Sentiment analysis on social media for stock movement prediction

•A novel method for predicting stock price movement was presented.•Topics and sentiments of them were extracted from social media as the feature.•Two methods were proposed to capture the topic-sentiment feature.•Integration of the sentiments was investigated via a large scale experiment.•Our model o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 42; číslo 24; s. 9603 - 9611
Hlavní autoři: Nguyen, Thien Hai, Shirai, Kiyoaki, Velcin, Julien
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 30.12.2015
Elsevier
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel method for predicting stock price movement was presented.•Topics and sentiments of them were extracted from social media as the feature.•Two methods were proposed to capture the topic-sentiment feature.•Integration of the sentiments was investigated via a large scale experiment.•Our model outperformed other methods in the average accuracy of 18 stocks. The goal of this research is to build a model to predict stock price movement using the sentiment from social media. Unlike previous approaches where the overall moods or sentiments are considered, the sentiments of the specific topics of the company are incorporated into the stock prediction model. Topics and related sentiments are automatically extracted from the texts in a message board by using our proposed method as well as existing topic models. In addition, this paper shows an evaluation of the effectiveness of the sentiment analysis in the stock prediction task via a large scale experiment. Comparing the accuracy average over 18 stocks in one year transaction, our method achieved 2.07% better performance than the model using historical prices only. Furthermore, when comparing the methods only for the stocks that are difficult to predict, our method achieved 9.83% better accuracy than historical price method, and 3.03% better than human sentiment method.
AbstractList •A novel method for predicting stock price movement was presented.•Topics and sentiments of them were extracted from social media as the feature.•Two methods were proposed to capture the topic-sentiment feature.•Integration of the sentiments was investigated via a large scale experiment.•Our model outperformed other methods in the average accuracy of 18 stocks. The goal of this research is to build a model to predict stock price movement using the sentiment from social media. Unlike previous approaches where the overall moods or sentiments are considered, the sentiments of the specific topics of the company are incorporated into the stock prediction model. Topics and related sentiments are automatically extracted from the texts in a message board by using our proposed method as well as existing topic models. In addition, this paper shows an evaluation of the effectiveness of the sentiment analysis in the stock prediction task via a large scale experiment. Comparing the accuracy average over 18 stocks in one year transaction, our method achieved 2.07% better performance than the model using historical prices only. Furthermore, when comparing the methods only for the stocks that are difficult to predict, our method achieved 9.83% better accuracy than historical price method, and 3.03% better than human sentiment method.
The goal of this research is to build a model to predict stock price movement using the sentiment from social media. Unlike previous approaches where the overall moods or sentiments are considered, the sentiments of the specific topics of the company are incorporated into the stock prediction model. Topics and related sentiments are automatically extracted from the texts in a message board by using our proposed method as well as existing topic models. In addition, this paper shows an evaluation of the effectiveness of the sentiment analysis in the stock prediction task via a large scale experiment. Comparing the accuracy average over 18 stocks in one year transaction, our method achieved 2.07% better performance than the model using historical prices only. Furthermore, when comparing the methods only for the stocks that are difficult to predict, our method achieved 9.83% better accuracy than historical price method, and 3.03% better than human sentiment method.
Author Nguyen, Thien Hai
Shirai, Kiyoaki
Velcin, Julien
Author_xml – sequence: 1
  givenname: Thien Hai
  surname: Nguyen
  fullname: Nguyen, Thien Hai
  email: nhthien8x@gmail.com, nhthien@jaist.ac.jp
  organization: School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
– sequence: 2
  givenname: Kiyoaki
  surname: Shirai
  fullname: Shirai, Kiyoaki
