Determining tree height and crown diameter from high-resolution UAV imagery
Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estim...
Uložené v:
| Vydané v: | International journal of remote sensing Ročník 38; číslo 8-10; s. 2392 - 2410 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Taylor & Francis
19.05.2017
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 × 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42-12.62 for height and 14.29-18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter. |
|---|---|
| AbstractList | Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 × 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42–12.62 for height and 14.29–18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter. Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 × 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42-12.62 for height and 14.29-18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter. Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in indirect measurements of tree features. We used UAV-sensed high-resolution imagery through photogrammetry and Structure from Motion (SfM) to estimate tree heights and crown diameters. We reconstructed 3D structures from 2D image sequences for two study areas (25 25 m). Species composition for Plot 1 included Norway spruce (Picea abies L.) together with European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), whereas Plot 2 was mainly Norway spruce and Scots pine together with scattered individuals of European larch and Silver birch (Betula pendula Roth.). The involved workflow used canopy height models (CHMs) for the extraction of height, the smoothing of raster images for the determination of the local maxima, and Inverse Watershed Segmentation (IWS) for the estimation of the crown diameters with the help of a geographical information system (GIS). Finally, we validated the accuracies of the two methods by comparing the UAV results with ground measurements. The results showed higher agreement between field and remote-sensed data for heights than for crown diameters based on RMSE%, which were in the range 11.42-12.62 for height and 14.29-18.56 for crown diameter. Overall, the accuracy of the results was acceptable and showed that the methods were feasible for detecting tree heights and crown diameter. |
| Author | Chiteculo, Vasco Panagiotidis, Dimitrios Surový, Peter Abdollahnejad, Azadeh |
| Author_xml | – sequence: 1 givenname: Dimitrios surname: Panagiotidis fullname: Panagiotidis, Dimitrios email: panagiotidis@fld.czu.cz organization: Department of Forest Management, Czech University of Life Sciences – sequence: 2 givenname: Azadeh surname: Abdollahnejad fullname: Abdollahnejad, Azadeh organization: Department of Forest Management, Czech University of Life Sciences – sequence: 3 givenname: Peter surname: Surový fullname: Surový, Peter organization: Department of Forest Management, Czech University of Life Sciences – sequence: 4 givenname: Vasco surname: Chiteculo fullname: Chiteculo, Vasco organization: Department of Forest Management, Czech University of Life Sciences |
| BookMark | eNqNkUtrGzEUhUVIoc7jJxQE2XQz7r2j0chDNw1JXyTQTZytkCWNrTAjpZKM8b-PBicbL5qutNB3Dvecc0ZOffCWkE8Ic4QFfAFsGGKL8xqwnWPdNlAvTsgMWdtWvAM8JbOJqSboIzlL6QkAWsHFjNzd2mzj6Lzza5qjtXRj3XqTqfKG6hh2nhqnxgmifQwj3ZTfKtoUhm12wdPl9SN1o1rbuL8gH3o1JHv5-p6T5Y_vDze_qvs_P3_fXN9XmgPLlWIrbpTmYsWZaBWaDg3opmGLDkVbEgmldc0YsJVtoAcUnTG9gsYaVdCanZPPB9_nGP5ubcpydEnbYVDehm2SdUnHUBS_d1HsoKkbwUD8D4qCY2m6oFdH6FPYRl8yF6ouhyNfTGd-PVClxpSi7aV2WU2l5ajcIBHkNJ98m09O88nX-YqaH6mfY-k57t_VfTvonO9DHNUuxMHIrPZDiH1UXrsk2b8tXgADyLBW |
| CitedBy_id | crossref_primary_10_1002_rse2_146 crossref_primary_10_1002_rse2_267 crossref_primary_10_1051_bioconf_20248907002 crossref_primary_10_3390_drones7060336 crossref_primary_10_3390_agriculture14030356 crossref_primary_10_3390_rs11141636 crossref_primary_10_1088_1755_1315_234_1_012022 crossref_primary_10_1007_s41348_021_00502_6 crossref_primary_10_3390_rs15020326 crossref_primary_10_1002_rse2_137 crossref_primary_10_1007_s11056_020_09827_w crossref_primary_10_1109_TGRS_2023_3327128 crossref_primary_10_1016_j_rse_2023_113613 crossref_primary_10_33494_nzjfs492019x26x crossref_primary_10_31548_forest2019_03_019 crossref_primary_10_3390_f11121324 crossref_primary_10_1016_j_compag_2021_106033 crossref_primary_10_1080_01431161_2018_1471551 crossref_primary_10_3390_f9070432 crossref_primary_10_3390_drones8030106 crossref_primary_10_1080_01431161_2018_1441570 crossref_primary_10_3389_frobt_2021_739173 crossref_primary_10_1016_j_rsase_2024_101266 crossref_primary_10_18359_rcin_7365 crossref_primary_10_3390_rs12081238 crossref_primary_10_3390_rs12030404 crossref_primary_10_3390_s24237559 crossref_primary_10_1080_10095020_2022_2090864 crossref_primary_10_1007_s10661_019_7628_4 crossref_primary_10_3390_rs13152971 crossref_primary_10_3390_rs11070800 crossref_primary_10_1590_0001_3765202120200712 crossref_primary_10_3390_agriculture10090385 crossref_primary_10_3390_f16071092 crossref_primary_10_3390_s21010301 crossref_primary_10_1016_j_rse_2020_111747 crossref_primary_10_1007_s11356_023_28910_1 crossref_primary_10_5194_essd_14_4967_2022 crossref_primary_10_3390_rs12244039 crossref_primary_10_3390_f16030453 crossref_primary_10_3390_f12060717 crossref_primary_10_3390_f14112231 crossref_primary_10_1016_j_jenvman_2021_113319 crossref_primary_10_1016_j_ufug_2022_127521 crossref_primary_10_3390_rs13122397 crossref_primary_10_1080_01431161_2018_1562255 crossref_primary_10_3389_ffgc_2024_1215734 crossref_primary_10_1109_ACCESS_2021_3077041 crossref_primary_10_3390_rs13183655 crossref_primary_10_1016_j_ufug_2025_128936 crossref_primary_10_1109_ACCESS_2020_2998806 crossref_primary_10_3390_drones6100267 crossref_primary_10_1080_23754931_2020_1831946 crossref_primary_10_3390_rs12223829 crossref_primary_10_1007_s10668_022_02820_7 crossref_primary_10_1016_j_compag_2023_108083 crossref_primary_10_3390_s23249907 crossref_primary_10_3390_rs15061634 crossref_primary_10_3390_rs12244081 crossref_primary_10_1016_j_foreco_2025_122660 crossref_primary_10_1016_j_foreco_2019_01_054 crossref_primary_10_1109_ACCESS_2020_2965216 crossref_primary_10_3390_rs14092287 crossref_primary_10_1016_j_ufug_2020_126862 crossref_primary_10_1109_JSTARS_2023_3271186 crossref_primary_10_1016_j_geomat_2025_100064 crossref_primary_10_3390_electronics13204139 crossref_primary_10_3389_fmars_2019_00784 crossref_primary_10_3390_f13081295 crossref_primary_10_1007_s12524_020_01139_y crossref_primary_10_1016_j_atech_2021_100010 crossref_primary_10_1139_cjfr_2019_0375 crossref_primary_10_1093_forsci_fxac001 crossref_primary_10_3390_rs12223722 crossref_primary_10_3390_rs11121447 crossref_primary_10_1080_15226514_2022_2090500 crossref_primary_10_1016_j_jag_2020_102091 crossref_primary_10_1139_cjfr_2020_0433 crossref_primary_10_3390_rs17081456 crossref_primary_10_1007_s40010_017_0443_9 crossref_primary_10_3390_f14020233 crossref_primary_10_3390_rs10010013 crossref_primary_10_1016_j_foreco_2017_12_049 crossref_primary_10_3390_s21134442 crossref_primary_10_3390_rs15061543 crossref_primary_10_1080_01431161_2019_1591651 crossref_primary_10_3390_f9050237 crossref_primary_10_3390_rs14081931 crossref_primary_10_3390_rs14225894 crossref_primary_10_1016_j_compag_2024_109359 crossref_primary_10_1016_j_rse_2019_111404 crossref_primary_10_1080_02827581_2022_2084563 crossref_primary_10_3390_rs17132173 crossref_primary_10_3390_f14020242 crossref_primary_10_3390_f8080300 crossref_primary_10_3390_agriengineering4010015 crossref_primary_10_3390_f16091384 crossref_primary_10_1088_1755_1315_385_1_012015 crossref_primary_10_1016_j_ecoinf_2021_101303 crossref_primary_10_3390_rs13040626 crossref_primary_10_1080_17445647_2020_1748131 crossref_primary_10_3390_f8090340 crossref_primary_10_1080_22797254_2022_2129095 crossref_primary_10_3390_rs11101180 crossref_primary_10_3390_su122310150 crossref_primary_10_3390_rs10060854 crossref_primary_10_3390_rs14235910 crossref_primary_10_1080_01431161_2023_2282405 crossref_primary_10_3390_rs14194715 crossref_primary_10_1080_01431161_2017_1301705 crossref_primary_10_1016_j_ufug_2024_128229 crossref_primary_10_3390_f11020223 crossref_primary_10_1016_j_rse_2019_111543 crossref_primary_10_3390_rs11111271 crossref_primary_10_3390_ijgi7030109 crossref_primary_10_3390_f10100931 crossref_primary_10_3390_land12112006 crossref_primary_10_3390_rs14071561 crossref_primary_10_1109_ACCESS_2020_2994911 crossref_primary_10_1109_TGRS_2022_3142288 crossref_primary_10_1109_JSTARS_2020_3038819 crossref_primary_10_3390_rs11070739 crossref_primary_10_3390_rs15143599 crossref_primary_10_1371_journal_pone_0235169 crossref_primary_10_3390_rs11070855 crossref_primary_10_1080_14498596_2019_1627252 crossref_primary_10_3390_f12020200 crossref_primary_10_1080_01431161_2018_1516051 crossref_primary_10_3390_f14010141 crossref_primary_10_3390_s19081934 crossref_primary_10_3390_su15129700 crossref_primary_10_3390_rs17121996 crossref_primary_10_1080_01431161_2018_1486519 crossref_primary_10_3390_f12091290 crossref_primary_10_3390_f10080694 crossref_primary_10_3390_f11121252 crossref_primary_10_3390_f11020241 crossref_primary_10_1080_10095020_2020_1805366 crossref_primary_10_1002_eco_2115 crossref_primary_10_3390_rs10030423 crossref_primary_10_1007_s12524_020_01240_2 crossref_primary_10_3390_rs12050767 crossref_primary_10_3390_rs14122775 crossref_primary_10_3390_rs12152363 crossref_primary_10_3390_rs13234873 crossref_primary_10_3390_f10030273 crossref_primary_10_3390_f15071083 crossref_primary_10_1016_j_rse_2023_113485 crossref_primary_10_3390_agriculture13020504 crossref_primary_10_3390_agronomy11020203 crossref_primary_10_34133_plantphenomics_0028 crossref_primary_10_3390_f14071417 crossref_primary_10_3390_rs11030269 crossref_primary_10_3390_rs13040705 crossref_primary_10_15446_esrj_v26n1_95405 crossref_primary_10_3390_su14073720 crossref_primary_10_3390_rs11070758 crossref_primary_10_3390_su14020706 crossref_primary_10_3390_rs15215261 crossref_primary_10_3390_f14081581 crossref_primary_10_1038_s41438_018_0097_z crossref_primary_10_21266_2079_4304_2024_250_176_199 crossref_primary_10_1007_s10457_023_00865_9 crossref_primary_10_3390_f10100905 crossref_primary_10_3390_rs12101649 crossref_primary_10_1016_j_compag_2020_105500 crossref_primary_10_1016_j_ufug_2024_128256 crossref_primary_10_3390_rs11131561 crossref_primary_10_1016_j_ufug_2022_127489 crossref_primary_10_1016_j_compag_2020_105504 crossref_primary_10_1007_s10661_021_09695_7 crossref_primary_10_1016_j_rsase_2023_101068 crossref_primary_10_3390_rs12183043 crossref_primary_10_1016_j_ecolind_2024_112973 crossref_primary_10_1007_s11676_019_00901_4 crossref_primary_10_3390_f16040564 crossref_primary_10_1177_00368504251352707 crossref_primary_10_3390_f10040296 crossref_primary_10_1016_j_rse_2018_12_034 crossref_primary_10_1007_s00442_021_04928_5 crossref_primary_10_3390_rs12010050 crossref_primary_10_3390_f16071196 crossref_primary_10_3390_agronomy10060893 crossref_primary_10_1155_2021_7672762 crossref_primary_10_1007_s10661_024_12703_1 crossref_primary_10_1016_j_compag_2022_106905 crossref_primary_10_3390_rs13214367 crossref_primary_10_1371_journal_pone_0217310 crossref_primary_10_1080_01431161_2018_1434329 crossref_primary_10_3390_f12060659 crossref_primary_10_1139_cjfr_2020_0125 crossref_primary_10_3390_rs16101783 crossref_primary_10_3390_rs12152407 crossref_primary_10_1016_j_ufug_2019_126574 crossref_primary_10_1016_j_scitotenv_2022_160482 crossref_primary_10_1139_cjfr_2019_0418 crossref_primary_10_3390_f13040581 crossref_primary_10_3390_plants14111640 crossref_primary_10_3390_su13095282 crossref_primary_10_3390_rs13030457 crossref_primary_10_1139_cjfr_2019_0440 crossref_primary_10_3390_drones6020048 crossref_primary_10_3390_su131911097 crossref_primary_10_1016_j_ecoinf_2025_103165 crossref_primary_10_3390_f13091462 crossref_primary_10_1016_j_atech_2025_101126 crossref_primary_10_1080_01431161_2020_1809024 crossref_primary_10_3390_land13111856 crossref_primary_10_1016_j_jag_2020_102135 crossref_primary_10_3390_rs17122091 crossref_primary_10_3390_rs12111808 crossref_primary_10_1016_j_rsase_2025_101691 crossref_primary_10_1007_s12524_023_01752_7 crossref_primary_10_3390_rs15020509 crossref_primary_10_1080_01431161_2024_2331975 crossref_primary_10_3390_f12030328 crossref_primary_10_1109_JSTARS_2018_2830410 crossref_primary_10_1139_cjfr_2019_0325 crossref_primary_10_3390_drones7050317 crossref_primary_10_3390_agronomy14030636 crossref_primary_10_3897_rethinkingecology_2_14821 crossref_primary_10_1007_s11119_020_09716_4 crossref_primary_10_1016_j_rsase_2024_101178 crossref_primary_10_3390_f15050803 crossref_primary_10_3390_f10100835 crossref_primary_10_3390_rs11010077 crossref_primary_10_3390_drones5020047 crossref_primary_10_1016_j_compag_2019_105101 crossref_primary_10_1029_2022EF003314 crossref_primary_10_1371_journal_pone_0311642 crossref_primary_10_3390_rs12061046 crossref_primary_10_1016_j_ufug_2025_128755 crossref_primary_10_3390_f13050710 |
| Cites_doi | 10.3390/rs70404213 10.3390/s140203001 10.3390/rs2041157 10.1016/j.rse.2004.01.006 10.1016/j.agrformet.2010.10.005 10.1016/j.eja.2014.01.004 10.1016/j.biombioe.2007.06.022 10.14358/PERS.72.8.923 10.1080/01431160701736422 10.3390/rs4051392 10.5194/isprsarchives-XL-1-W2-141-2013 10.14358/PERS.70.3.351 10.1139/x26-137 10.1016/S0034-4257(01)00290-5 10.1016/S0168-1699(02)00121-7 10.1016/j.jenvman.2014.01.006 10.5721/EuJRS20144716 10.1080/014311699211237 10.5589/m06-005 10.1186/1471-2229-12-63 10.5589/m03-027 10.14214/sf.386 10.1016/j.rse.2013.04.005 10.14358/PERS.72.4.357 10.14358/PERS.72.12.1389 10.1080/01431160701736513 10.3390/rs5041787 10.1007/s12145-013-0142-2 10.3390/rs3112494 10.14358/PERS.71.11.1285 |
| ContentType | Journal Article |
| Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 2016 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2016.1264028 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 2410 |
| ExternalDocumentID | 10_1080_01431161_2016_1264028 1264028 |
| Genre | Article |
| GeographicLocations | Norway |
| GeographicLocations_xml | – name: Norway |
| GrantInformation_xml | – fundername: Internal Grant Agency (IGA) grantid: No. B07/15 – fundername: Ministry of Finance of the Czech Republic, grant of Iceland, Liechtenstein and Norway grantid: No. EHP-CZ02- OV-1-019-2014 |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c503t-a3b5dac57b5376a1d91d0c443891761087acc23303be40f0179ddfa04eda91d23 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 263 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397995100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:32:27 EDT 2025 Wed Oct 01 13:58:14 EDT 2025 Thu Sep 04 16:19:17 EDT 2025 Wed Aug 13 02:59:17 EDT 2025 Tue Nov 18 22:33:12 EST 2025 Sat Nov 29 06:13:34 EST 2025 Mon Oct 20 23:42:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8-10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c503t-a3b5dac57b5376a1d91d0c443891761087acc23303be40f0179ddfa04eda91d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1923031582 |
| PQPubID | 2045515 |
| PageCount | 19 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_01431161_2016_1264028 crossref_citationtrail_10_1080_01431161_2016_1264028 proquest_miscellaneous_1904247307 crossref_primary_10_1080_01431161_2016_1264028 proquest_miscellaneous_1901751311 proquest_miscellaneous_2000317389 proquest_journals_1923031582 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-19 |
| PublicationDateYYYYMMDD | 2017-05-19 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 Pitkänen J. (CIT0027) 2004 CIT0012 CIT0034 CIT0011 CIT0033 Peckham R. J. (CIT0025) 2007 CIT0014 CIT0036 CIT0013 CIT0035 CIT0038 CIT0015 Pyysalo U. (CIT0031) 2002 CIT0037 CIT0018 Remondino F. (CIT0032) 2011; 38 CIT0017 CIT0039 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Persson Å. (CIT0026) 2002; 68 Küng O. (CIT0019) 2011; 1 CIT0003 CIT0002 CIT0024 CIT0005 James M. R. (CIT0016) 2012; 2012 CIT0004 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0015 – ident: CIT0008 doi: 10.3390/rs70404213 – ident: CIT0024 doi: 10.3390/s140203001 – start-page: 187 volume-title: Proceedings of ISPRS Working Group VIII/2: “Laser-scanners for forest and landscape assessment year: 2004 ident: CIT0027 – ident: CIT0006 doi: 10.3390/rs2041157 – volume: 2012 start-page: 117 year: 2012 ident: CIT0016 publication-title: Journal of Geophysical Research – ident: CIT0020 doi: 10.1016/j.rse.2004.01.006 – ident: CIT0021 doi: 10.1016/j.agrformet.2010.10.005 – ident: CIT0039 doi: 10.1016/j.eja.2014.01.004 – ident: CIT0028 doi: 10.1016/j.biombioe.2007.06.022 – ident: CIT0005 doi: 10.14358/PERS.72.8.923 – ident: CIT0038 doi: 10.1080/01431160701736422 – ident: CIT0035 doi: 10.3390/rs4051392 – volume: 1 start-page: 125 year: 2011 ident: CIT0019 publication-title: International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences – ident: CIT0013 doi: 10.5194/isprsarchives-XL-1-W2-141-2013 – ident: CIT0036 doi: 10.14358/PERS.70.3.351 – ident: CIT0010 doi: 10.1139/x26-137 – ident: CIT0022 doi: 10.1016/S0034-4257(01)00290-5 – ident: CIT0033 – start-page: 218 volume-title: ISPRS Commission III, Symposium year: 2002 ident: CIT0031 – volume: 38 start-page: 25 year: 2011 ident: CIT0032 publication-title: Remote Sensing and Spatial Information Sciences – ident: CIT0029 doi: 10.1016/S0168-1699(02)00121-7 – ident: CIT0009 doi: 10.1016/j.jenvman.2014.01.006 – ident: CIT0014 doi: 10.5721/EuJRS20144716 – ident: CIT0002 doi: 10.1080/014311699211237 – ident: CIT0012 doi: 10.5589/m06-005 – ident: CIT0023 doi: 10.1186/1471-2229-12-63 – ident: CIT0030 doi: 10.5589/m03-027 – ident: CIT0017 doi: 10.14214/sf.386 – ident: CIT0007 doi: 10.1016/j.rse.2013.04.005 – volume: 68 start-page: 925 issue: 9 year: 2002 ident: CIT0026 publication-title: Photogrammetric Engineering and Remote Sensing – ident: CIT0018 doi: 10.14358/PERS.72.4.357 – ident: CIT0003 doi: 10.14358/PERS.72.12.1389 – ident: CIT0001 doi: 10.1080/01431160701736513 – volume-title: Development and Applications in a Policy Support Environment Series: Lecture Notes in Geoinformation and Cartography year: 2007 ident: CIT0025 – ident: CIT0037 doi: 10.3390/rs5041787 – ident: CIT0034 doi: 10.1007/s12145-013-0142-2 – ident: CIT0011 doi: 10.3390/rs3112494 – ident: CIT0004 doi: 10.14358/PERS.71.11.1285 |
| SSID | ssj0006757 |
| Score | 2.620201 |
| Snippet | Advances in computer vision and the parallel development of unmanned aerial vehicles (UAVs) allow for the extensive use of UAV in forest inventory and in... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2392 |
| SubjectTerms | Accuracy Betula pendula Birch trees Canopies canopy Computer vision Coniferous trees Evergreen trees forest inventory Geographic information systems High resolution Image resolution Image segmentation Imagery Larix decidua Motion perception Photogrammetry Picea abies Pine Pine trees Pinus sylvestris remote sensing Satellite navigation systems Smoothing Species composition species diversity Trees Unmanned aerial vehicles watersheds Workflow |
| Title | Determining tree height and crown diameter from high-resolution UAV imagery |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1264028 https://www.proquest.com/docview/1923031582 https://www.proquest.com/docview/1901751311 https://www.proquest.com/docview/1904247307 https://www.proquest.com/docview/2000317389 |
| Volume | 38 |
| WOSCitedRecordID | wos000397995100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kCHrxLVarrOA1NY_NY49FLYJSPLTaW9jsbmjBptKkQv-9M8mmWKT2oOfM5jGZx7fJzDeE3CQ8ZaH2lYVNjBaTNreEzwJLOkL7QZIARi95Zp_DXi8aDvmLqSbMTVkl7qHTiiiijNXo3CLJ64q4W6SkcwCpYGFW0HYgpUOShCgMyB5tvN99W8ZigMNVwzQSccKSuodn3VlWstMKd-mPWF0moO7-P9z6Adkz6JN2KnM5JFs6OyI7ZhD6aHFMnu5NeQxkNIo_rOmo_HZK4YpU4padgkFNUIhiZwpFumMLtuzGgumg80rHEyTGWJyQQfehf_domXkLlvRtr7CEl_hKSD9MkONFOIo7ypYM56M7IcCsKBRSuh4kvUQzO0VfVioVNtNKgKjrnZJGNs30GaERZ5F2tB9qzVioeKSiIIW9pFZKcjDeJmG1nmNpyMhxJsZ77NScpUZTMWoqNppqkvZy2UfFxrFpAf_-EuOi_AySVjNLYm_D2lb9xmPj2HmMgBgHY0Ruk1wvD4NL4n8WkenpHGVANT7yGP0qw1wG4TVcL4NdVADvQP3nf3iMC7LrIhRBxlneIo1iNteXZFt-FuN8dlW6yxfwQQ4R |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4SXDhjRjPIHEt9JGszREBE4ix0wbcojRJBRLbEAwk_j12m04gBDvAuU4frp-J_RngMJcFT52wATUxBtyEMtCCNwMTaSeaeY4xeokz2047nezuTn7uhaGySsqhiwooorTVpNy0GV2XxB0TJl2EoQpVZjWPIvTp6CWnYVagr6Wyvm7rdmyNMSCuWqYJihPX1F08P93mi3_6gl76zVqXLqi19B8vvwyLPgBlJ5XErMCUG6zCvJ-Ffv--BldnvkIGnRqjM2t2X26fMnwkM5S1M5SpPhExak5hhHgcYNbuhZj1Tm7YQ5-wMd7Xodc6755eBH7kQmBEmIwCneTCaiPSnGBedGRlZEPDaUR6lGKklaXamDhBv5c7HhakztYWOuTOaiSNkw2YGQwHbhNYJnnmIidS5zhPrcxs1iwwnXTWGony2wBeM1oZj0dOYzEeVVTDlnpOKeKU8pxqwNF42VMFyDFpgfz8F9Wo3AkpqrElKpmwdqf-5crr9ouimJhmY2RxAw7Gl1Er6ahFD9zwlWiQNYKgjH6l4TFHC5v-TEONVBjhIfu3_vAZ-zB_0b1uq_Zl52obFmKKTAiAVu7AzOj51e3CnHkbPbw875W68wHx3RIy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xCbiwI8pqJK4pceI0yREBFYiq4sB2sxzbEUhQqi5I_XtmEqeiQtADnDPOMpnVnnkDcJKluYhtZDxqYvSE9lNPRaLhaa5s1MgyjNELnNlW3G4nT0_prasm7LuySsqh8xIoorDVpNxdk1cVcacESccxUqHCrEado0tHJzkL8wU4For0XfNxbIwxHi47pgmJE9dUTTw_3WbCPU2Al34z1oUHaq7-w7uvwYoLP9lZKS_rMGM7G7DkJqE_jzbh5sLVx6BLY3RizZ6LzVOGT2SacnaGEvVGRIxaUxjhHXuYszsRZvdnD-zljZAxRltw37y8O7_y3MAFT0d-OPBUmEVG6SjOCORFcZNy42tBA9J5jHFWEiutgxC9XmaFn5MyG5MrX1ijkDQIt2Gu896xO8CSVCSW2yi2VojYpIlJGjkmk9YYnaL01kBUfJbaoZHTUIxXySvQUscpSZySjlM1qI-XdUs4jmkL0q8_UQ6KfZC8HFoiwylr96s_Lp1m9yVFxDQZIwlqcDy-jDpJBy2qY9-HRIOsiQjI6FcaEQi0r_HPNNRGhfEdsn_3D59xBIu3F03Zum7f7MFygEEZbSHxYB_mBr2hPYAF_TF46fcOC835BGwMEMk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+tree+height+and+crown+diameter+from+high-resolution+UAV+imagery&rft.jtitle=International+journal+of+remote+sensing&rft.au=Panagiotidis%2C+Dimitrios&rft.au=Abdollahnejad%2C+Azadeh&rft.au=Surovy%2C+Peter&rft.au=Chiteculo%2C+Vasco&rft.date=2017-05-19&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=38&rft.issue=8-10&rft.spage=2392&rft.epage=2410&rft_id=info:doi/10.1080%2F01431161.2016.1264028&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |