The SMC-like RecN protein is at the crossroads of several genotoxic stress responses in Escherichia coli

DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in microbiology Ročník 14; s. 1146496
Hlavní autori: Camus, Adrien, Espinosa, Elena, Zapater Baras, Pénélope, Singh, Parul, Quenech’Du, Nicole, Vickridge, Elise, Modesti, Mauro, Barre, François Xavier, Espéli, Olivier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media 24.04.2023
Frontiers Media S.A
Predmet:
ISSN:1664-302X, 1664-302X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in . We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
AbstractList IntroductionDNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways.MethodsIn the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections.ResultsWe demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions.DiscussionThose results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
Introduction DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. Methods In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli . We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. Results We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Discussion Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways.IntroductionDNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways.In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections.MethodsIn the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections.We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions.ResultsWe demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions.Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.DiscussionThose results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in . We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
Author Zapater Baras, Pénélope
Camus, Adrien
Singh, Parul
Barre, François Xavier
Espéli, Olivier
Quenech’Du, Nicole
Espinosa, Elena
Vickridge, Elise
Modesti, Mauro
AuthorAffiliation 2 Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS , Gif-sur-Yvette , France
1 CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL , Paris , France
3 Goodman Cancer Research Centre, McGill University , Montreal, QC , Canada
4 Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR 7258, INSERM U1068, Institut Paoli-Calmettes, Aix Marseille University , Marseille , France
AuthorAffiliation_xml – name: 2 Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS , Gif-sur-Yvette , France
– name: 4 Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR 7258, INSERM U1068, Institut Paoli-Calmettes, Aix Marseille University , Marseille , France
– name: 1 CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL , Paris , France
– name: 3 Goodman Cancer Research Centre, McGill University , Montreal, QC , Canada
Author_xml – sequence: 1
  givenname: Adrien
  surname: Camus
  fullname: Camus, Adrien
– sequence: 2
  givenname: Elena
  surname: Espinosa
  fullname: Espinosa, Elena
– sequence: 3
  givenname: Pénélope
  surname: Zapater Baras
  fullname: Zapater Baras, Pénélope
– sequence: 4
  givenname: Parul
  surname: Singh
  fullname: Singh, Parul
– sequence: 5
  givenname: Nicole
  surname: Quenech’Du
  fullname: Quenech’Du, Nicole
– sequence: 6
  givenname: Elise
  surname: Vickridge
  fullname: Vickridge, Elise
– sequence: 7
  givenname: Mauro
  surname: Modesti
  fullname: Modesti, Mauro
– sequence: 8
  givenname: François Xavier
  surname: Barre
  fullname: Barre, François Xavier
– sequence: 9
  givenname: Olivier
  surname: Espéli
  fullname: Espéli, Olivier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37168111$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04306291$$DView record in HAL
BookMark eNp9ksFu1DAQhi1UREvpC3BAPsIhi8dOvMkJVatCKy0gQZG4WY4z3rhk463tXcHb4222qO0BH8bWeP7PY83_khyNfkRCXgObCVE37-3amXbGGRczgFKWjXxGTkDKshCM_zx6cD4mZzHesLxKxnN8QY7FHGQNACekv-6Rfv-8KAb3C-k3NF_oJviEbqQuUp1oyvcm-BiD112k3tKIOwx6oCscffK_naExBYyR5rDxY8RIs_oimh6DM73T1PjBvSLPrR4inh32U_Lj48X14rJYfv10tThfFqZiIhVNw5tSA7LaSgHC2DnH2jDJTGVBQCs5KztrawktdvPaGmiFYMjAWl1aMOKUXE3czusbtQlurcMf5bVTdwkfVkqH5MyAqrVaG2wE59KWILmGqtWVRsZEy1rTZNaHibXZtmvsDI4pf_wR9PHN6Hq18jsFDGSVR5IJ7yZC_0R3eb5U-xwrBZO8gR3k2reH14K_3WJMau2iwWHQI_ptVLwGUVVVU4tc-uZhY__I93PNBfVUMI0OrTIu6eT8vk835AbV3kXqzkVq7yJ1cFGW8ifSe_p_RH8BhY7L8w
CitedBy_id crossref_primary_10_1093_nar_gkaf437
crossref_primary_10_1016_j_mrgentox_2025_503879
Cites_doi 10.1074/jbc.M110.119164
10.1016/j.dnarep.2014.03.008
10.1093/nass/nrn029
10.1099/mic.0.075051-0
10.3390/antiox10060861
10.1016/j.mrfmmm.2004.04.011
10.1016/j.bbapap.2004.08.017
10.1016/0027-5107(83)90090-8
10.1007/978-1-4939-7098-8_4
10.1016/j.str.2012.09.010
10.1016/j.resmic.2004.09.007
10.3390/genes9110565
10.1534/genetics.120.303476
10.1038/nmeth.1377
10.1111/mmi.14162
10.1111/j.1365-2958.2005.04677.x
10.1038/s42003-021-02161-7
10.1016/j.dnarep.2010.06.008
10.1093/jrr/rrx027
10.7554/eLife.67552
10.1038/s41467-021-22306-w
10.1016/j.molcel.2006.03.007
10.1111/j.1365-2958.2007.05835.x
10.1016/j.dnarep.2015.10.001
10.1016/j.xpro.2020.100202
10.1038/cr.2008.1
10.1016/j.mrrev.2010.07.003
10.1016/j.molcel.2020.06.033
10.1093/nar/gkq576
10.1038/nrmicro.2015.7
10.1016/0167-8817(85)90003-3
10.1038/s42003-019-0655-4
10.1073/pnas.1816606115
10.1371/journal.pone.0126070
10.1111/j.1365-2958.2008.06239.x
10.1038/nmicrobiol.2016.77
10.1073/pnas.87.21.8350
10.1046/j.1365-2958.2000.01989.x
10.1074/jbc.M606566200
10.1016/B978-0-12-387665-2.00004-3
10.1046/j.1365-2958.2001.02680.x
10.1093/nar/gkn302
10.1128/JB.184.13.3501-3507.2002
10.1371/journal.pone.0157799
10.1128/jb.120.3.1213-1218.1974
10.1038/emboj.2012.194
10.1111/j.1365-2672.2010.04890.x
10.1074/jbc.M308926200
10.1128/jb.93.2.675-682.1967
10.1371/journal.pone.0033256
10.1007/s00294-017-0787-3
10.1016/S0921-8777(01)00077-5
10.1016/S0021-9258(19)68452-8
10.1007/BF00332758
10.1038/ncomms14618
10.1007/978-1-4684-2895-7_48
10.1371/journal.pgen.1003673
10.1016/j.abb.2012.04.014
10.1074/jbc.M113.485474
ContentType Journal Article
Copyright Copyright © 2023 Camus, Espinosa, Zapater Baras, Singh, Quenech’Du, Vickridge, Modesti, Barre and Espéli.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2023 Camus, Espinosa, Zapater Baras, Singh, Quenech’Du, Vickridge, Modesti, Barre and Espéli. 2023 Camus, Espinosa, Zapater Baras, Singh, Quenech’Du, Vickridge, Modesti, Barre and Espéli
Copyright_xml – notice: Copyright © 2023 Camus, Espinosa, Zapater Baras, Singh, Quenech’Du, Vickridge, Modesti, Barre and Espéli.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2023 Camus, Espinosa, Zapater Baras, Singh, Quenech’Du, Vickridge, Modesti, Barre and Espéli. 2023 Camus, Espinosa, Zapater Baras, Singh, Quenech’Du, Vickridge, Modesti, Barre and Espéli
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fmicb.2023.1146496
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_bfaace93226f4162a15ba5ae003b0bc9
PMC10165496
oai:HAL:hal-04306291v1
37168111
10_3389_fmicb_2023_1146496
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: ANR-18-CE12-0012
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c503t-99294a1e08f6313cf72e8c060c5f131b6204dff861bed78fc1b330e01ffa4f1c3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982848100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-302X
IngestDate Fri Oct 03 12:52:42 EDT 2025
Thu Aug 21 18:37:14 EDT 2025
Tue Oct 14 20:16:27 EDT 2025
Thu Oct 02 11:24:59 EDT 2025
Thu Jan 02 22:52:11 EST 2025
Sat Nov 29 02:12:48 EST 2025
Tue Nov 18 21:38:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mitomycin C (Mit-C)
sister chromatid cohesion
genotoxic
homologous recombination (HR)
uvrA
Tn-seq
Bleomycin (BLM)
RecN
Language English
License Copyright © 2023 Camus, Espinosa, Zapater Baras, Singh, Quenech’Du, Vickridge, Modesti, Barre and Espéli.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-99294a1e08f6313cf72e8c060c5f131b6204dff861bed78fc1b330e01ffa4f1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Tamara Basta, UMR 9198 Institut de Biologie Intégrative de la Cellule (I2BC), France
Reviewed by: Amar Deep, University of California, San Diego, United States; Johannes Stigler, Ludwig Maximilian University of Munich, Germany
OpenAccessLink https://doaj.org/article/bfaace93226f4162a15ba5ae003b0bc9
PMID 37168111
PQID 2813555983
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_bfaace93226f4162a15ba5ae003b0bc9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10165496
hal_primary_oai_HAL_hal_04306291v1
proquest_miscellaneous_2813555983
pubmed_primary_37168111
crossref_citationtrail_10_3389_fmicb_2023_1146496
crossref_primary_10_3389_fmicb_2023_1146496
PublicationCentury 2000
PublicationDate 2023-04-24
PublicationDateYYYYMMDD 2023-04-24
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2023
Publisher Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Media S.A
References Kosa (B29) 2004; 554
Ezraty (B19) 2005; 1703
Steighner (B52) 1990; 87
Çaglayan (B4) 2017; 58
Lossius (B33) 1983; 109
Solaimanpour (B50) 2015; 10
Sunako (B53) 2001; 42
Mendoza-Chamizo (B36) 2018; 9
Peralta (B43) 2016; 11
van Opijnen (B55) 2009; 6
Cupido (B9) 1985; 146
Keyamura (B26) 2019; 2
Li (B32) 2008; 18
Lesterlin (B31) 2012; 31
Reyes (B48) 2010; 285
Chen (B7) 2021; 10
Pellegrino (B42) 2012; 20
Joseph (B23) 2021; 10
Hanawalt (B21) 2015; 36
Burger (B3) 1981; 256
Warr (B57) 2019; 111
Becket (B1) 2010; 9
Keller (B25) 2001; 486
Sanchez (B49) 2007; 65
Suzuki (B54) 1967; 93
Radman (B47) 1975
Neher (B40) 2006; 22
Bhattacharyya (B2) 2018; 115
Nagashima (B39) 2006; 281
Keyamura (B27) 2013; 288
Kushner (B30) 1974; 120
Derks (B12) 2014; 19
Garewal (B20) 1988; 15
Prudent (B46) 2021; 4
Espinosa (B18); 1
Espeli (B15) 2003; 278
Spek (B51) 2002; 184
Elhenawy (B14) 2021; 12
Michel (B37) 2000; 37
Ducret (B13) 2016; 1
Weng (B58) 2010; 38
Klimova (B28) 2020; 216
Demarre (B11) 2005; 156
Joshi (B24) 2013; 9
Picksley (B44) 1984; 195
Calhoun (B5) 2011; 110
Ide (B22) 2008; 52
Matic (B34) 2018; 64
Yamaichi (B60) 2017; 1624
Odsbu (B41) 2014; 160
Mishra (B38) 2012; 525
Prakash (B45) 2012; 110
Chen (B8) 2008; 36
Chao (B6) 2016; 14
Espeli (B16) 2008; 68
Vickridge (B56) 2017; 8
Espinosa (B17); 79
Xu (B59) 2012; 7
Daley (B10) 2010; 705
Meddows (B35) 2005; 57
References_xml – volume: 285
  start-page: 16521
  year: 2010
  ident: B48
  article-title: RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.119164
– volume: 19
  start-page: 214
  year: 2014
  ident: B12
  article-title: The DNA damage response: The omics era and its impact.
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.03.008
– volume: 52
  start-page: 57
  year: 2008
  ident: B22
  article-title: Repair of DNA-protein crosslink damage: coordinated actions of nucleotide excision repair and homologous recombination
  publication-title: Nucleic Acids Symp. Ser.
  doi: 10.1093/nass/nrn029
– volume: 160
  start-page: 872
  year: 2014
  ident: B41
  article-title: DNA compaction in the early part of the SOS response is dependent on RecN and RecA.
  publication-title: Microbiology
  doi: 10.1099/mic.0.075051-0
– volume: 10
  year: 2021
  ident: B7
  article-title: Genome-wide screening of oxidizing agent resistance genes in Escherichia coli.
  publication-title: Antioxidants
  doi: 10.3390/antiox10060861
– volume: 554
  start-page: 149
  year: 2004
  ident: B29
  article-title: RecN and RecG are required for Escherichia coli survival of Bleomycin-induced damage.
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrfmmm.2004.04.011
– volume: 1703
  start-page: 221
  year: 2005
  ident: B19
  article-title: Methionine sulfoxide reductases in prokaryotes.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2004.08.017
– volume: 109
  start-page: 13
  year: 1983
  ident: B33
  article-title: Mitomycin-C-induced changes in the nucleoid of Escherichia coli K12.
  publication-title: Mutat. Res.
  doi: 10.1016/0027-5107(83)90090-8
– volume: 1624
  start-page: 39
  year: 2017
  ident: B60
  article-title: Transposon Insertion Site Sequencing for Synthetic Lethal Screening
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7098-8_4
– volume: 15
  start-page: 74
  year: 1988
  ident: B20
  article-title: Mitomycin C in the chemotherapy of advanced breast cancer.
  publication-title: Semin. Oncol.
– volume: 20
  start-page: 2076
  year: 2012
  ident: B42
  article-title: Structural and functional characterization of an SMC-like protein RecN: New insights into double-strand break repair.
  publication-title: Structure
  doi: 10.1016/j.str.2012.09.010
– volume: 156
  start-page: 245
  year: 2005
  ident: B11
  article-title: A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains.
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2004.09.007
– volume: 9
  year: 2018
  ident: B36
  article-title: Coping with reactive oxygen species to ensure genome stability in Escherichia coli.
  publication-title: Genes
  doi: 10.3390/genes9110565
– volume: 216
  start-page: 381
  year: 2020
  ident: B28
  article-title: An Epistasis Analysis of recA and recN in Escherichia coli K-12.
  publication-title: Genetics
  doi: 10.1534/genetics.120.303476
– volume: 6
  start-page: 767
  year: 2009
  ident: B55
  article-title: Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1377
– volume: 111
  start-page: 405
  year: 2019
  ident: B57
  article-title: Protease-deficient SOS constitutive cells have RecN-dependent cell division phenotypes.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.14162
– volume: 57
  start-page: 97
  year: 2005
  ident: B35
  article-title: RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.04677.x
– volume: 4
  year: 2021
  ident: B46
  article-title: The Crohn’s disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack.
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02161-7
– volume: 9
  start-page: 949
  year: 2010
  ident: B1
  article-title: Determination of hypersensitivity to genotoxic agents among Escherichia coli single gene knockout mutants.
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2010.06.008
– volume: 58
  start-page: 603
  year: 2017
  ident: B4
  article-title: Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure.
  publication-title: J. Radiat. Res.
  doi: 10.1093/jrr/rrx027
– volume: 10
  year: 2021
  ident: B23
  article-title: Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria.
  publication-title: eLife
  doi: 10.7554/eLife.67552
– volume: 12
  year: 2021
  ident: B14
  article-title: High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn’s disease-associated Escherichia coli.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22306-w
– volume: 22
  start-page: 193
  year: 2006
  ident: B40
  article-title: Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.03.007
– volume: 65
  start-page: 920
  year: 2007
  ident: B49
  article-title: Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05835.x
– volume: 36
  start-page: 2
  year: 2015
  ident: B21
  article-title: Historical perspective on the DNA damage response.
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2015.10.001
– volume: 1
  ident: B18
  article-title: Protocol for high-throughput analysis of sister-chromatids contacts.
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2020.100202
– volume: 18
  start-page: 99
  year: 2008
  ident: B32
  article-title: Homologous recombination in DNA repair and DNA damage tolerance.
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.1
– volume: 705
  start-page: 217
  year: 2010
  ident: B10
  article-title: The endonuclease IV family of apurinic/apyrimidinic endonucleases.
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrrev.2010.07.003
– volume: 79
  start-page: 857
  ident: B17
  article-title: High-resolution whole-genome analysis of sister-chromatid contacts.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.06.033
– volume: 38
  start-page: 6976
  year: 2010
  ident: B58
  article-title: Repair of mitomycin C mono- and interstrand cross-linked DNA adducts by UvrABC: A new model.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq576
– volume: 14
  start-page: 119
  year: 2016
  ident: B6
  article-title: The design and analysis of transposon insertion sequencing experiments.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2015.7
– volume: 146
  start-page: 135
  year: 1985
  ident: B9
  article-title: Uvr-independent repair of 8-methoxypsoralen crosslinks in Escherichia coli: Evidence for a recombinational process.
  publication-title: Mutat. Res.
  doi: 10.1016/0167-8817(85)90003-3
– volume: 2
  year: 2019
  ident: B26
  article-title: Topological DNA-binding of structural maintenance of chromosomes-like RecN promotes DNA double-strand break repair in Escherichia coli.
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0655-4
– volume: 115
  start-page: E11614
  year: 2018
  ident: B2
  article-title: Phage Mu Gam protein promotes NHEJ in concert with Escherichia coli ligase.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1816606115
– volume: 10
  year: 2015
  ident: B50
  article-title: Tn-Seq explorer: A tool for analysis of high-throughput sequencing data of transposon mutant libraries.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126070
– volume: 68
  start-page: 1418
  year: 2008
  ident: B16
  article-title: DNA dynamics vary according to macrodomain topography in the E. coli chromosome.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06239.x
– volume: 1
  year: 2016
  ident: B13
  article-title: MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis.
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.77
– volume: 87
  start-page: 8350
  year: 1990
  ident: B52
  article-title: Bleomycin-induced DNA lesions at mutational hot spots: Implications for the mechanism of double-strand cleavage.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.87.21.8350
– volume: 37
  start-page: 180
  year: 2000
  ident: B37
  article-title: Resolution of holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells.
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01989.x
– volume: 281
  start-page: 30941
  year: 2006
  ident: B39
  article-title: Degradation of Escherichia coli RecN aggregates by ClpXP protease and its implications for DNA damage tolerance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606566200
– volume: 110
  start-page: 71
  year: 2012
  ident: B45
  article-title: The Fpg/Nei family of DNA glycosylases: Substrates, structures, and search for damage.
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/B978-0-12-387665-2.00004-3
– volume: 42
  start-page: 1233
  year: 2001
  ident: B53
  article-title: Sister chromosome cohesion of Escherichia coli.
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2001.02680.x
– volume: 36
  start-page: 3781
  year: 2008
  ident: B8
  article-title: Mechanistic studies on bleomycin-mediated DNA damage: Multiple binding modes can result in double-stranded DNA cleavage.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn302
– volume: 184
  start-page: 3501
  year: 2002
  ident: B51
  article-title: Nitric oxide-induced homologous recombination in Escherichia coli is promoted by DNA glycosylases.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.13.3501-3507.2002
– volume: 11
  year: 2016
  ident: B43
  article-title: Enterobactin as part of the oxidative stress response repertoire.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157799
– volume: 120
  start-page: 1213
  year: 1974
  ident: B30
  article-title: In vivo studies of temperature-sensitive recB and recC mutants.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.120.3.1213-1218.1974
– volume: 31
  start-page: 3468
  year: 2012
  ident: B31
  article-title: Sister chromatid interactions in bacteria revealed by a site-specific recombination assay.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.194
– volume: 110
  start-page: 375
  year: 2011
  ident: B5
  article-title: Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: A review.
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2010.04890.x
– volume: 278
  start-page: 44639
  year: 2003
  ident: B15
  article-title: A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308926200
– volume: 93
  start-page: 675
  year: 1967
  ident: B54
  article-title: Effects of mitomycin C on macromolecular synthesis in Escherichia coli.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.93.2.675-682.1967
– volume: 7
  year: 2012
  ident: B59
  article-title: Bleomycin sensitivity in Escherichia coli is medium-dependent.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033256
– volume: 64
  start-page: 567
  year: 2018
  ident: B34
  article-title: The major contribution of the DNA damage-triggered reactive oxygen species production to cell death: Implications for antimicrobial and cancer therapy.
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-017-0787-3
– volume: 486
  start-page: 21
  year: 2001
  ident: B25
  article-title: Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination.
  publication-title: Mutat. Res.
  doi: 10.1016/S0921-8777(01)00077-5
– volume: 256
  start-page: 11636
  year: 1981
  ident: B3
  article-title: Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)68452-8
– volume: 195
  start-page: 267
  year: 1984
  ident: B44
  article-title: Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product.
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00332758
– volume: 8
  year: 2017
  ident: B56
  article-title: Management of E. coli sister chromatid cohesion in response to genotoxic stress.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14618
– start-page: 355
  year: 1975
  ident: B47
  article-title: SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis.
  publication-title: Basic Life Sci.
  doi: 10.1007/978-1-4684-2895-7_48
– volume: 9
  year: 2013
  ident: B24
  article-title: Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA.
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003673
– volume: 525
  start-page: 145
  year: 2012
  ident: B38
  article-title: Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2012.04.014
– volume: 288
  start-page: 29229
  year: 2013
  ident: B27
  article-title: RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double-strand breaks.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.485474
SSID ssj0000402000
Score 2.3517263
Snippet DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways...
Introduction DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different...
IntroductionDNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1146496
SubjectTerms Bleomycin (BLM)
genotoxic
homologous recombination (HR)
Life Sciences
Microbiology
mitomycin C (Mit-C)
RecN
Tn-seq
Title The SMC-like RecN protein is at the crossroads of several genotoxic stress responses in Escherichia coli
URI https://www.ncbi.nlm.nih.gov/pubmed/37168111
https://www.proquest.com/docview/2813555983
https://hal.science/hal-04306291
https://pubmed.ncbi.nlm.nih.gov/PMC10165496
https://doaj.org/article/bfaace93226f4162a15ba5ae003b0bc9
Volume 14
WOSCitedRecordID wos000982848100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4k14VAZxQwE_Esc5lmqrHtoVEiDtzbIdWxtRJWiTVnDhtzMTp6tdkODCJYc8nMTf2PNNMv6GkDeqURGLSeYVc2VeNJHn1hciZ9E2nEVZuCTielYtl3q1qj_ulPrCnLAkD5w67r2L1voALEOoCORBWF46W9oA1uiY89PSPWA9O8HUNAdjWMRYWiUDUVgNMLXevcNi4ZM8boEq_TueaBLsB_-yxnTIP7nm7ymTOz7o5B65O5NHepQe-j65EboH5HYqJ_njIVkD5vTT-XF-0X4NFAjhkk4yDG1H24HakQLZo-lhetsMtI8U_CJ-lKIo1Tr231tP0-IRukm5s2GgcPViQGhbTIumYDjtI_LlZPH5-DSfKynkvmRyzGsgQYXlgemoJJc-ViJozxTzZeSSOxSlb2LUirvQVDp67qRkgfEYbRG5l4_JQdd34SmhlWiqUsAwL7WESRbAgTENJMbXVjklZUb4da8aP8uMY7WLCwPhBiJhJiQMImFmJDLydnvNtySy8dezPyBY2zNRIHvaAWZjZrMx_zKbjLwGqPfaOD06M7gPVdCUqPkVz8ira0swMOrwV4rtQn85GKE5ELWy1vC-T5JlbNuSEIJqcCEZ0Xs2s3ez_SNdu56UvdPislo9-x-v-JzcwW7DX1-ieEEOxs1leElu-auxHTaH5Ga10ofTqIHt-c_FLwtAHJU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+SMC-like+RecN+protein+is+at+the+crossroads+of+several+genotoxic+stress+responses+in+Escherichia+coli&rft.jtitle=Frontiers+in+microbiology&rft.au=Camus%2C+Adrien&rft.au=Espinosa%2C+Elena&rft.au=Zapater+Baras%2C+P%C3%A9n%C3%A9lope&rft.au=Singh%2C+Parul&rft.date=2023-04-24&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=14&rft_id=info:doi/10.3389%2Ffmicb.2023.1146496&rft.externalDocID=PMC10165496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon