Smart respiratory monitoring: clinical development and validation of the IPI™ (Integrated Pulmonary Index) algorithm

Continuous electronic monitoring of patient respiratory status frequently includes PetCO 2 (end tidal CO 2 ), RR (respiration rate), SpO 2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of clinical monitoring and computing Ročník 31; číslo 2; s. 435 - 442
Hlavní autoři: Ronen, M., Weissbrod, R., Overdyk, F. J., Ajizian, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.04.2017
Springer Nature B.V
Témata:
ISSN:1387-1307, 1573-2614, 1573-2614
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Continuous electronic monitoring of patient respiratory status frequently includes PetCO 2 (end tidal CO 2 ), RR (respiration rate), SpO 2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient’s respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO 2 , RR, PR, and PetCO 2 into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts’ scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO 2 , RR, PR, and PetCO 2 readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p  <<< 0.001), with agreement of −0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3−6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.
AbstractList Continuous electronic monitoring of patient respiratory status frequently includes PetCO sub(2) (end tidal CO sub(2)), RR (respiration rate), SpO sub(2) (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient's respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO sub(2), RR, PR, and PetCO sub(2) into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts' scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO sub(2), RR, PR, and PetCO sub(2) readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p <<< 0.001), with agreement of -0.5 plus or minus 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3-6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.
Continuous electronic monitoring of patient respiratory status frequently includes PetCO2 (end tidal CO2), RR (respiration rate), SpO2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient's respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO2, RR, PR, and PetCO2 into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts' scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO2, RR, PR, and PetCO2 readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p <<< 0.001), with agreement of -0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3-6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.Continuous electronic monitoring of patient respiratory status frequently includes PetCO2 (end tidal CO2), RR (respiration rate), SpO2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient's respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO2, RR, PR, and PetCO2 into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts' scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO2, RR, PR, and PetCO2 readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p <<< 0.001), with agreement of -0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3-6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.
Continuous electronic monitoring of patient respiratory status frequently includes PetCO2 (end tidal CO2), RR (respiration rate), SpO2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient’s respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO2, RR, PR, and PetCO2 into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts’ scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO2, RR, PR, and PetCO2 readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p <<< 0.001), with agreement of −0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3−6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.
Continuous electronic monitoring of patient respiratory status frequently includes PetCO2 (end tidal CO2), RR (respiration rate), SpO2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient's respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO2, RR, PR, and PetCO2 into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts' scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO2, RR, PR, and PetCO2 readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p <<< 0.001), with agreement of -0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3-6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.
Continuous electronic monitoring of patient respiratory status frequently includes PetCO (end tidal CO ), RR (respiration rate), SpO (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient's respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO , RR, PR, and PetCO into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts' scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO , RR, PR, and PetCO readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p <<< 0.001), with agreement of -0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3-6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.
Continuous electronic monitoring of patient respiratory status frequently includes PetCO 2 (end tidal CO 2 ), RR (respiration rate), SpO 2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient’s respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO 2 , RR, PR, and PetCO 2 into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts’ scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO 2 , RR, PR, and PetCO 2 readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p  <<< 0.001), with agreement of −0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3−6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.
Author Ronen, M.
Overdyk, F. J.
Ajizian, S.
Weissbrod, R.
Author_xml – sequence: 1
  givenname: M.
  surname: Ronen
  fullname: Ronen, M.
  organization: Medtronic
– sequence: 2
  givenname: R.
  surname: Weissbrod
  fullname: Weissbrod, R.
  email: Rachel.weissbrod@medtronic.com
  organization: Medtronic
– sequence: 3
  givenname: F. J.
  surname: Overdyk
  fullname: Overdyk, F. J.
  organization: Department of Anesthesiology, Roper St Francis Medical Center
– sequence: 4
  givenname: S.
  surname: Ajizian
  fullname: Ajizian, S.
  organization: Medtronic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26961501$$D View this record in MEDLINE/PubMed
BookMark eNqNksuKFDEUhgsZcS76AG4k4GZclOZUblUuBBm8NAw4oK5DKnWqO0MqaZPqxtn7JD6aT2LanpFxQHGVA_n_L-fk_MfVQYgBq-ox0OdAqXqRgbZK1RRk3bUCanWvOgKhWN1I4AelZq2qgVF1WB3nfEkp7VoGD6rDRnYSBIWjavtxMmkmCfPaJTPHdEWmGFwpXFi-JNa74KzxZMAt-rieMMzEhIFsjXeDmV0MJI5kXiFZXCx-fPtOThdhxmVB4UAuNr7ATGEuwoBfnxHjlwU8r6aH1f3R-IyPrs-T6vPbN5_O3tfnH94tzl6f11ZQNtcG5NhZZq0cRgMMGGs5NiDAWorQsFGN2Fpou94qzkUvOHDWm2boeI89DuykerXnrjf9hIMt7Sfj9Tq5MvaVjsbpP2-CW-ll3GrBuAQmCuD0GpDilw3mWU8uW_TeBIybrMvbrKOcS_kf0kZKIUW3oz69I72MmxTKTxSVEkqwpuFF9eR287-7vtleEai9wKaYc8JRWzf_WkqZxXkNVO9yovc50SUnepcTrYoT7jhv4P_yNHtPXu_CgelW0381_QQfUNIO
CODEN JCMCFG
CitedBy_id crossref_primary_10_1055_a_1546_1473
crossref_primary_10_4103_jad_jad_127_24
crossref_primary_10_1016_j_jcrc_2018_06_014
crossref_primary_10_1213_ANE_0000000000004788
crossref_primary_10_1136_tsaco_2024_001523
crossref_primary_10_1177_17562848221092612
crossref_primary_10_4187_respcare_05434
crossref_primary_10_1016_j_ajem_2019_158376
crossref_primary_10_2345_0899_8205_57_1_26
crossref_primary_10_1016_j_bja_2019_05_044
crossref_primary_10_1080_03007995_2018_1501352
crossref_primary_10_4187_respcare_07405
crossref_primary_10_3390_electronics12051169
crossref_primary_10_3390_jcm12010297
crossref_primary_10_1016_j_anclin_2021_03_006
crossref_primary_10_3390_jcm13010085
crossref_primary_10_1371_journal_pone_0280436
crossref_primary_10_1007_s10877_020_00563_2
crossref_primary_10_1007_s10877_020_00564_1
crossref_primary_10_3389_fped_2018_00336
crossref_primary_10_1093_bja_aex140
crossref_primary_10_1016_j_ajem_2023_05_043
crossref_primary_10_4187_respcare_08656
crossref_primary_10_1111_wvn_12362
crossref_primary_10_1177_03000605241258172
crossref_primary_10_1007_s10877_019_00333_9
crossref_primary_10_1093_pm_pny079
crossref_primary_10_1097_ACO_0000000000001129
crossref_primary_10_1007_s10877_019_00391_z
crossref_primary_10_1016_j_bpa_2019_06_005
crossref_primary_10_62401_2531_4122_2025_18
crossref_primary_10_1097_SGA_0000000000000839
crossref_primary_10_3389_fmed_2017_00132
crossref_primary_10_1016_j_ienj_2024_101417
crossref_primary_10_1016_j_redar_2022_11_001
crossref_primary_10_7759_cureus_44880
crossref_primary_10_1097_EJA_0000000000000798
crossref_primary_10_17826_cumj_1322052
crossref_primary_10_1155_2022_7102293
crossref_primary_10_1007_s10792_018_1024_x
crossref_primary_10_1007_s10877_018_0121_8
crossref_primary_10_1038_s41598_021_03639_4
crossref_primary_10_1213_ANE_0000000000002557
crossref_primary_10_4187_respcare_11114
crossref_primary_10_1186_s12871_021_01338_1
Cites_doi 10.1007/s10877-012-9357-x
10.1016/j.pmn.2011.06.008
10.1080/10543400701329422
10.1097/01.NURSE.0000432909.39184.e1
10.1542/peds.2005-1709
10.1093/bja/ael113
10.1213/ANE.0000000000000049
10.1213/01.ane.0000269489.26048.63
10.1067/mge.2002.124208
10.1542/peds.79.2.292
ContentType Journal Article
Copyright The Author(s) 2016
Journal of Clinical Monitoring and Computing is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2016
– notice: Journal of Clinical Monitoring and Computing is a copyright of Springer, 2017.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7SP
7U5
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
L7M
L~C
L~D
M0S
M1P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10877-016-9851-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & allied health premium.
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
Medical Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

Computer Science Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-2614
EndPage 442
ExternalDocumentID PMC5346135
4319937851
26961501
10_1007_s10877_016_9851_7
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
1N0
2.D
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUDM
ACZOJ
ADBBV
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KPH
LAK
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
Q2X
QOK
QOR
QOS
R89
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z7X
Z82
Z83
Z87
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7U5
7XB
8FD
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c503t-a16f9c3cc6dfa1313384e2151cc0e123f7fe8c189bc7445b54143ba2d94bebed3
IEDL.DBID RSV
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396348800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1387-1307
1573-2614
IngestDate Tue Nov 04 02:01:15 EST 2025
Thu Oct 02 12:15:53 EDT 2025
Sun Nov 09 11:02:20 EST 2025
Tue Nov 04 22:09:07 EST 2025
Thu Apr 03 06:59:16 EDT 2025
Sat Nov 29 01:35:44 EST 2025
Tue Nov 18 20:43:02 EST 2025
Fri Feb 21 02:35:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Respiratory monitoring
IPI
Capnography
Respiratory compromise
Composite index
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-a16f9c3cc6dfa1313384e2151cc0e123f7fe8c189bc7445b54143ba2d94bebed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s10877-016-9851-7
PMID 26961501
PQID 1875753224
PQPubID 26276
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5346135
proquest_miscellaneous_1893904466
proquest_miscellaneous_1826656595
proquest_journals_1875753224
pubmed_primary_26961501
crossref_citationtrail_10_1007_s10877_016_9851_7
crossref_primary_10_1007_s10877_016_9851_7
springer_journals_10_1007_s10877_016_9851_7
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle Including a Specialty Section on Surgical Neuromonitoring
PublicationTitle Journal of clinical monitoring and computing
PublicationTitleAbbrev J Clin Monit Comput
PublicationTitleAlternate J Clin Monit Comput
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Tarassenko, Hann, Young (CR11) 2006; 97
Vargo, Zuccaro, Dumot (CR19) 2002; 55
CR4
CR3
CR6
Tsoukalas, Uhrig (CR12) 1997
McCarter, Shaik, Scarfo, Thompson (CR10) 2008; 1
CR7
Faust (CR9) 1984
CR14
(CR17) 1987; 79
Bland, Altman (CR15) 2007; 17
Taenzer, Pyke, Herrick, Dodds, McGrath (CR16) 2014; 118
Lightdale, Goldmann, Feldman, Newburg, DiNardo, Fox (CR18) 2006; 117
Berkenstadt, Ben-Menachem, Herman, Dach (CR22) 2012; 26
Jarzyna, Jungquist, Pasero (CR5) 2011; 12
Norris, Dawant, Bronzino (CR8) 1999
Dieckmann, Brownstein, Gausche-Hill (CR13) 2000
D’Arcy (CR2) 2013; 43
Overdyk, Carter, Maddox (CR1) 2007; 105
Overdyk (CR20) 2011; 6
American Academy of Pediatrics (9851_CR17) 1987; 79
L Tarassenko (9851_CR11) 2006; 97
JJ Vargo (9851_CR19) 2002; 55
FJ Overdyk (9851_CR1) 2007; 105
F Overdyk (9851_CR20) 2011; 6
LH Tsoukalas (9851_CR12) 1997
9851_CR7
9851_CR6
D Faust (9851_CR9) 1984
9851_CR4
JM Bland (9851_CR15) 2007; 17
9851_CR3
Y D’Arcy (9851_CR2) 2013; 43
PR Norris (9851_CR8) 1999
9851_CR14
(9851_CR13) 2000
T McCarter (9851_CR10) 2008; 1
AH Taenzer (9851_CR16) 2014; 118
H Berkenstadt (9851_CR22) 2012; 26
D Jarzyna (9851_CR5) 2011; 12
JR Lightdale (9851_CR18) 2006; 117
23921816 - Nursing. 2013 Sep;43(9):38-45; quiz 45-6
16702250 - Pediatrics. 2006 Jun;117(6):e1170-8
21893302 - Pain Manag Nurs. 2011 Sep;12(3):118-145.e10
24361847 - Anesth Analg. 2014 Feb;118(2):326-31
17646499 - Anesth Analg. 2007 Aug;105(2):412-8
17613642 - J Biopharm Stat. 2007;17(4):571-82
16707529 - Br J Anaesth. 2006 Jul;97(1):64-8
22454276 - J Clin Monit Comput. 2012 Jun;26(3):177-81
25126237 - Am Health Drug Benefits. 2008 Jun;1(5):28-35
3808807 - Pediatrics. 1987 Feb;79(2):292-9
12024135 - Gastrointest Endosc. 2002 Jun;55(7):826-31
References_xml – volume: 1
  start-page: 28
  issue: 5
  year: 2008
  end-page: 35
  ident: CR10
  article-title: Capnography monitoring enhances safety of postoperative patient-controlled analgesia
  publication-title: Am Health Drug Benefits
– volume: 26
  start-page: 177
  year: 2012
  end-page: 181
  ident: CR22
  article-title: An evaluation of the Integrated Pulmonary Index (IPI) for the detection of respiratory events in sedated patients undergoing colonoscopy
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-012-9357-x
– start-page: 43
  year: 2000
  end-page: 45
  ident: CR13
  publication-title: Pediatric education for prehospital professionals
– ident: CR3
– ident: CR4
– volume: 12
  start-page: 118
  issue: 3
  year: 2011
  end-page: 145
  ident: CR5
  article-title: American Society for Pain Management Nursing guidelines on monitoring of opioid-induced sedation and respiratory depression
  publication-title: Pain Manag Nurs
  doi: 10.1016/j.pmn.2011.06.008
– year: 1999
  ident: CR8
  article-title: Knowledge-based systems for intelligent patient monitoring and management in critical care environments
  publication-title: The biomedical engineering handbook, Chap 186
– ident: CR14
– volume: 17
  start-page: 571
  year: 2007
  end-page: 582
  ident: CR15
  article-title: Agreement between methods with multiple observations
  publication-title: J Biopharm Stat
  doi: 10.1080/10543400701329422
– year: 1997
  ident: CR12
  publication-title: Fuzzy and neural approaches in engineering
– volume: 43
  start-page: 38
  issue: 9
  year: 2013
  end-page: 45
  ident: CR2
  article-title: Turning the tide on respiratory depression
  publication-title: Nursing
  doi: 10.1097/01.NURSE.0000432909.39184.e1
– year: 1984
  ident: CR9
  publication-title: The limits of scientific reasoning
– volume: 117
  start-page: e1170
  issue: 6
  year: 2006
  end-page: e1178
  ident: CR18
  article-title: Microstream capnography improves patient monitoring during moderate sedation: a randomized, controlled trial
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-1709
– volume: 97
  start-page: 64
  issue: 1
  year: 2006
  end-page: 68
  ident: CR11
  article-title: Integrated monitoring and analysis for early warning of patient deterioration
  publication-title: Br J Anaesth
  doi: 10.1093/bja/ael113
– volume: 79
  start-page: 292
  year: 1987
  end-page: 299
  ident: CR17
  article-title: National Institutes of Health consensus development conference on infantile apnea and home monitoring, Sept 29 to Oct 1, 1986
  publication-title: Pediatrics
– volume: 118
  start-page: 326
  year: 2014
  end-page: 331
  ident: CR16
  article-title: A comparison of oxygen saturation data in inpatients with low oxygen saturation using automated continuous monitoring and intermittent manual data charting
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000000049
– ident: CR6
– volume: 6
  start-page: 26
  issue: 11
  year: 2011
  end-page: 31
  ident: CR20
  article-title: Improving outcomes in in med-surg patients with opioid induced respiratory depression
  publication-title: Am Nurse Today
– volume: 105
  start-page: 412
  year: 2007
  end-page: 418
  ident: CR1
  article-title: Continuous oximetry/capnometry monitoring reveals frequent desaturation and bradypnea during patient-controlled analgesia
  publication-title: Anesth Analg
  doi: 10.1213/01.ane.0000269489.26048.63
– ident: CR7
– volume: 55
  start-page: 826
  issue: 7
  year: 2002
  end-page: 831
  ident: CR19
  article-title: Automated graphic assessment of respiratory activity is superior to pulse oximetry and visual assessment for the detection of early respiratory depression during therapeutic upper endoscopy
  publication-title: Gastrointest Endosc
  doi: 10.1067/mge.2002.124208
– volume: 55
  start-page: 826
  issue: 7
  year: 2002
  ident: 9851_CR19
  publication-title: Gastrointest Endosc
  doi: 10.1067/mge.2002.124208
– volume-title: The limits of scientific reasoning
  year: 1984
  ident: 9851_CR9
– ident: 9851_CR7
– volume: 97
  start-page: 64
  issue: 1
  year: 2006
  ident: 9851_CR11
  publication-title: Br J Anaesth
  doi: 10.1093/bja/ael113
– volume: 79
  start-page: 292
  year: 1987
  ident: 9851_CR17
  publication-title: Pediatrics
  doi: 10.1542/peds.79.2.292
– volume: 12
  start-page: 118
  issue: 3
  year: 2011
  ident: 9851_CR5
  publication-title: Pain Manag Nurs
  doi: 10.1016/j.pmn.2011.06.008
– ident: 9851_CR3
– ident: 9851_CR6
– volume: 105
  start-page: 412
  year: 2007
  ident: 9851_CR1
  publication-title: Anesth Analg
  doi: 10.1213/01.ane.0000269489.26048.63
– ident: 9851_CR4
– volume-title: Fuzzy and neural approaches in engineering
  year: 1997
  ident: 9851_CR12
– volume: 6
  start-page: 26
  issue: 11
  year: 2011
  ident: 9851_CR20
  publication-title: Am Nurse Today
– volume: 117
  start-page: e1170
  issue: 6
  year: 2006
  ident: 9851_CR18
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-1709
– ident: 9851_CR14
– volume-title: The biomedical engineering handbook, Chap 186
  year: 1999
  ident: 9851_CR8
– volume: 17
  start-page: 571
  year: 2007
  ident: 9851_CR15
  publication-title: J Biopharm Stat
  doi: 10.1080/10543400701329422
– volume: 43
  start-page: 38
  issue: 9
  year: 2013
  ident: 9851_CR2
  publication-title: Nursing
  doi: 10.1097/01.NURSE.0000432909.39184.e1
– volume: 118
  start-page: 326
  year: 2014
  ident: 9851_CR16
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000000049
– start-page: 43
  volume-title: Pediatric education for prehospital professionals
  year: 2000
  ident: 9851_CR13
– volume: 1
  start-page: 28
  issue: 5
  year: 2008
  ident: 9851_CR10
  publication-title: Am Health Drug Benefits
– volume: 26
  start-page: 177
  year: 2012
  ident: 9851_CR22
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-012-9357-x
– reference: 23921816 - Nursing. 2013 Sep;43(9):38-45; quiz 45-6
– reference: 12024135 - Gastrointest Endosc. 2002 Jun;55(7):826-31
– reference: 3808807 - Pediatrics. 1987 Feb;79(2):292-9
– reference: 16702250 - Pediatrics. 2006 Jun;117(6):e1170-8
– reference: 17646499 - Anesth Analg. 2007 Aug;105(2):412-8
– reference: 24361847 - Anesth Analg. 2014 Feb;118(2):326-31
– reference: 22454276 - J Clin Monit Comput. 2012 Jun;26(3):177-81
– reference: 16707529 - Br J Anaesth. 2006 Jul;97(1):64-8
– reference: 17613642 - J Biopharm Stat. 2007;17(4):571-82
– reference: 21893302 - Pain Manag Nurs. 2011 Sep;12(3):118-145.e10
– reference: 25126237 - Am Health Drug Benefits. 2008 Jun;1(5):28-35
SSID ssj0009831
Score 2.3605978
Snippet Continuous electronic monitoring of patient respiratory status frequently includes PetCO 2 (end tidal CO 2 ), RR (respiration rate), SpO 2 (arterial oxygen...
Continuous electronic monitoring of patient respiratory status frequently includes PetCO (end tidal CO ), RR (respiration rate), SpO (arterial oxygen...
Continuous electronic monitoring of patient respiratory status frequently includes PetCO2 (end tidal CO2), RR (respiration rate), SpO2 (arterial oxygen...
Continuous electronic monitoring of patient respiratory status frequently includes PetCO sub(2) (end tidal CO sub(2)), RR (respiration rate), SpO sub(2)...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 435
SubjectTerms Adult
Algorithms
Anesthesiology
Capnography - instrumentation
Capnography - methods
Child
Child, Preschool
Cluster Analysis
Critical Care Medicine
Electronics
Fuzzy Logic
Health Sciences
Humans
Infant
Inference
Intensive
Lung
Mathematical models
Medicine
Medicine & Public Health
Models, Theoretical
Monitoring
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
Nurses
Original Research
Oximetry - instrumentation
Oximetry - methods
Patients
Physicians
Prospective Studies
Pulmonary Gas Exchange
Reproducibility of Results
Respiration
Respiratory Rate
Respiratory Therapy
Retrospective Studies
ROC Curve
Sensitivity analysis
Signal Processing, Computer-Assisted
Statistics for Life Sciences
Surveys and Questionnaires
Waveforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagceBQogYKMxKGlssjDjm0uCCEqVqLVShS0t8hxHLrSbrbsA_4-M3lsulTshXMmjq35bH_OjL8BeC2ktHjuEdwK67nwOuLGiphHufK2DEtna3X-71_U2Zkejcyw_eG2aNMquzWxXqiLmaN_5G8jUl6XCD_x_vInp6pRFF1tS2jchFtUNptwrkaqF93VSXPgwomEa7XqoprN1TmtKOky5QZJB1eb-9I1snk9Z_KvwGm9H53c_9-RPIB7LRNlHxroPIQbvtqDu1f0CffgzmkbeX8Ev79OEWRs3kfm2bReDsjyHesuWLKiT0JitioYAnnclG1is5Ih22SD4eDw_PSIHQ46pYqCDVcTbM1iowNSbzxidvIDW15eTB_Dt5NP5x8_87ZoA3cyTJYcfVsalziXFqWNEjoCC0-8wrnQ4zZZqtJrF2mTOyWEzKkMeZLbuDAiR0AVyRPYqWaVfwoslLF2Oo984pDnOWVcbtLYpto4Vcq8CCDsXJa5VtGcCmtMsl6LmbycURYbeTlTAbxZv3LZyHlsMz7oHJi1M3uR9d4L4NX6Mc5JCrTYys9WZIO0R5JS4zYbk5g6mh7AfgOtdY_i1JBOfxSA2gDd2oA0wTefVOOLWhtcJgIJGn73uIPnla7_a6DPtg_0OezGRGbqfKUD2FnOV_4F3Ha_luPF_GU95f4A-VczaA
  priority: 102
  providerName: ProQuest
Title Smart respiratory monitoring: clinical development and validation of the IPI™ (Integrated Pulmonary Index) algorithm
URI https://link.springer.com/article/10.1007/s10877-016-9851-7
https://www.ncbi.nlm.nih.gov/pubmed/26961501
https://www.proquest.com/docview/1875753224
https://www.proquest.com/docview/1826656595
https://www.proquest.com/docview/1893904466
https://pubmed.ncbi.nlm.nih.gov/PMC5346135
Volume 31
WOSCitedRecordID wos000396348800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2614
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009831
  issn: 1387-1307
  databaseCode: P5Z
  dateStart: 20040201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2614
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009831
  issn: 1387-1307
  databaseCode: K7-
  dateStart: 20040201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1573-2614
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009831
  issn: 1387-1307
  databaseCode: 7X7
  dateStart: 20040201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & allied health premium.
  customDbUrl:
  eissn: 1573-2614
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009831
  issn: 1387-1307
  databaseCode: 7RV
  dateStart: 20040201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2614
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009831
  issn: 1387-1307
  databaseCode: BENPR
  dateStart: 20040201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009831
  issn: 1387-1307
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB3RFiF44FKgBMrKSDwAlaVc7NjmDVArVsAq2sJqxUvkOA5daTdb7aVfwJfwaXwJ41z2QqESvFiKPHEce8Y-1ozPADxnnGs89zCqmbaUWRlQpVlIg0xYXfiF0RU7_-Cj6PXkcKiS5h73vI12b12S1Uq9cdlNChcmGVOFMIGKHdjD3U66fA3908GaaVdG9SkLrQcXaNG6Mv_UxPZmdAlhXg6U_M1bWm1CJ3f-q_t34XaDOcmbWknuwTVb7sOtDSbCfbjxqfGx34eL0wmqE5mtffBkUhm-k3xN2quUJF-HGxFd5gRVdlQnaCLTgiCuJN2k-_P7D_Ki21JS5CRZjrExjW12HU3jS6LH37DhxdnkAXw5Of787j1tsjNQw_1oQXESC2UiY-K80EHkzrrMOgBhjG9xPyxEYaUJpMqMYIxnLt94lOkwVyxDzcmjh7BbTkv7CIjPQ2lkFtjIIKAzQplMxaGOpTKi4Fnugd9OU2oa6nKXQWOcrkmX3eimLlzNjW4qPHi1euW85u24Sviwnfu0MeF5Gjiqf47rHfPg2aoajc95VHRpp0sng_iGO0rGq2RUpCq3uQcHtTqtehTGyhHyBx6ILUVbCTjy7-2acnRWkYDziCESw-8eteq20fW__ejjf5J-AjdDB2KqOKVD2F3MlvYpXDcXi9F81oEd0R-4ciiqUnZg7-1xL-nj0wdBsUz4105lm78AgQgwWw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA3F54DIGBAYYCaSNyaJJnDpGQggB06JeVIkO7S04jsMqtenohYk_xW_knKRpVib6tgeec-LEzneOj-PP3wF4KYJA47pHcC205cKGLldaeNxNpNVZIzO6UOf_2pbdbnh8rHob8Ls6C0O0yiomFoE6HRv6R_7GJeX1AOEn3p_-4FQ1inZXqxIaJSxa9tcZLtmm76JP-H1fed7B5_7HQ76oKsBN0PBnHB-eKeMb00wz7fq0RhOWJj5jGhbjeCYzGxo3VImRQgQJ1cn2E-2lSiTY49THdq_AVeGHkvyqJXkt8hv65QIPHRfnBlntopZH9UJJJM8mV5jkcLk6D15Ibi9yNP_aqC3mv4M7_9vI3YXbi0ybfShd4x5s2HwLbp3TX9yC650Fs-A-nH0ZoROxSc08YKMi3JHlW1YdIGVpTbJiOk8ZOuqgLEvFxhnDbJpFvWi339lju1GlxJGy3nyIrWlsNCJ1yj2mh9-x5dnJaBuOLmUQHsBmPs7tI2CNwAtNmLjWN5jHGqlMopqebobKyCxIUgcaFURis1Bsp8Ihw7jWmiZUxcTSI1TF0oHXy1tOS7mSdcY7FWDiReSaxjVaHHixvIwxhzaSdG7Hc7LBtC4gJcp1NspXBVvAgYcllJdv5DUV1SFwHZArIF8akOb56pV8cFJonwe-wAQUn7tfucO5V_9XRx-v7-hzuHHY77TjdtRtPYGbHiVuBTdrBzZnk7l9CtfMz9lgOnlWuDuDb5ftJX8AmfORRg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BQRU8FCjQpi1gJB64KGouThzzhoAVEWW1UqHqW-Q4Nl1pN1vtZvsFfAmfxpd0Jpe9UKiEePZk4suMfawZnwF4waNI4b2Hu4or43KT-K5UPHD9XBhlPatVzc5_ciT6_eT0VA7aOqezLtu9C0k2bxqIpamsDs8Le7jy8C0RlDIZuxIhgytuwi1OefR0XT8-WbLuJmFz40JPws1adGHNP6lYP5iuoM2rSZO_RU7rA6l377-Hch-2WizK3jXG8wBumHIb7q4wFG7D5pc29v4QLo7HaGZsuozNs3G9IZDkW9Y9sWTFMg2JqbJgaMrDpnATm1iGeJOlg_TXj5_sZdpRVRRsMB-hMoU6U6JvfMXU6Dsqrs7Gj-Bb7-PX95_ctmqDqyMvrFxcXCt1qHVcWOWHdAfmhoCF1p7Bc9IKaxLtJzLXgvMopzrkYa6CQvIcLaoIH8NGOSnNLjAvChKd5L4JNQI9LaTOZRyoOJFa2CgvHPC6Jct0S2lOlTVG2ZKMmWY3ozQ2mt1MOPB68cl5w-dxnfBBZwdZ69qzzKcSABHug9yB54tmdEqKtKjSTOYkg7gnIqrG62RkKOtwugM7jWktehTEkoj6fQfEmtEtBIgUfL2lHJ7V5OBRyBGh4X_fdKa30vW_DXTvn6SfwebgQy87Svuf9-FOQDinTmU6gI1qOjdP4La-qIaz6dPaGS8Bw4I16g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+respiratory+monitoring%3A+clinical+development+and+validation+of+the+IPI%E2%84%A2+%28Integrated+Pulmonary+Index%29+algorithm&rft.jtitle=Journal+of+clinical+monitoring+and+computing&rft.au=Ronen%2C+M.&rft.au=Weissbrod%2C+R.&rft.au=Overdyk%2C+F.+J.&rft.au=Ajizian%2C+S.&rft.date=2017-04-01&rft.pub=Springer+Netherlands&rft.issn=1387-1307&rft.eissn=1573-2614&rft.volume=31&rft.issue=2&rft.spage=435&rft.epage=442&rft_id=info:doi/10.1007%2Fs10877-016-9851-7&rft.externalDocID=10_1007_s10877_016_9851_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1307&client=summon