  email: kshirai@jaist.ac.jp
  organization: School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
– sequence: 3
  givenname: Julien
  surname: Velcin
  fullname: Velcin, Julien
  email: julien.velcin@univ-lyon2.fr
  organization: University of Lyon (ERIC, Lyon 2), 5 Avenue Pierre Mendes-France, 69676 Bron Cedex, France
BackLink https://hal.science/hal-01203094$$DView record in HAL
BookMark eNp9kE1PwyAYgInRxPnxBzz1qIfWF2gLSzy4LOpMlnhQz4TSt5HZlgndzP691OnFgxcI8DwEnhNy2LseCbmgkFGg5fUqw_CpMwa0yEBkULADMqFS8LQUU35IJjAtRJpTkR-TkxBWAFQAiAm5fcZ-sF0cEt3rdhdsSFyfBGesbpMOa6uTxvkkDM68J53b4je79vHEDNb1Z-So0W3A85_5lLze373MF-ny6eFxPlumpgA-pLnESuaC0apGVkHJ6wqahvNCVgaxbijTWpSNycuqYKDjwkxpjSi5qJpc1PyUXO3vfdOtWnvbab9TTlu1mC3VuAeUAYdpvqWRvdyza-8-NhgG1dlgsG11j24TFJWsyAtJQUZU7lHjXQgeG2XsoMePDV7bVlFQY2C1UmNgNQZWIFQMHFX2R_191r_SzV7C2Gpr0atgLPYm5vRoBlU7-5_-BSoDlzs
CitedBy_id crossref_primary_10_1145_3532856
crossref_primary_10_1007_s11042_023_14587_8
crossref_primary_10_1177_02663821211058666
crossref_primary_10_1002_cpe_7467
crossref_primary_10_1016_j_hcc_2025_100316
crossref_primary_10_1145_3488378
crossref_primary_10_1109_JIOT_2021_3085714
crossref_primary_10_1080_17517575_2018_1455110
crossref_primary_10_3390_appliedmath5030076
crossref_primary_10_1007_s12559_021_09819_8
crossref_primary_10_1016_j_ribaf_2025_103068
crossref_primary_10_1016_j_tmp_2023_101195
crossref_primary_10_1177_21582440251328535
crossref_primary_10_3390_su13095254
crossref_primary_10_1016_j_ijforecast_2018_07_006
crossref_primary_10_1109_ACCESS_2025_3537822
crossref_primary_10_1016_j_ribaf_2025_102789
crossref_primary_10_1080_00036846_2025_2486791
crossref_primary_10_3390_electronics14142753
crossref_primary_10_1177_0894439320914505
crossref_primary_10_1016_j_eswa_2024_123966
crossref_primary_10_1007_s00146_025_02466_9
crossref_primary_10_1007_s10660_019_09354_7
crossref_primary_10_3390_logistics4020012
crossref_primary_10_1016_j_eswa_2023_122936
crossref_primary_10_1108_INTR_11_2019_0461
crossref_primary_10_1002_widm_1366
crossref_primary_10_1016_j_frl_2024_105871
crossref_primary_10_3390_ijfs11030101
crossref_primary_10_1016_j_eneco_2023_107278
crossref_primary_10_1002_for_2777
crossref_primary_10_1007_s00521_020_04937_0
crossref_primary_10_1155_2020_6686181
crossref_primary_10_1007_s11135_024_01988_6
crossref_primary_10_1016_j_intfin_2020_101188
crossref_primary_10_1088_1757_899X_928_3_032043
crossref_primary_10_1155_2020_5903057
crossref_primary_10_3390_risks10080151
crossref_primary_10_1016_j_resourpol_2023_103506
crossref_primary_10_1007_s10614_017_9694_4
crossref_primary_10_3390_math12243918
crossref_primary_10_1142_S021964922250099X
crossref_primary_10_3390_app10020437
crossref_primary_10_1016_j_eswa_2022_118124
crossref_primary_10_1111_1467_8551_12340
crossref_primary_10_1016_j_eswa_2020_114351
crossref_primary_10_1016_j_eswa_2022_118128
crossref_primary_10_1186_s40854_020_00205_1
crossref_primary_10_1007_s00521_020_04942_3
crossref_primary_10_3390_info15110706
crossref_primary_10_1080_00036846_2024_2393891
crossref_primary_10_1016_j_najef_2021_101506
crossref_primary_10_1177_21582440251375185
crossref_primary_10_1016_j_asoc_2020_106422
crossref_primary_10_1016_j_asoc_2021_108106
crossref_primary_10_1007_s10260_023_00721_1
crossref_primary_10_1016_j_ejpoleco_2024_102611
crossref_primary_10_1016_j_eswa_2022_118472
crossref_primary_10_1080_14765284_2025_2472500
crossref_primary_10_3390_risks11090159
crossref_primary_10_1016_j_knosys_2023_110905
crossref_primary_10_1177_0165551516645528
crossref_primary_10_1111_exsy_12596
crossref_primary_10_1371_journal_pone_0234206
crossref_primary_10_1016_j_neucom_2017_01_120
crossref_primary_10_1016_j_elerap_2020_101002
crossref_primary_10_1016_j_eswa_2023_119509
crossref_primary_10_1007_s00521_020_04991_8
crossref_primary_10_1016_j_knosys_2016_07_030
crossref_primary_10_1016_j_ipm_2020_102279
crossref_primary_10_1109_TKDE_2022_3220520
crossref_primary_10_1007_s11042_019_08291_9
crossref_primary_10_1109_TMM_2017_2757769
crossref_primary_10_3390_electronics11020250
crossref_primary_10_1186_s40854_023_00587_y
crossref_primary_10_1002_for_3024
crossref_primary_10_1016_j_joitmc_2024_100458
crossref_primary_10_1016_j_engappai_2019_07_002
crossref_primary_10_1177_0165551520917120
crossref_primary_10_3390_su12166648
crossref_primary_10_1016_j_engappai_2024_108112
crossref_primary_10_1371_journal_pone_0257686
crossref_primary_10_1109_TCSS_2019_2941344
crossref_primary_10_1007_s00500_019_04347_y
crossref_primary_10_1108_K_06_2021_0457
crossref_primary_10_1186_s40537_022_00591_6
crossref_primary_10_1016_j_irfa_2021_101858
crossref_primary_10_1016_j_eswa_2021_114765
crossref_primary_10_1016_j_ipm_2016_07_001
crossref_primary_10_3390_a17060234
crossref_primary_10_1145_3673236
crossref_primary_10_3390_electronics10212717
crossref_primary_10_1016_j_eswa_2017_02_041
crossref_primary_10_1016_j_eswa_2021_115294
crossref_primary_10_1007_s11280_020_00800_3
crossref_primary_10_1016_j_im_2021_103588
crossref_primary_10_1007_s10489_021_02249_x
crossref_primary_10_1016_j_jclepro_2023_137853
crossref_primary_10_32604_csse_2023_033247
crossref_primary_10_1016_j_eswa_2024_124520
crossref_primary_10_1016_j_eswa_2016_12_036
crossref_primary_10_1007_s40745_021_00358_5
crossref_primary_10_1177_0165551518761013
crossref_primary_10_3390_axioms12090835
crossref_primary_10_1007_s10614_019_09932_9
crossref_primary_10_1016_j_eswa_2020_113463
crossref_primary_10_1016_j_ejor_2019_02_045
crossref_primary_10_2139_ssrn_5380505
crossref_primary_10_1007_s10115_018_1315_6
crossref_primary_10_1016_j_eswa_2021_115284
crossref_primary_10_1007_s11042_018_6388_4
crossref_primary_10_1016_j_ijinfomgt_2018_11_002
crossref_primary_10_3846_jbem_2023_18805
crossref_primary_10_3390_app9245462
crossref_primary_10_1007_s10799_024_00428_z
crossref_primary_10_1016_j_ipm_2021_102822
crossref_primary_10_7717_peerj_cs_1293
crossref_primary_10_1108_K_11_2016_0307
crossref_primary_10_1177_03611981231225655
crossref_primary_10_4018_IJITSA_307023
crossref_primary_10_1007_s00500_017_2863_5
crossref_primary_10_1007_s10796_018_9867_2
crossref_primary_10_1016_j_ins_2025_122193
crossref_primary_10_1007_s00521_023_08941_y
crossref_primary_10_1177_21582440211004153
crossref_primary_10_1515_bsrj_2017_0016
crossref_primary_10_1109_ACCESS_2020_2973735
crossref_primary_10_3390_en12224291
crossref_primary_10_1002_isaf_1465
crossref_primary_10_1016_j_engappai_2022_105172
crossref_primary_10_7717_peerj_cs_1041
crossref_primary_10_1007_s42979_024_03143_2
crossref_primary_10_3390_electronics11203414
crossref_primary_10_1007_s44248_025_00076_w
crossref_primary_10_1109_TMM_2018_2867718
crossref_primary_10_1123_jab_2024_0308
crossref_primary_10_1007_s13278_024_01316_8
crossref_primary_10_3390_math9212646
crossref_primary_10_1108_JIMA_06_2019_0119
crossref_primary_10_1108_IMDS_10_2015_0417
crossref_primary_10_1016_j_eswa_2019_06_027
crossref_primary_10_1007_s00500_021_06602_7
crossref_primary_10_1016_j_procs_2025_04_372
crossref_primary_10_3390_su142114616
crossref_primary_10_1080_23270012_2020_1858985
crossref_primary_10_3390_en17102338
crossref_primary_10_1016_j_finr_2025_100013
crossref_primary_10_1108_IJOEM_08_2022_1232
crossref_primary_10_1007_s10844_018_0519_2
crossref_primary_10_1177_27533743241303783
crossref_primary_10_1007_s11573_018_0915_7
crossref_primary_10_1016_j_jbef_2020_100291
crossref_primary_10_1145_3660760
crossref_primary_10_1016_j_eneco_2024_107612
crossref_primary_10_1007_s12559_023_10125_8
crossref_primary_10_1016_j_eiar_2016_06_004
crossref_primary_10_3390_fi11110237
crossref_primary_10_1080_15427560_2020_1821686
crossref_primary_10_1016_j_ipm_2020_102212
crossref_primary_10_1016_j_patrec_2024_10_005
crossref_primary_10_1016_j_ipm_2020_102218
crossref_primary_10_3390_ijfs10040112
crossref_primary_10_1080_13683500_2023_2300044
crossref_primary_10_1109_ACCESS_2024_3382836
crossref_primary_10_1016_j_procs_2019_11_289
crossref_primary_10_1016_j_knosys_2022_108712
crossref_primary_10_1109_TKDE_2020_3048428
crossref_primary_10_1016_j_eswa_2020_113540
crossref_primary_10_3390_app14010274
crossref_primary_10_1016_j_procs_2020_11_025
crossref_primary_10_1155_2019_9202457
crossref_primary_10_1111_1467_8454_12281
crossref_primary_10_4018_JITR_2018010108
crossref_primary_10_1016_j_neucom_2021_09_072
crossref_primary_10_1109_ACCESS_2020_3032216
crossref_primary_10_3390_e25020219
crossref_primary_10_1108_IMDS_03_2019_0125
crossref_primary_10_1007_s10489_018_1137_y
crossref_primary_10_1108_CFRI_12_2022_0250
crossref_primary_10_1016_j_neunet_2021_02_026
crossref_primary_10_1177_1077546319900115
crossref_primary_10_1109_TKDE_2017_2763144
crossref_primary_10_1016_j_chaos_2018_11_014
crossref_primary_10_4018_IJOM_2017070101
crossref_primary_10_1007_s00181_024_02678_w
crossref_primary_10_1007_s13198_023_02082_0
crossref_primary_10_1145_3432929
crossref_primary_10_1007_s10489_022_03755_2
crossref_primary_10_1016_j_physa_2025_130388
crossref_primary_10_1007_s41870_021_00649_3
crossref_primary_10_1007_s12559_020_09792_8
crossref_primary_10_1016_j_techfore_2019_119747
crossref_primary_10_1109_ACCESS_2018_2851311
crossref_primary_10_1186_s13638_016_0626_0
crossref_primary_10_3390_ijerph16010086
crossref_primary_10_1007_s10462_017_9588_9
crossref_primary_10_1186_s40854_024_00731_2
crossref_primary_10_3390_systems10020024
crossref_primary_10_1057_s41599_024_03316_7
crossref_primary_10_3390_risks12110171
crossref_primary_10_1080_2573234X_2024_2354191
crossref_primary_10_1016_j_trd_2018_05_002
crossref_primary_10_1016_j_matpr_2021_07_217
crossref_primary_10_1145_3338855
crossref_primary_10_20965_jaciii_2023_p0084
crossref_primary_10_1109_ACCESS_2021_3058133
crossref_primary_10_1002_for_2584
crossref_primary_10_1007_s11146_022_09900_5
crossref_primary_10_1016_j_ipm_2017_02_007
crossref_primary_10_1016_j_najef_2020_101181
crossref_primary_10_1080_15427560_2025_2504954
crossref_primary_10_1155_2020_6623108
crossref_primary_10_3390_sym11020133
crossref_primary_10_1016_j_eswa_2023_119847
crossref_primary_10_1016_j_econmod_2025_107156
crossref_primary_10_1109_ACCESS_2021_3080837
crossref_primary_10_1590_0101_31572021_3191
crossref_primary_10_1007_s43546_023_00497_2
crossref_primary_10_1016_j_neucom_2020_07_073
crossref_primary_10_3389_fcomp_2024_1294985
crossref_primary_10_1108_IJMF_11_2024_0610
crossref_primary_10_3390_ijgi7020071
crossref_primary_10_1108_IMDS_06_2017_0287
crossref_primary_10_1007_s40747_025_02023_3
crossref_primary_10_1007_s00521_024_09916_3
crossref_primary_10_1016_j_procs_2019_11_007
crossref_primary_10_1016_j_eswa_2020_113988
crossref_primary_10_1016_j_engappai_2023_106948
crossref_primary_10_3390_fi13060138
crossref_primary_10_1007_s10614_025_10957_6
crossref_primary_10_1016_j_procs_2020_01_006
crossref_primary_10_1007_s13198_023_02214_6
crossref_primary_10_1109_ACCESS_2024_3353692
crossref_primary_10_3390_electronics13214225
crossref_primary_10_1007_s10462_024_10715_4
crossref_primary_10_1016_j_eswa_2018_06_016
crossref_primary_10_1016_j_irfa_2023_102922
crossref_primary_10_1016_j_jretconser_2020_102157
crossref_primary_10_1016_j_energy_2024_132483
crossref_primary_10_1016_j_ribaf_2024_102701
crossref_primary_10_1016_j_cosrev_2021_100395
crossref_primary_10_2478_acss_2020_0004
crossref_primary_10_3846_jbem_2025_23544
crossref_primary_10_3390_su9101765
crossref_primary_10_1186_s40854_021_00269_7
crossref_primary_10_1016_j_eneco_2021_105393
crossref_primary_10_1109_TASLP_2020_3001390
crossref_primary_10_1016_j_eswa_2016_03_031
crossref_primary_10_3389_fpubh_2024_1411345
crossref_primary_10_3390_math10142437
Cites_doi 10.5539/emr.v1n2p46
10.1561/1500000011
10.1016/j.ipm.2009.05.001
10.1145/1462198.1462204
10.1016/j.eswa.2011.12.035
10.1016/j.eswa.2015.03.017
10.1080/07421222.2001.11045659
10.2469/faj.v57.n3.2449
10.1007/s10489-006-0001-7
10.1016/j.sbspro.2011.10.562
10.1016/j.jocs.2010.12.007
10.1016/j.eswa.2014.10.031
10.1016/j.eswa.2014.06.009
10.1111/j.1540-6261.2004.00662.x
10.1016/j.eswa.2013.04.013
10.3233/AF-13025
10.1111/j.1540-6261.1991.tb04636.x
10.1016/j.eswa.2014.07.040
10.2307/2525569
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.eswa.2015.07.052
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Statistics
EISSN 1873-6793
EndPage 9611
ExternalDocumentID oai:HAL:hal-01203094v1
10_1016_j_eswa_2015_07_052
S0957417415005126
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c503t-48eb84721bde2b063db0ff3358bceedf12aa76fc46b520aaa7c91dee837bf47d3
ISICitedReferencesCount 356
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362857500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Oct 14 20:56:18 EDT 2025
Sun Nov 09 12:29:24 EST 2025
Sat Nov 29 04:44:43 EST 2025
Tue Nov 18 22:10:05 EST 2025
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Sentiment analysis
Message board
Social media
Classification
Prediction
Opinion mining
Stock
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c503t-48eb84721bde2b063db0ff3358bceedf12aa76fc46b520aaa7c91dee837bf47d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2262-045X
PQID 1825458108
PQPubID 23500
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01203094v1
proquest_miscellaneous_1825458108
crossref_citationtrail_10_1016_j_eswa_2015_07_052
crossref_primary_10_1016_j_eswa_2015_07_052
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_07_052
PublicationCentury 2000
PublicationDate 2015-12-30
PublicationDateYYYYMMDD 2015-12-30
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-30
  day: 30
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Patel, Shah, Thakkar, Kotecha (bib0019) 2015; 42
Tsibouris, Zeidenberg (bib0026) 1995
Zuo, Kita (bib0033) 2012; 39
Lin, He (bib0012) 2009
Schumaker, Chen (bib0022) 2009; 45
Ticknor (bib0025) 2013; 40
Walczak (bib0029) 2001; 17
Dermouche, Kouas, Velcin, Loudcher (bib0006) 2015
Si, Mukherjee, Liu, Li, Li, Deng (bib0024) 2013
Cervelló-Royo, Guijarro, Michniuk (bib0005) 2015; 42
Joachims (bib0010) 1998
Tumarkin, Whitelaw (bib0027) 2001; 57
Qian, Rasheed (bib0020) 2007; 26
Baccianella, Esuli, Sebastiani (bib0002) 2010; vol. 10
Antweiler, Frank (bib0001) 2004; 59
Patel, Shah, Thakkar, Kotecha (bib0018) 2015; 42
Fama, Fisher, Jensen, Roll (bib0008) 1969; 10
Nassirtoussi, Aghabozorgi, Wah, Ngo (bib0015) 2014; 41
Nguyen, Shirai (bib0016) 2013
Vu, Chang, Ha, Collier (bib0028) 2012
Xie, Passonneau, Wu, Creamer (bib0030) 2013
Blei, Ng, Jordan (bib0003) 2003; 3
Liu, Zhang (bib0013) 2012
Rechenthin, Street, Srinivasan (bib0021) 2013; 2
Lakkaraju, Bhattacharyya, Bhattacharya, Merugu (bib0011) 2011
Pang, Lee (bib0017) 2008; 2
Zhao, Jiang, Yan, Li (bib0032) 2010
Manning, Surdeanu, Bauer, Finkel, Bethard, McClosky (bib0014) 2014
Zhang, Fuehres, Gloor (bib0031) 2011; 26
Zuo, Kita (bib0034) 2012; 1
Bollen, Mao, Zeng (bib0004) 2011; 2
Jo, Oh (bib0009) 2011
Fama (bib0007) 1991; 46
Schumaker, Chen (bib0023) 2009; 27
Schumaker (10.1016/j.eswa.2015.07.052_bib0022) 2009; 45
Fama (10.1016/j.eswa.2015.07.052_bib0008) 1969; 10
Zuo (10.1016/j.eswa.2015.07.052_bib0033) 2012; 39
Antweiler (10.1016/j.eswa.2015.07.052_bib0001) 2004; 59
Lin (10.1016/j.eswa.2015.07.052_bib0012) 2009
Blei (10.1016/j.eswa.2015.07.052_bib0003) 2003; 3
Tumarkin (10.1016/j.eswa.2015.07.052_bib0027) 2001; 57
Cervelló-Royo (10.1016/j.eswa.2015.07.052_bib0005) 2015; 42
Joachims (10.1016/j.eswa.2015.07.052_bib0010) 1998
Walczak (10.1016/j.eswa.2015.07.052_bib0029) 2001; 17
Rechenthin (10.1016/j.eswa.2015.07.052_bib0021) 2013; 2
Patel (10.1016/j.eswa.2015.07.052_bib0018) 2015; 42
Tsibouris (10.1016/j.eswa.2015.07.052_bib0026) 1995
Manning (10.1016/j.eswa.2015.07.052_bib0014) 2014
Pang (10.1016/j.eswa.2015.07.052_bib0017) 2008; 2
Zuo (10.1016/j.eswa.2015.07.052_bib0034) 2012; 1
Lakkaraju (10.1016/j.eswa.2015.07.052_bib0011) 2011
Qian (10.1016/j.eswa.2015.07.052_bib0020) 2007; 26
Vu (10.1016/j.eswa.2015.07.052_bib0028) 2012
Jo (10.1016/j.eswa.2015.07.052_bib0009) 2011
Nguyen (10.1016/j.eswa.2015.07.052_bib0016) 2013
Nassirtoussi (10.1016/j.eswa.2015.07.052_bib0015) 2014; 41
Baccianella (10.1016/j.eswa.2015.07.052_bib0002) 2010; vol. 10
Xie (10.1016/j.eswa.2015.07.052_bib0030) 2013
Patel (10.1016/j.eswa.2015.07.052_bib0019) 2015; 42
Bollen (10.1016/j.eswa.2015.07.052_bib0004) 2011; 2
Dermouche (10.1016/j.eswa.2015.07.052_bib0006) 2015
Zhang (10.1016/j.eswa.2015.07.052_bib0031) 2011; 26
Liu (10.1016/j.eswa.2015.07.052_bib0013) 2012
Ticknor (10.1016/j.eswa.2015.07.052_bib0025) 2013; 40
Fama (10.1016/j.eswa.2015.07.052_bib0007) 1991; 46
Zhao (10.1016/j.eswa.2015.07.052_bib0032) 2010
Schumaker (10.1016/j.eswa.2015.07.052_bib0023) 2009; 27
Si (10.1016/j.eswa.2015.07.052_bib0024) 2013
References_xml – start-page: 278
  year: 2013
  end-page: 284
  ident: bib0016
  article-title: Text classification of technical papers based on text segmentation
  publication-title: Natural language processing and information systems - 18th international conference on applications of natural language to information systems
– volume: 2
  start-page: 1
  year: 2008
  end-page: 135
  ident: bib0017
  article-title: Opinion mining and sentiment analysis
  publication-title: Foundations and Trends in Information Retrieval
– start-page: 815
  year: 2011
  end-page: 824
  ident: bib0009
  article-title: Aspect and sentiment unification model for online review analysis
  publication-title: Proceedings of the fourth ACM international conference on web search and data mining
– start-page: 375
  year: 2009
  end-page: 384
  ident: bib0012
  article-title: Joint sentiment/topic model for sentiment analysis
  publication-title: Proceedings of the 18th ACM conference on information and knowledge management
– year: 1998
  ident: bib0010
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: bib0003
  article-title: Latent Dirichlet allocation
  publication-title: Journal of Machine Learning Research
– start-page: 498
  year: 2011
  end-page: 509
  ident: bib0011
  article-title: Exploiting coherence for the simultaneous discovery of latent facets and associated sentiments
  publication-title: Proceedings of the eleventh SIAM international conference on data mining
– volume: 1
  start-page: 46
  year: 2012
  end-page: 52
  ident: bib0034
  article-title: Up/down analysis of stock index by using Bayesian network
  publication-title: Engineering Management Research
– start-page: 56
  year: 2010
  end-page: 65
  ident: bib0032
  article-title: Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid
  publication-title: Proceedings of the 2010 conference on empirical methods in natural language processing
– volume: 42
  start-page: 5963
  year: 2015
  end-page: 5975
  ident: bib0005
  article-title: Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data
  publication-title: Expert Systems with Applications
– volume: 59
  start-page: 1259
  year: 2004
  end-page: 1294
  ident: bib0001
  article-title: Is all that talk just noise? The information content of internet stock message boards
  publication-title: The Journal of Finance
– volume: 57
  start-page: 41
  year: 2001
  end-page: 51
  ident: bib0027
  article-title: News or noise? Internet postings and stock prices
  publication-title: Financial Analysts Journal
– start-page: 415
  year: 2012
  end-page: 463
  ident: bib0013
  article-title: A survey of opinion mining and sentiment analysis
  publication-title: Mining text data
– volume: 2
  start-page: 169
  year: 2013
  end-page: 196
  ident: bib0021
  article-title: Stock chatter: using stock sentiment to predict price direction
  publication-title: Algorithmic Finance
– volume: vol. 10
  start-page: 2200
  year: 2010
  end-page: 2204
  ident: bib0002
  article-title: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining
  publication-title: Proceedings of the seventh conference on international language resources and evaluation
– volume: 42
  start-page: 2162
  year: 2015
  end-page: 2172
  ident: bib0019
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 25
  year: 2007
  end-page: 33
  ident: bib0020
  article-title: Stock market prediction with multiple classifiers
  publication-title: Applied Intelligence
– volume: 41
  start-page: 7653
  year: 2014
  end-page: 7670
  ident: bib0015
  article-title: Text mining for market prediction: a systematic review
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 12:1
  year: 2009
  end-page: 12:19
  ident: bib0023
  article-title: Textual analysis of stock market prediction using breaking financial news: the azfin text system
  publication-title: ACM Transactions on Information Systems
– start-page: 24
  year: 2013
  end-page: 29
  ident: bib0024
  article-title: Exploiting topic based twitter sentiment for stock prediction
  publication-title: Proceedings of the 51st annual meeting of the association for computational linguistics, volume 2: short papers
– volume: 17
  start-page: 203
  year: 2001
  end-page: 222
  ident: bib0029
  article-title: An empirical analysis of data requirements for financial forecasting with neural networks
  publication-title: Journal of Management Information Systems
– start-page: 819
  year: 2015
  end-page: 824
  ident: bib0006
  article-title: A joint model for topic-sentiment modeling from text
  publication-title: ACM/SIGAPP symposium on applied computing (sac)
– volume: 10
  start-page: 1
  year: 1969
  end-page: 21
  ident: bib0008
  article-title: The adjustment of stock prices to new information
  publication-title: International Economic Review
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib0004
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computational Science
– volume: 26
  start-page: 55
  year: 2011
  end-page: 62
  ident: bib0031
  article-title: Predicting stock market indicators through twitter “I hope it is not as bad as I fear”
  publication-title: Procedia - Social and Behavioral Sciences
– volume: 39
  start-page: 6729
  year: 2012
  end-page: 6737
  ident: bib0033
  article-title: Stock price forecast using Bayesian network
  publication-title: Expert Systems with Applications: An International Journal
– volume: 40
  start-page: 5501
  year: 2013
  end-page: 5506
  ident: bib0025
  article-title: A Bayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Systems with Applications
– volume: 42
  start-page: 259
  year: 2015
  end-page: 268
  ident: bib0018
  article-title: Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques
  publication-title: Expert Systems with Applications
– volume: 45
  start-page: 571
  year: 2009
  end-page: 583
  ident: bib0022
  article-title: A quantitative stock prediction system based on financial news
  publication-title: Information Processing & Management
– start-page: 127
  year: 1995
  end-page: 136
  ident: bib0026
  article-title: Testing the efficient markets hypothesis with gradient descent algorithms
  publication-title: Neural networks in the capital markets
– start-page: 873
  year: 2013
  end-page: 883
  ident: bib0030
  article-title: Semantic frames to predict stock price movement
  publication-title: Proceedings of the 51st annual meeting of the association for computational linguistics
– volume: 46
  start-page: 1575
  year: 1991
  end-page: 1617
  ident: bib0007
  article-title: Efficient capital markets: II
  publication-title: The Journal of Finance
– start-page: 55
  year: 2014
  end-page: 60
  ident: bib0014
  article-title: The Stanford CoreNLP natural language processing toolkit
  publication-title: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations
– start-page: 23
  year: 2012
  end-page: 38
  ident: bib0028
  article-title: An experiment in integrating sentiment features for tech stock prediction in Twitter
  publication-title: 24th international conference on computational linguistics
– volume: 1
  start-page: 46
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2015.07.052_bib0034
  article-title: Up/down analysis of stock index by using Bayesian network
  publication-title: Engineering Management Research
  doi: 10.5539/emr.v1n2p46
– volume: 2
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 10.1016/j.eswa.2015.07.052_bib0017
  article-title: Opinion mining and sentiment analysis
  publication-title: Foundations and Trends in Information Retrieval
  doi: 10.1561/1500000011
– volume: 45
  start-page: 571
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2015.07.052_bib0022
  article-title: A quantitative stock prediction system based on financial news
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2009.05.001
– start-page: 127
  year: 1995
  ident: 10.1016/j.eswa.2015.07.052_bib0026
  article-title: Testing the efficient markets hypothesis with gradient descent algorithms
– start-page: 278
  year: 2013
  ident: 10.1016/j.eswa.2015.07.052_bib0016
  article-title: Text classification of technical papers based on text segmentation
– volume: 27
  start-page: 12:1
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2015.07.052_bib0023
  article-title: Textual analysis of stock market prediction using breaking financial news: the azfin text system
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/1462198.1462204
– start-page: 24
  year: 2013
  ident: 10.1016/j.eswa.2015.07.052_bib0024
  article-title: Exploiting topic based twitter sentiment for stock prediction
– volume: 39
  start-page: 6729
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2015.07.052_bib0033
  article-title: Stock price forecast using Bayesian network
  publication-title: Expert Systems with Applications: An International Journal
  doi: 10.1016/j.eswa.2011.12.035
– start-page: 56
  year: 2010
  ident: 10.1016/j.eswa.2015.07.052_bib0032
  article-title: Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid
– start-page: 498
  year: 2011
  ident: 10.1016/j.eswa.2015.07.052_bib0011
  article-title: Exploiting coherence for the simultaneous discovery of latent facets and associated sentiments
– volume: 42
  start-page: 5963
  issue: 14
  year: 2015
  ident: 10.1016/j.eswa.2015.07.052_bib0005
  article-title: Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.03.017
– start-page: 23
  year: 2012
  ident: 10.1016/j.eswa.2015.07.052_bib0028
  article-title: An experiment in integrating sentiment features for tech stock prediction in Twitter
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.eswa.2015.07.052_bib0003
  article-title: Latent Dirichlet allocation
  publication-title: Journal of Machine Learning Research
– volume: 17
  start-page: 203
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2015.07.052_bib0029
  article-title: An empirical analysis of data requirements for financial forecasting with neural networks
  publication-title: Journal of Management Information Systems
  doi: 10.1080/07421222.2001.11045659
– year: 1998
  ident: 10.1016/j.eswa.2015.07.052_bib0010
– volume: 57
  start-page: 41
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2015.07.052_bib0027
  article-title: News or noise? Internet postings and stock prices
  publication-title: Financial Analysts Journal
  doi: 10.2469/faj.v57.n3.2449
– start-page: 815
  year: 2011
  ident: 10.1016/j.eswa.2015.07.052_bib0009
  article-title: Aspect and sentiment unification model for online review analysis
– start-page: 55
  year: 2014
  ident: 10.1016/j.eswa.2015.07.052_bib0014
  article-title: The Stanford CoreNLP natural language processing toolkit
– start-page: 819
  year: 2015
  ident: 10.1016/j.eswa.2015.07.052_bib0006
  article-title: A joint model for topic-sentiment modeling from text
– volume: 26
  start-page: 25
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2015.07.052_bib0020
  article-title: Stock market prediction with multiple classifiers
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-006-0001-7
– volume: 26
  start-page: 55
  issue: 0
  year: 2011
  ident: 10.1016/j.eswa.2015.07.052_bib0031
  article-title: Predicting stock market indicators through twitter “I hope it is not as bad as I fear”
  publication-title: Procedia - Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2011.10.562
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2015.07.052_bib0004
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2010.12.007
– start-page: 415
  year: 2012
  ident: 10.1016/j.eswa.2015.07.052_bib0013
  article-title: A survey of opinion mining and sentiment analysis
– start-page: 873
  year: 2013
  ident: 10.1016/j.eswa.2015.07.052_bib0030
  article-title: Semantic frames to predict stock price movement
– volume: 42
  start-page: 2162
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2015.07.052_bib0019
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.10.031
– volume: 41
  start-page: 7653
  issue: 16
  year: 2014
  ident: 10.1016/j.eswa.2015.07.052_bib0015
  article-title: Text mining for market prediction: a systematic review
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.06.009
– volume: 59
  start-page: 1259
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2015.07.052_bib0001
  article-title: Is all that talk just noise? The information content of internet stock message boards
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2004.00662.x
– volume: 40
  start-page: 5501
  issue: 14
  year: 2013
  ident: 10.1016/j.eswa.2015.07.052_bib0025
  article-title: A Bayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.013
– volume: 2
  start-page: 169
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2015.07.052_bib0021
  article-title: Stock chatter: using stock sentiment to predict price direction
  publication-title: Algorithmic Finance
  doi: 10.3233/AF-13025
– volume: 46
  start-page: 1575
  issue: 5
  year: 1991
  ident: 10.1016/j.eswa.2015.07.052_bib0007
  article-title: Efficient capital markets: II
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1991.tb04636.x
– volume: 42
  start-page: 259
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2015.07.052_bib0018
  article-title: Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.07.040
– volume: vol. 10
  start-page: 2200
  year: 2010
  ident: 10.1016/j.eswa.2015.07.052_bib0002
  article-title: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining
– volume: 10
  start-page: 1
  issue: 1
  year: 1969
  ident: 10.1016/j.eswa.2015.07.052_bib0008
  article-title: The adjustment of stock prices to new information
  publication-title: International Economic Review
  doi: 10.2307/2525569
– start-page: 375
  year: 2009
  ident: 10.1016/j.eswa.2015.07.052_bib0012
  article-title: Joint sentiment/topic model for sentiment analysis
SSID ssj0017007
Score 2.6149316
Snippet •A novel method for predicting stock price movement was presented.•Topics and sentiments of them were extracted from social media as the feature.•Two methods...
The goal of this research is to build a model to predict stock price movement using the sentiment from social media. Unlike previous approaches where the...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9603
SubjectTerms Accuracy
Artificial Intelligence
Classification
Computer Science
Construction
Data mining
Digital media
Document and Text Processing
Historic
Information Retrieval
Machine Learning
Mathematical models
Message board
Opinion mining
Prediction
Raw materials
Sentiment analysis
Social media
Social networks
Statistics
Stock
Web
Title Sentiment analysis on social media for stock movement prediction
URI https://dx.doi.org/10.1016/j.eswa.2015.07.052
https://www.proquest.com/docview/1825458108
https://hal.science/hal-01203094
Volume 42
WOSCitedRecordID wos000362857500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jQdeuCPKABnE25QpvsXJGxUaKghNSCuob5aTODRdSafetv17jmM7rYaYAImXqHWbxvX5fPz5-FwQeptxXTEtScRorCMOFCDKNcwrSbLKlLzUIk_bYhPy9DQdj7Mvvd4mxMJsZrJp0qur7OK_ihraQNg2dPYvxN39KDTAaxA6XEHscP0jwZ9Z_x_vOh4SjjTBNt4GirSuhUD6ivOjH_M2X_jK5goo66KT0rTz0DOLlU_3HALhdo68O1Py9_W101-jia0bMNR1Z7qZ1Atf8rq-ngNfDR98M7PClwJbAxFudu0PRLRZDuOtUSwExmy9kJx1UUacuAI8x8bp1lSyKJGuIGJQvpzugIzyHVUKWyu2syxniVPKv6h8Z32YHpvlpc0jRYRLxkq3C1zndnhmu2V7BSwYlBFN9tABlSIDbXgw-Hgy_tSdP8nYBdqHv-HDrZxn4M0n_Y7S7E2sb-2NJb7lLaMH6J7fcOCBA8pD1DPNI3Q_FPPAXrc_Ru863OCAGzxvsMMNbnGDATe4xQ0OuMFb3DxBXz-cjN4PI19eIypEzFYRT00O3ISSvDQ0B6pa5nFVMSbS3DKnilCtZVIVPMkFTGR4U2SkNCZlMq-4LNlTtN_MG_MMYSG1SHVMq6qsuDBJzqjmutTcZAXsR0QfkTBCqvC5520JlJkKToZTZUdV2VFVsVQwqn101N1z4TKv3PptEQZeee7oOKECnNx63xuQUvcAm2x9OPisbJsNK2dxxjekj14HISrQvvZITTdmvl4qYg0sIiVx-vwfO3CI7m5n1Qu0v1qszUt0p9is6uXilcflT-AwrWQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sentiment+analysis+on+social+media+for+stock+movement+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Nguyen%2C+Thien+Hai&rft.au=Shirai%2C+Kiyoaki&rft.au=Velcin%2C+Julien&rft.date=2015-12-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=42&rft.issue=24&rft.spage=9603&rft.epage=9611&rft_id=info:doi/10.1016%2Fj.eswa.2015.07.052&rft.externalDocID=S0957417415005126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon