref_primary_10_1080_17445647_2020_1748131
crossref_primary_10_3390_f8090340
crossref_primary_10_1080_22797254_2022_2129095
crossref_primary_10_3390_rs11101180
crossref_primary_10_3390_su122310150
crossref_primary_10_3390_rs10060854
crossref_primary_10_3390_rs14235910
crossref_primary_10_1080_01431161_2023_2282405
crossref_primary_10_3390_rs14194715
crossref_primary_10_1080_01431161_2017_1301705
crossref_primary_10_1016_j_ufug_2024_128229
crossref_primary_10_3390_f11020223
crossref_primary_10_1016_j_rse_2019_111543
crossref_primary_10_3390_rs11111271
crossref_primary_10_3390_ijgi7030109
crossref_primary_10_3390_f10100931
crossref_primary_10_3390_land12112006
crossref_primary_10_3390_rs14071561
crossref_primary_10_1109_ACCESS_2020_2994911
crossref_primary_10_1109_TGRS_2022_3142288
crossref_primary_10_1109_JSTARS_2020_3038819
crossref_primary_10_3390_rs11070739
crossref_primary_10_3390_rs15143599
crossref_primary_10_1371_journal_pone_0235169
crossref_primary_10_3390_rs11070855
crossref_primary_10_1080_14498596_2019_1627252
crossref_primary_10_3390_f12020200
crossref_primary_10_1080_01431161_2018_1516051
crossref_primary_10_3390_f14010141
crossref_primary_10_3390_s19081934
crossref_primary_10_3390_su15129700
crossref_primary_10_3390_rs17121996
crossref_primary_10_1080_01431161_2018_1486519
crossref_primary_10_3390_f12091290
crossref_primary_10_3390_f10080694
crossref_primary_10_3390_f11121252
crossref_primary_10_3390_f11020241
crossref_primary_10_1080_10095020_2020_1805366
crossref_primary_10_1002_eco_2115
crossref_primary_10_3390_rs10030423
crossref_primary_10_1007_s12524_020_01240_2
crossref_primary_10_3390_rs12050767
crossref_primary_10_3390_rs14122775
crossref_primary_10_3390_rs12152363
crossref_primary_10_3390_rs13234873
crossref_primary_10_3390_f10030273
crossref_primary_10_3390_f15071083
crossref_primary_10_1016_j_rse_2023_113485
crossref_primary_10_3390_agriculture13020504
crossref_primary_10_3390_agronomy11020203
crossref_primary_10_34133_plantphenomics_0028
crossref_primary_10_3390_f14071417
crossref_primary_10_3390_rs11030269
crossref_primary_10_3390_rs13040705
crossref_primary_10_15446_esrj_v26n1_95405
crossref_primary_10_3390_su14073720
crossref_primary_10_3390_rs11070758
crossref_primary_10_3390_su14020706
crossref_primary_10_3390_rs15215261
crossref_primary_10_3390_f14081581
crossref_primary_10_1038_s41438_018_0097_z
crossref_primary_10_21266_2079_4304_2024_250_176_199
crossref_primary_10_1007_s10457_023_00865_9
crossref_primary_10_3390_f10100905
crossref_primary_10_3390_rs12101649
crossref_primary_10_1016_j_compag_2020_105500
crossref_primary_10_1016_j_ufug_2024_128256
crossref_primary_10_3390_rs11131561
crossref_primary_10_1016_j_ufug_2022_127489
crossref_primary_10_1016_j_compag_2020_105504
crossref_primary_10_1007_s10661_021_09695_7
crossref_primary_10_1016_j_rsase_2023_101068
crossref_primary_10_3390_rs12183043
crossref_primary_10_1016_j_ecolind_2024_112973
crossref_primary_10_1007_s11676_019_00901_4
crossref_primary_10_3390_f16040564
crossref_primary_10_1177_00368504251352707
crossref_primary_10_3390_f10040296
crossref_primary_10_1016_j_rse_2018_12_034
crossref_primary_10_1007_s00442_021_04928_5
crossref_primary_10_3390_rs12010050
crossref_primary_10_3390_f16071196
crossref_primary_10_3390_agronomy10060893
crossref_primary_10_1155_2021_7672762
crossref_primary_10_1007_s10661_024_12703_1
crossref_primary_10_1016_j_compag_2022_106905
crossref_primary_10_3390_rs13214367
crossref_primary_10_1371_journal_pone_0217310
crossref_primary_10_1080_01431161_2018_1434329
crossref_primary_10_3390_f12060659
crossref_primary_10_1139_cjfr_2020_0125
crossref_primary_10_3390_rs16101783
crossref_primary_10_3390_rs12152407
crossref_primary_10_1016_j_ufug_2019_126574
crossref_primary_10_1016_j_scitotenv_2022_160482
crossref_primary_10_1139_cjfr_2019_0418
crossref_primary_10_3390_f13040581
crossref_primary_10_3390_plants14111640
crossref_primary_10_3390_su13095282
crossref_primary_10_3390_rs13030457
crossref_primary_10_1139_cjfr_2019_0440
crossref_primary_10_3390_drones6020048
crossref_primary_10_3390_su131911097
crossref_primary_10_1016_j_ecoinf_2025_103165
crossref_primary_10_3390_f13091462
crossref_primary_10_1016_j_atech_2025_101126
crossref_primary_10_1080_01431161_2020_1809024
crossref_primary_10_3390_land13111856
crossref_primary_10_1016_j_jag_2020_102135
crossref_primary_10_3390_rs17122091
crossref_primary_10_3390_rs12111808
crossref_primary_10_1016_j_rsase_2025_101691
crossref_primary_10_1007_s12524_023_01752_7
crossref_primary_10_3390_rs15020509
crossref_primary_10_1080_01431161_2024_2331975
crossref_primary_10_3390_f12030328
crossref_primary_10_1109_JSTARS_2018_2830410
crossref_primary_10_1139_cjfr_2019_0325
crossref_primary_10_3390_drones7050317
crossref_primary_10_3390_agronomy14030636
crossref_primary_10_3897_rethinkingecology_2_14821
crossref_primary_10_1007_s11119_020_09716_4
crossref_primary_10_1016_j_rsase_2024_101178
crossref_primary_10_3390_f15050803
crossref_primary_10_3390_f10100835
crossref_primary_10_3390_rs11010077
crossref_primary_10_3390_drones5020047
crossref_primary_10_1016_j_compag_2019_105101
crossref_primary_10_1029_2022EF003314
crossref_primary_10_1371_journal_pone_0311642
crossref_primary_10_3390_rs12061046
crossref_primary_10_1016_j_ufug_2025_128755
crossref_primary_10_3390_f13050710
Cites_doi 10.3390/rs70404213
10.3390/s140203001
10.3390/rs2041157
10.1016/j.rse.2004.01.006
10.1016/j.agrformet.2010.10.005
10.1016/j.eja.2014.01.004
10.1016/j.biombioe.2007.06.022
10.14358/PERS.72.8.923
10.1080/01431160701736422
10.3390/rs4051392
10.5194/isprsarchives-XL-1-W2-141-2013
10.14358/PERS.70.3.351
10.1139/x26-137
10.1016/S0034-4257(01)00290-5
10.1016/S0168-1699(02)00121-7
10.1016/j.jenvman.2014.01.006
10.5721/EuJRS20144716
10.1080/014311699211237
10.5589/m06-005
10.1186/1471-2229-12-63
10.5589/m03-027
10.14214/sf.386
10.1016/j.rse.2013.04.005
10.14358/PERS.72.4.357
10.14358/PERS.72.12.1389
10.1080/01431160701736513
10.3390/rs5041787
10.1007/s12145-013-0142-2
10.3390/rs3112494
10.14358/PERS.71.11.1285
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
2016 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2016.1264028
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aerospace Database

Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 2410
ExternalDocumentID 10_1080_01431161_2016_1264028
1264028
Genre Article
GeographicLocations Norway
GeographicLocations_xml – name: Norway
GrantInformation_xml – fundername: Internal Grant Agency (IGA)
  grantid: No. B07/15
– fundername: Ministry of Finance of the Czech Republic, grant of Iceland, Liechtenstein and Norway
  grantid: No. EHP-CZ02- OV-1-019-2014
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c503t-a3b5dac57b5376a1d91d0c443891761087acc23303be40f0179ddfa04eda91d23
IEDL.DBID TFW
ISICitedReferencesCount 263
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397995100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:32:27 EDT 2025
Wed Oct 01 13:58:14 EDT 2025
Thu Sep 04 16:19:17 EDT 2025
Wed Aug 13 02:59:17 EDT 2025
Tue Nov 18 22:33:12 EST 2025
Sat Nov 29 06:13:34 EST 2025
Mon Oct 20 23:42:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8-10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-a3b5dac57b5376a1d91d0c443891761087acc23303be40f0179ddfa04eda91d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1923031582
PQPubID 2045515
PageCount 19
ParticipantIDs informaworld_taylorfrancis_310_1080_01431161_2016_1264028
crossref_citationtrail_10_1080_01431161_2016_1264028
proquest_miscellaneous_1904247307
crossref_primary_10_1080_01431161_2016_1264028
proquest_miscellaneous_1901751311
proquest_miscellaneous_2000317389
proquest_journals_1923031582
PublicationCentury 2000
PublicationDate 2017-05-19
PublicationDateYYYYMMDD 2017-05-19
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
Pitkänen J. (CIT0027) 2004
CIT0012
CIT0034
CIT0011
CIT0033
Peckham R. J. (CIT0025) 2007
CIT0014
CIT0036
CIT0013
CIT0035
CIT0038
CIT0015
Pyysalo U. (CIT0031) 2002
CIT0037
CIT0018
Remondino F. (CIT0032) 2011; 38
CIT0017
CIT0039
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Persson Å. (CIT0026) 2002; 68
Küng O. (CIT0019) 2011; 1
CIT0003
CIT0002
CIT0024
CIT0005
James M. R. (CIT0016) 2012; 2012
CIT0004
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
– ident: CIT0008
  doi: 10.3390/rs70404213
– ident: CIT0024
  doi: 10.3390/s140203001
– start-page: 187
  volume-title: Proceedings of ISPRS Working Group VIII/2: “Laser-scanners for forest and landscape assessment
  year: 2004
  ident: CIT0027
– ident: CIT0006
  doi: 10.3390/rs2041157
– volume: 2012
  start-page: 117
  year: 2012
  ident: CIT0016
  publication-title: Journal of Geophysical Research
– ident: CIT0020
  doi: 10.1016/j.rse.2004.01.006
– ident: CIT0021
  doi: 10.1016/j.agrformet.2010.10.005
– ident: CIT0039
  doi: 10.1016/j.eja.2014.01.004
– ident: CIT0028
  doi: 10.1016/j.biombioe.2007.06.022
– ident: CIT0005
  doi: 10.14358/PERS.72.8.923
– ident: CIT0038
  doi: 10.1080/01431160701736422
– ident: CIT0035
  doi: 10.3390/rs4051392
– volume: 1
  start-page: 125
  year: 2011
  ident: CIT0019
  publication-title: International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences
– ident: CIT0013
  doi: 10.5194/isprsarchives-XL-1-W2-141-2013
– ident: CIT0036
  doi: 10.14358/PERS.70.3.351
– ident: CIT0010
  doi: 10.1139/x26-137
– ident: CIT0022
  doi: 10.1016/S0034-4257(01)00290-5
– ident: CIT0033
– start-page: 218
  volume-title: ISPRS Commission III, Symposium
  year: 2002
  ident: CIT0031
– volume: 38
  start-page: 25
  year: 2011
  ident: CIT0032
  publication-title: Remote Sensing and Spatial Information Sciences
– ident: CIT0029
  doi: 10.1016/S0168-1699(02)00121-7
– ident: CIT0009
  doi: 10.1016/j.jenvman.2014.01.006
– ident: CIT0014
  doi: 10.5721/EuJRS20144716
– ident: CIT0002
  doi: 10.1080/014311699211237
– ident: CIT0012
  doi: 10.5589/m06-005
– ident: CIT0023
  doi: 10.1186/1471-2229-12-63
– ident: CIT0030
  doi: 10.5589/m03-027
– ident: CIT0017
  doi: 10.14214/sf.386
– ident: CIT0007
  doi: 10.1016/j.rse.2013.04.005
– volume: 68
  start-page: 925
  issue: 9
  year: 2002
  ident: CIT0026
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: CIT0018
  doi: 10.14358/PERS.72.4.357
– ident: CIT0003
  doi: 10.14358/PERS.72.12.1389
– ident: CIT0001
  doi: 10.1080/01431160701736513
– volume-title: Development and Applications in a Policy Support Environment Series: Lecture Notes in Geoinformation and Cartography
  year: 2007
  ident: CIT0025
– ident: CIT0037
  doi: 10.3390/rs5041787
– ident: CIT0034
  doi: 10.1007/s12145-013-0142-2
– ident: CIT0011
  doi: 10.3390/rs3112494
– ident: CIT0004
  doi: 10.14358/PERS.71.11.1285
SSID ssj0006757
Score 2.620201
Snippet Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2392
SubjectTerms Accuracy
Betula pendula
Birch trees
Canopies
canopy
Computer vision
Coniferous trees
Evergreen trees
forest inventory
Geographic information systems
High resolution
Image resolution
Image segmentation
Imagery
Larix decidua
Motion perception
Photogrammetry
Picea abies
Pine
Pine trees
Pinus sylvestris
remote sensing
Satellite navigation systems
Smoothing
Species composition
species diversity
Trees
Unmanned aerial vehicles
watersheds
Workflow
Title Determining tree height and crown diameter from high-resolution UAV imagery
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1264028
https://www.proquest.com/docview/1923031582
https://www.proquest.com/docview/1901751311
https://www.proquest.com/docview/1904247307
https://www.proquest.com/docview/2000317389
Volume 38
WOSCitedRecordID wos000397995100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kCHrxLVarrOA1NY_NY49FLYJSPLTaW9jsbmjBptKkQv-9M8mmWKT2oOfM5jGZx7fJzDeE3CQ8ZaH2lYVNjBaTNreEzwJLOkL7QZIARi95Zp_DXi8aDvmLqSbMTVkl7qHTiiiijNXo3CLJ64q4W6SkcwCpYGFW0HYgpUOShCgMyB5tvN99W8ZigMNVwzQSccKSuodn3VlWstMKd-mPWF0moO7-P9z6Adkz6JN2KnM5JFs6OyI7ZhD6aHFMnu5NeQxkNIo_rOmo_HZK4YpU4padgkFNUIhiZwpFumMLtuzGgumg80rHEyTGWJyQQfehf_domXkLlvRtr7CEl_hKSD9MkONFOIo7ypYM56M7IcCsKBRSuh4kvUQzO0VfVioVNtNKgKjrnZJGNs30GaERZ5F2tB9qzVioeKSiIIW9pFZKcjDeJmG1nmNpyMhxJsZ77NScpUZTMWoqNppqkvZy2UfFxrFpAf_-EuOi_AySVjNLYm_D2lb9xmPj2HmMgBgHY0Ruk1wvD4NL4n8WkenpHGVANT7yGP0qw1wG4TVcL4NdVADvQP3nf3iMC7LrIhRBxlneIo1iNteXZFt-FuN8dlW6yxfwQQ4R
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4SXDhjRjPIHEt9JGszREBE4ix0wbcojRJBRLbEAwk_j12m04gBDvAuU4frp-J_RngMJcFT52wATUxBtyEMtCCNwMTaSeaeY4xeokz2047nezuTn7uhaGySsqhiwooorTVpNy0GV2XxB0TJl2EoQpVZjWPIvTp6CWnYVagr6Wyvm7rdmyNMSCuWqYJihPX1F08P93mi3_6gl76zVqXLqi19B8vvwyLPgBlJ5XErMCUG6zCvJ-Ffv--BldnvkIGnRqjM2t2X26fMnwkM5S1M5SpPhExak5hhHgcYNbuhZj1Tm7YQ5-wMd7Xodc6755eBH7kQmBEmIwCneTCaiPSnGBedGRlZEPDaUR6lGKklaXamDhBv5c7HhakztYWOuTOaiSNkw2YGQwHbhNYJnnmIidS5zhPrcxs1iwwnXTWGony2wBeM1oZj0dOYzEeVVTDlnpOKeKU8pxqwNF42VMFyDFpgfz8F9Wo3AkpqrElKpmwdqf-5crr9ouimJhmY2RxAw7Gl1Er6ahFD9zwlWiQNYKgjH6l4TFHC5v-TEONVBjhIfu3_vAZ-zB_0b1uq_Zl52obFmKKTAiAVu7AzOj51e3CnHkbPbw875W68wHx3RIy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xCbiwI8pqJK4pceI0yREBFYiq4sB2sxzbEUhQqi5I_XtmEqeiQtADnDPOMpnVnnkDcJKluYhtZDxqYvSE9lNPRaLhaa5s1MgyjNELnNlW3G4nT0_prasm7LuySsqh8xIoorDVpNxdk1cVcacESccxUqHCrEado0tHJzkL8wU4For0XfNxbIwxHi47pgmJE9dUTTw_3WbCPU2Al34z1oUHaq7-w7uvwYoLP9lZKS_rMGM7G7DkJqE_jzbh5sLVx6BLY3RizZ6LzVOGT2SacnaGEvVGRIxaUxjhHXuYszsRZvdnD-zljZAxRltw37y8O7_y3MAFT0d-OPBUmEVG6SjOCORFcZNy42tBA9J5jHFWEiutgxC9XmaFn5MyG5MrX1ijkDQIt2Gu896xO8CSVCSW2yi2VojYpIlJGjkmk9YYnaL01kBUfJbaoZHTUIxXySvQUscpSZySjlM1qI-XdUs4jmkL0q8_UQ6KfZC8HFoiwylr96s_Lp1m9yVFxDQZIwlqcDy-jDpJBy2qY9-HRIOsiQjI6FcaEQi0r_HPNNRGhfEdsn_3D59xBIu3F03Zum7f7MFygEEZbSHxYB_mBr2hPYAF_TF46fcOC835BGwMEMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+tree+height+and+crown+diameter+from+high-resolution+UAV+imagery&rft.jtitle=International+journal+of+remote+sensing&rft.au=Panagiotidis%2C+Dimitrios&rft.au=Abdollahnejad%2C+Azadeh&rft.au=Surovy%2C+Peter&rft.au=Chiteculo%2C+Vasco&rft.date=2017-05-19&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=38&rft.issue=8-10&rft.spage=2392&rft.epage=2410&rft_id=info:doi/10.1080%2F01431161.2016.1264028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon