DeepFake Detection for Human Face Images and Videos: A Survey

Techniques for creating and manipulating multimedia information have progressed to the point where they can now ensure a high degree of realism. DeepFake is a generative deep learning algorithm that creates or modifies face features in a superrealistic form, in which it is difficult to distinguish b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Access Jg. 10; S. 18757 - 18775
Hauptverfasser: Malik, Asad, Kuribayashi, Minoru, Abdullahi, Sani M., Khan, Ahmad Neyaz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2022
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Techniques for creating and manipulating multimedia information have progressed to the point where they can now ensure a high degree of realism. DeepFake is a generative deep learning algorithm that creates or modifies face features in a superrealistic form, in which it is difficult to distinguish between real and fake features. This technology has greatly advanced and promotes a wide range of applications in TV channels, video game industries, and cinema, such as improving visual effects in movies, as well as a variety of criminal activities, such as misinformation generation by mimicking famous people. To identify and classify DeepFakes, research in DeepFake detection using deep neural networks (DNNs) has attracted increased interest. Basically, DeepFake is the regenerated media that is obtained by injecting or replacing some information within the DNN model. In this survey, we will summarize the DeepFake detection methods in face images and videos on the basis of their results, performance, methodology used and detection type. We will review the existing types of DeepFake creation techniques and sort them into five major categories. Generally, DeepFake models are trained on DeepFake datasets and tested with experiments. Moreover, we will summarize the available DeepFake dataset trends, focusing on their improvements. Additionally, the issue of how DeepFake detection aims to generate a generalized DeepFake detection model will be analyzed. Finally, the challenges related to DeepFake creation and detection will be discussed. We hope that the knowledge encompassed in this survey will accelerate the use of deep learning in face image and video DeepFake detection methods.
AbstractList Techniques for creating and manipulating multimedia information have progressed to the point where they can now ensure a high degree of realism. DeepFake is a generative deep learning algorithm that creates or modifies face features in a superrealistic form, in which it is difficult to distinguish between real and fake features. This technology has greatly advanced and promotes a wide range of applications in TV channels, video game industries, and cinema, such as improving visual effects in movies, as well as a variety of criminal activities, such as misinformation generation by mimicking famous people. To identify and classify DeepFakes, research in DeepFake detection using deep neural networks (DNNs) has attracted increased interest. Basically, DeepFake is the regenerated media that is obtained by injecting or replacing some information within the DNN model. In this survey, we will summarize the DeepFake detection methods in face images and videos on the basis of their results, performance, methodology used and detection type. We will review the existing types of DeepFake creation techniques and sort them into five major categories. Generally, DeepFake models are trained on DeepFake datasets and tested with experiments. Moreover, we will summarize the available DeepFake dataset trends, focusing on their improvements. Additionally, the issue of how DeepFake detection aims to generate a generalized DeepFake detection model will be analyzed. Finally, the challenges related to DeepFake creation and detection will be discussed. We hope that the knowledge encompassed in this survey will accelerate the use of deep learning in face image and video DeepFake detection methods.
Author Abdullahi, Sani M.
Malik, Asad
Kuribayashi, Minoru
Khan, Ahmad Neyaz
Author_xml – sequence: 1
  givenname: Asad
  orcidid: 0000-0002-9976-3563
  surname: Malik
  fullname: Malik, Asad
  email: amalik_co@myamu.ac.in
  organization: Department of Computer Science, Aligarh Muslim University, Aligarh, India
– sequence: 2
  givenname: Minoru
  orcidid: 0000-0003-4844-2652
  surname: Kuribayashi
  fullname: Kuribayashi, Minoru
  organization: Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan
– sequence: 3
  givenname: Sani M.
  orcidid: 0000-0003-4962-2794
  surname: Abdullahi
  fullname: Abdullahi, Sani M.
  organization: College of Computer and Information Technology, China Three Gorges University, Yichang, China
– sequence: 4
  givenname: Ahmad Neyaz
  orcidid: 0000-0002-2783-4190
  surname: Khan
  fullname: Khan, Ahmad Neyaz
  organization: Department of Computer Application, Integral University, Lucknow, India
BackLink https://cir.nii.ac.jp/crid/1870020693043634944$$DView record in CiNii
BookMark eNp9kM1qGzEUhUVJoWmaJ8hG0G7t6H_mFrowTpwYAl247VbI0lWQa49czTiQt6-mk5bSRbWQxOWccw_fW3LW5Q4JueJszjmD68VyebvZzAUTYi655rw1r8i54AZmUktz9tf_Dbns-x2rp60j3ZyTTzeIx5X7jvQGB_RDyh2NudD708F1dOU80vXBPWJPXRfotxQw9x_pgm5O5Qmf35HX0e17vHx5L8jX1e2X5f3s4fPderl4mHnN5DCT3ITQqi3UumAU9yFut7UmhC0DjkorkFH6ECCqwINhXEYBIBhojzxGeUHWU27IbmePJR1cebbZJftrkMujdWVIfo9WtTF438jgtVDoojOSgWEBIIRxT816P2UdS_5xwn6wu3wqXa1vhZEcNDTAqgomlS-57wtG69PgRjxDcWlvObMjfDvBtyN8-wK_euU_3t-N_-_6MLm6lOqy8eZtw5hgBiRT0kgFSlXZ1SRLiPgnGBouhNHyJ3FTmS4
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102993
crossref_primary_10_3390_computers14080321
crossref_primary_10_1080_23742917_2023_2192888
crossref_primary_10_1109_TIFS_2025_3533906
crossref_primary_10_1016_j_cose_2024_103860
crossref_primary_10_1007_s10791_025_09628_9
crossref_primary_10_1109_ACCESS_2025_3598980
crossref_primary_10_1016_j_appet_2025_107926
crossref_primary_10_3390_jsan14010017
crossref_primary_10_1007_s11468_025_02846_3
crossref_primary_10_1007_s44163_025_00307_8
crossref_primary_10_1007_s43926_025_00154_0
crossref_primary_10_1007_s00371_022_02683_z
crossref_primary_10_1109_JPROC_2025_3576367
crossref_primary_10_1007_s10489_022_03766_z
crossref_primary_10_1016_j_eswa_2024_124260
crossref_primary_10_3390_jtaer20030215
crossref_primary_10_31681_jetol_1459434
crossref_primary_10_1109_ACCESS_2022_3185121
crossref_primary_10_1007_s11042_025_20897_w
crossref_primary_10_1109_ACCESS_2023_3270713
crossref_primary_10_1016_j_inffus_2023_102103
crossref_primary_10_1109_ACCESS_2023_3251417
crossref_primary_10_1016_j_heliyon_2023_e15090
crossref_primary_10_1016_j_cosrev_2024_100677
crossref_primary_10_1109_TBC_2024_3374043
crossref_primary_10_1109_ACCESS_2024_3390217
crossref_primary_10_1109_TIFS_2025_3592531
crossref_primary_10_1111_1556_4029_15665
crossref_primary_10_1007_s11042_024_18774_z
crossref_primary_10_1007_s13369_025_10526_x
crossref_primary_10_1016_j_dim_2025_100099
crossref_primary_10_1177_09732586241277335
crossref_primary_10_2174_0123520965269334231117112747
crossref_primary_10_1109_ACCESS_2024_3480320
crossref_primary_10_3390_info14080430
crossref_primary_10_1080_23080477_2023_2268380
crossref_primary_10_3390_computers12100216
crossref_primary_10_1016_j_eswa_2024_123756
crossref_primary_10_1007_s11042_024_19220_w
crossref_primary_10_1386_eme_00199_1
crossref_primary_10_1007_s11135_024_02048_9
crossref_primary_10_1007_s44196_025_00911_7
crossref_primary_10_1007_s11468_024_02696_5
crossref_primary_10_3390_jsan12040061
crossref_primary_10_1109_ACCESS_2024_3470128
crossref_primary_10_3390_electronics13152947
crossref_primary_10_1109_ACCESS_2025_3567523
crossref_primary_10_1109_ACCESS_2025_3606518
crossref_primary_10_1145_3742786
crossref_primary_10_4018_JOEUC_347217
crossref_primary_10_3390_electronics12163407
crossref_primary_10_1109_LSP_2022_3193590
crossref_primary_10_3390_electronics13010126
crossref_primary_10_1007_s10462_025_11286_8
crossref_primary_10_1007_s00521_023_09288_0
crossref_primary_10_1016_j_icte_2024_09_018
crossref_primary_10_1109_ACCESS_2024_3356550
crossref_primary_10_1109_MITP_2022_3230353
crossref_primary_10_1007_s42979_024_03105_8
crossref_primary_10_1109_ACCESS_2023_3324403
crossref_primary_10_1016_j_neunet_2025_107310
crossref_primary_10_32628_CSEIT251116171
crossref_primary_10_1007_s42454_024_00054_8
crossref_primary_10_1016_j_imavis_2025_105582
Cites_doi 10.1109/CVPR.2017.243
10.1109/WIFS.2018.8630761
10.1007/978-3-030-58574-7_7
10.1007/978-3-319-10590-1_53
10.1016/j.neucom.2020.10.081
10.1109/WIFS.2018.8630787
10.1049/iet-bmt.2019.0196
10.1007/s12652-020-02845-8
10.1109/IJCNN52387.2021.9534089
10.1109/TBIOM.2019.2942395
10.1007/978-3-030-31456-9_15
10.1109/AVSS.2018.8639163
10.1109/ACCESS.2014.2381273
10.1007/s11263-015-0816-y
10.1109/MIPR.2019.00103
10.1109/ACCESS.2019.2899367
10.1145/3306346.3323035
10.1145/3437880.3460400
10.1016/j.inffus.2020.06.014
10.1145/3072959.3073640
10.1109/79.543975
10.1109/ICCV.2019.00947
10.1109/CVPRW50498.2020.00336
10.1109/ICASSP.2019.8682602
10.1109/CVPR42600.2020.00872
10.1016/j.patcog.2017.10.013
10.1109/CVPR.2019.00379
10.1145/3425780
10.1145/3442381.3449809
10.1016/S0031-3203(01)00162-5
10.1109/WIFS49906.2020.9360904
10.1109/CVPR.2017.195
10.1109/ICCV.2019.00009
10.1109/CVPR.2017.632
10.1145/1774088.1774427
10.1038/scientificamerican0608-66
10.1016/j.measurement.2019.06.008
10.1109/CVPR42600.2020.00296
10.1109/CVPRW50498.2020.00338
10.1109/CVPRW50498.2020.00162
10.1016/j.cosrev.2021.100379
10.3390/app11199174
10.1007/s10489-022-03766-z
10.1109/WACVW.2019.00020
10.1145/1291233.1291252
10.1109/ICCV.2019.00765
10.1145/2713168.2713194
10.1109/ICASSP39728.2021.9414582
10.1109/JSTSP.2020.3007250
10.1109/ICASSP40776.2020.9053969
10.1109/SIPROCESS.2017.8124497
10.1109/CVPRW50498.2020.00341
10.3390/app10010370
10.1016/j.sigpro.2020.107616
10.1109/ICIP.2019.8803661
10.1109/CVPR42600.2020.00582
10.1109/ICCVW.2019.00213
10.1109/5.726791
10.1109/JSTSP.2020.3002101
10.1186/s13635-017-0067-2
10.1109/ICCV48922.2021.00996
10.1109/CVPR.2016.90
10.1109/ICMEW.2015.7169839
10.1145/3394171.3413700
10.1162/neco.1997.9.8.1735
10.1109/FG.2018.00020
10.1109/CVPR.2015.7298594
10.1145/3306346.3323028
10.1109/CVPR42600.2020.00808
10.1109/CVPR46437.2021.00480
10.1109/SP.2017.49
10.1109/CVPR.2019.00453
10.1109/TPAMI.2021.3093446
10.1145/3394171.3413570
10.1109/CVPR46437.2021.00500
10.1109/MSP.2008.931079
10.1109/CVPR42600.2020.00813
10.1109/CVPR.2016.262
10.1007/978-3-030-58201-2_28
10.1109/ICASSP.2019.8683164
10.1109/CVPR42600.2020.00327
10.1145/3394171.3413769
10.1109/TIFS.2011.2129512
10.1007/11744023_32
10.1109/IJCNN48605.2020.9207034
10.2352/ISSN.2470-1173.2019.5.MWSF-532
10.1007/BF00344251
10.1109/ICCV.2015.425
10.1109/CVPR.2018.00916
10.1109/TNNLS.2018.2875194
10.1145/3448017.3457387
10.1145/3394171.3413707
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
RYH
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3151186
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 18775
ExternalDocumentID oai_doaj_org_article_48fdcc73dc524eafa630960d99dd5493
10_1109_ACCESS_2022_3151186
9712265
Genre orig-research
GrantInformation_xml – fundername: Japan Science and Technology agency Core Research for Evolutional Science and Technology (JST CREST)
  grantid: JPMJCR20D3
  funderid: 10.13039/501100002241
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI
  grantid: 19K22846
  funderid: 10.13039/501100001691
– fundername: Japan Science and Technology agency Strategic International Collaborative Research Program (JST SICORP)
  grantid: JPMJSC20C3
  funderid: 10.13039/501100002241
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
RYH
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c503t-316dd84b91099641cdfbb1869db091e45493f3cdd9f4d1d6013f2992095ce1ff3
IEDL.DBID DOA
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760748700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:04 EDT 2025
Sun Nov 30 03:47:04 EST 2025
Tue Nov 18 22:33:12 EST 2025
Sat Nov 29 06:31:55 EST 2025
Thu Jun 26 22:22:16 EDT 2025
Wed Aug 27 02:49:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-316dd84b91099641cdfbb1869db091e45493f3cdd9f4d1d6013f2992095ce1ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9976-3563
0000-0003-4962-2794
0000-0003-4844-2652
0000-0002-2783-4190
OpenAccessLink https://doaj.org/article/48fdcc73dc524eafa630960d99dd5493
PQID 2631959790
PQPubID 4845423
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3151186
proquest_journals_2631959790
crossref_primary_10_1109_ACCESS_2022_3151186
nii_cinii_1870020693043634944
doaj_primary_oai_doaj_org_article_48fdcc73dc524eafa630960d99dd5493
ieee_primary_9712265
PublicationCentury 2000
PublicationDate 20220000
2022-01-01
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE Access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
Song (ref41) 2018
ref59
ref58
ref55
Goodfellow (ref2); 27
ref51
ref46
ref48
ref47
ref44
ref43
Chen (ref120)
ref7
ref9
ref4
Rössler (ref50) 2018
ref6
ref5
ref100
ref101
ref40
He (ref32) 2017
ref35
ref34
ref37
ref36
Agarwal (ref88); 1
ref31
ref30
Jeon (ref74) 2020
ref33
Sabir (ref72) 2019; 3
ref39
ref38
Yu (ref93) 2015
Chen (ref127) 2018; 31
Dolhansky (ref53) 2019
Chingovska (ref70)
Brock (ref24) 2018
Karras (ref26) 2020
ref25
Simonyan (ref17) 2014
ref20
ref22
ref28
ref27
Radford (ref21) 2015
ref29
Sanderson (ref61) 2002
ref13
ref12
ref15
ref128
ref14
ref97
ref96
ref99
ref124
ref10
ref98
ref125
Jha (ref126) 2019
ref16
ref19
ref18
Goodfellow (ref129) 2014
Sabour (ref118) 2017
Song (ref42) 2020
Li (ref87) 2018
ref92
ref94
ref130
ref91
Huang (ref83)
ref90
ref89
ref86
ref85
Baldi (ref3)
(ref45) 2015
Koopman (ref62)
ref82
ref81
ref84
ref80
Korshunov (ref49) 2018
ref79
ref108
ref78
ref109
Kingma (ref95) 2018
ref106
ref107
ref75
ref104
ref105
Dolhansky (ref54) 2020
ref77
ref102
ref76
ref103
ref1
LeCun (ref11); 2
ref71
ref111
ref112
ref73
ref110
ref68
ref119
ref67
ref117
ref69
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
Karras (ref23) 2017
Nguyen (ref8) 2019
ref60
ref122
ref123
(ref52) 2019
ref121
References_xml – ident: ref119
  doi: 10.1109/CVPR.2017.243
– year: 2018
  ident: ref50
  article-title: FaceForensics: A large-scale video dataset for forgery detection in human faces
  publication-title: arXiv:1803.09179
– ident: ref63
  doi: 10.1109/WIFS.2018.8630761
– ident: ref98
  doi: 10.1007/978-3-030-58574-7_7
– ident: ref16
  doi: 10.1007/978-3-319-10590-1_53
– year: 2017
  ident: ref118
  article-title: Dynamic routing between capsules
  publication-title: arXiv:1710.09829
– ident: ref110
  doi: 10.1016/j.neucom.2020.10.081
– ident: ref84
  doi: 10.1109/WIFS.2018.8630787
– ident: ref116
  doi: 10.1049/iet-bmt.2019.0196
– ident: ref111
  doi: 10.1007/s12652-020-02845-8
– year: 2020
  ident: ref54
  article-title: The DeepFake detection challenge (DFDC) dataset
  publication-title: arXiv:2006.07397
– ident: ref80
  doi: 10.1109/IJCNN52387.2021.9534089
– ident: ref117
  doi: 10.1109/TBIOM.2019.2942395
– ident: ref71
  doi: 10.1007/978-3-030-31456-9_15
– volume: 27
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref2
  article-title: Generative adversarial nets
– ident: ref68
  doi: 10.1109/AVSS.2018.8639163
– ident: ref113
  doi: 10.1109/ACCESS.2014.2381273
– ident: ref15
  doi: 10.1007/s11263-015-0816-y
– ident: ref90
  doi: 10.1109/MIPR.2019.00103
– ident: ref37
  doi: 10.1109/ACCESS.2019.2899367
– year: 2014
  ident: ref129
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv:1412.6572
– ident: ref35
  doi: 10.1145/3306346.3323035
– volume-title: Wild Web Tampered Image Dataset
  year: 2015
  ident: ref45
– ident: ref67
  doi: 10.1145/3437880.3460400
– volume: 31
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: ref127
  article-title: Neural ordinary differential equations
– ident: ref7
  doi: 10.1016/j.inffus.2020.06.014
– year: 2018
  ident: ref87
  article-title: Exposing DeepFake videos by detecting face warping artifacts
  publication-title: arXiv:1811.00656
– ident: ref40
  doi: 10.1145/3072959.3073640
– start-page: 37
  volume-title: Proc. ICML Workshop Unsupervised Transf. Learn.
  ident: ref3
  article-title: Autoencoders, unsupervised learning, and deep architectures
– year: 2015
  ident: ref21
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– ident: ref125
  doi: 10.1109/79.543975
– year: 2017
  ident: ref32
  article-title: AttGAN: Facial attribute editing by only changing what you want
  publication-title: arXiv:1711.10678
– ident: ref38
  doi: 10.1109/ICCV.2019.00947
– ident: ref79
  doi: 10.1109/CVPRW50498.2020.00336
– ident: ref69
  doi: 10.1109/ICASSP.2019.8682602
– ident: ref122
  doi: 10.1109/CVPR42600.2020.00872
– ident: ref13
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref33
  doi: 10.1109/CVPR.2019.00379
– ident: ref5
  doi: 10.1145/3425780
– ident: ref81
  doi: 10.1145/3442381.3449809
– start-page: 133
  volume-title: Proc. 20th Irish Mach. Vis. image Process. Conf. (IMVIP)
  ident: ref62
  article-title: Detection of deepfake video manipulation
– year: 2015
  ident: ref93
  article-title: LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop
  publication-title: arXiv:1506.03365
– start-page: 1597
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref120
  article-title: A simple framework for contrastive learning of visual representations
– ident: ref124
  doi: 10.1016/S0031-3203(01)00162-5
– ident: ref97
  doi: 10.1109/WIFS49906.2020.9360904
– ident: ref121
  doi: 10.1109/CVPR.2017.195
– volume-title: Face Generator—Generate Faces Online Using AI
  ident: ref27
– ident: ref51
  doi: 10.1109/ICCV.2019.00009
– volume-title: Ebv Dataset
  ident: ref86
– ident: ref36
  doi: 10.1109/CVPR.2017.632
– volume: 3
  start-page: 80
  issue: 1
  year: 2019
  ident: ref72
  article-title: Recurrent convolutional strategies for face manipulation detection in videos
  publication-title: Interface (GUI)
– ident: ref59
  doi: 10.1145/1774088.1774427
– ident: ref115
  doi: 10.1038/scientificamerican0608-66
– ident: ref114
  doi: 10.1016/j.measurement.2019.06.008
– ident: ref56
  doi: 10.1109/CVPR42600.2020.00296
– ident: ref39
  doi: 10.1109/CVPRW50498.2020.00338
– ident: ref104
  doi: 10.1109/CVPRW50498.2020.00162
– year: 2020
  ident: ref26
  article-title: Training generative adversarial networks with limited data
  publication-title: arXiv:2006.06676
– volume-title: Cew Dataset
  ident: ref85
– ident: ref14
  doi: 10.1016/j.cosrev.2021.100379
– start-page: 1
  volume-title: Proc. Workshop Faces Real-Life’Images, Detection, Alignment, Recognit.
  ident: ref83
  article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments
– ident: ref112
  doi: 10.3390/app11199174
– ident: ref6
  doi: 10.1007/s10489-022-03766-z
– ident: ref94
  doi: 10.1109/WACVW.2019.00020
– year: 2017
  ident: ref23
  article-title: Progressive growing of GANs for improved quality, stability, and variation
  publication-title: arXiv:1710.10196
– ident: ref128
  doi: 10.1145/1291233.1291252
– ident: ref92
  doi: 10.1109/ICCV.2019.00765
– ident: ref91
  doi: 10.1145/2713168.2713194
– ident: ref107
  doi: 10.1109/ICASSP39728.2021.9414582
– year: 2019
  ident: ref8
  article-title: Deep learning for deepfakes creation and detection: A survey
  publication-title: arXiv:1909.11573
– ident: ref29
  doi: 10.1109/JSTSP.2020.3007250
– ident: ref77
  doi: 10.1109/ICASSP40776.2020.9053969
– volume-title: Four in-the-Wild Lip-Sync Deep Fakes, Youtube
  ident: ref101
– ident: ref82
  doi: 10.1109/SIPROCESS.2017.8124497
– ident: ref103
  doi: 10.1109/CVPRW50498.2020.00341
– ident: ref75
  doi: 10.3390/app10010370
– ident: ref65
  doi: 10.1016/j.sigpro.2020.107616
– ident: ref89
  doi: 10.1109/ICIP.2019.8803661
– ident: ref28
  doi: 10.1109/CVPR42600.2020.00582
– ident: ref96
  doi: 10.1109/ICCVW.2019.00213
– ident: ref12
  doi: 10.1109/5.726791
– ident: ref9
  doi: 10.1109/JSTSP.2020.3002101
– ident: ref47
  doi: 10.1186/s13635-017-0067-2
– ident: ref58
  doi: 10.1109/ICCV48922.2021.00996
– ident: ref19
  doi: 10.1109/CVPR.2016.90
– volume-title: Contributing Data to Deepfake Detection Research
  year: 2019
  ident: ref52
– ident: ref60
  doi: 10.1109/ICMEW.2015.7169839
– ident: ref102
  doi: 10.1145/3394171.3413700
– ident: ref20
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref105
  doi: 10.1109/FG.2018.00020
– ident: ref18
  doi: 10.1109/CVPR.2015.7298594
– ident: ref43
  doi: 10.1145/3306346.3323028
– ident: ref78
  doi: 10.1109/CVPR42600.2020.00808
– ident: ref30
  doi: 10.1109/CVPR46437.2021.00480
– year: 2020
  ident: ref42
  article-title: Everybody’s Talkin’: Let me talk as you want
  publication-title: arXiv:2001.05201
– ident: ref130
  doi: 10.1109/SP.2017.49
– ident: ref4
  doi: 10.1109/CVPR.2019.00453
– ident: ref109
  doi: 10.1109/TPAMI.2021.3093446
– year: 2002
  ident: ref61
  article-title: The VidTIMIT database
– ident: ref99
  doi: 10.1145/3394171.3413570
– ident: ref66
  doi: 10.1109/CVPR46437.2021.00500
– volume-title: Four in-the-Wild Lip-Sync Deep Fakes, Instagram
  ident: ref100
– ident: ref1
  doi: 10.1109/MSP.2008.931079
– ident: ref25
  doi: 10.1109/CVPR42600.2020.00813
– year: 2019
  ident: ref53
  article-title: The deepfake detection challenge (DFDC) preview dataset
  publication-title: arXiv:1910.08854
– year: 2018
  ident: ref24
  article-title: Large scale GAN training for high fidelity natural image synthesis
  publication-title: arXiv:1809.11096
– volume: 2
  start-page: 396
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: Handwritten digit recognition with a back-propagation network
– year: 2018
  ident: ref95
  article-title: Glow: Generative flow with invertible 1x1 convolutions
  publication-title: arXiv:1807.03039
– ident: ref34
  doi: 10.1109/CVPR.2016.262
– ident: ref73
  doi: 10.1007/978-3-030-58201-2_28
– year: 2014
  ident: ref17
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– volume: 1
  start-page: 1
  volume-title: Proc. CVPR Workshops
  ident: ref88
  article-title: Protecting world leaders against deep fakes
– year: 2018
  ident: ref49
  article-title: DeepFakes: A new threat to face recognition? Assessment and detection
  publication-title: arXiv:1812.08685
– ident: ref48
  doi: 10.1109/ICASSP.2019.8683164
– ident: ref55
  doi: 10.1109/CVPR42600.2020.00327
– ident: ref57
  doi: 10.1145/3394171.3413769
– ident: ref44
  doi: 10.1109/TIFS.2011.2129512
– ident: ref123
  doi: 10.1007/11744023_32
– ident: ref76
  doi: 10.1109/IJCNN48605.2020.9207034
– ident: ref64
  doi: 10.2352/ISSN.2470-1173.2019.5.MWSF-532
– ident: ref10
  doi: 10.1007/BF00344251
– ident: ref46
  doi: 10.1109/ICCV.2015.425
– ident: ref31
  doi: 10.1109/CVPR.2018.00916
– year: 2019
  ident: ref126
  article-title: Attribution-based confidence metric for deep neural networks
– year: 2018
  ident: ref41
  article-title: Talking face generation by conditional recurrent adversarial network
  publication-title: arXiv:1804.04786
– ident: ref22
  doi: 10.1109/TNNLS.2018.2875194
– start-page: 1
  volume-title: Proc. BIOSIG Int. Conf. Biometrics Special Interest Group (BIOSIG)
  ident: ref70
  article-title: On the effectiveness of local binary patterns in face anti-spoofing
– ident: ref108
  doi: 10.1145/3448017.3457387
– year: 2020
  ident: ref74
  article-title: T-GD: Transferable GAN-generated images detection framework
  publication-title: arXiv:2008.04115
– ident: ref106
  doi: 10.1145/3394171.3413707
SSID ssj0000816957
Score 2.6142151
SecondaryResourceType review_article
Snippet Techniques for creating and manipulating multimedia information have progressed to the point where they can now ensure a high degree of realism. DeepFake is a...
SourceID doaj
proquest
crossref
nii
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18757
SubjectTerms Algorithms
Artificial neural networks
CNNs
Computer & video games
Crime
Datasets
Deception
Deep learning
DeepFake
Electrical engineering. Electronics. Nuclear engineering
Faces
Forensics
GANs
Image manipulation
Information integrity
Kernel
Machine learning
Media
Motion pictures
Multimedia
TK1-9971
Videos
Visual effects
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqIlBb5wLGhSezEMRKHZcsKLhUSD_UWJZ6xtAKy1T4q8e8746QRCITEJYoix7I99sw3Y_sbgJemLltHlU69L4vUkOclhaZKS9miKjrTZRZjsgl7cVFfXrqPe3A63YUhonj4jF7Ja9zLx5XfSajszNmc0UK5D_vW2uGu1hRPkQQSrrQjsVCeubPZfM59YBewKNgzFSRd_WZ8Ikf_mFSFLUu_XP6hj6ORWTz4v-Y9hPsjmFSzQfqPYI_6x3DvF4rBQ3hzTnS1aL-ROqdtPHbVK8apKgbv1aL1pD78YJ2yUW2P6usSabV5rWbq0259TT-fwJfFu8_z9-mYMiH1Zaa3rFErxNp0Tja8KpN7DF0nWaewY2BAhr1BHbRHdMFgjuyN6cAGqWCg5SkPQT-Fg37V0zNQeVlb0rasOmNNHbK2Y-hUBFejYS-tDgkUt2PZ-JFPXNJafG-iX5G5ZhBAIwJoRgEkcDr9dDXQafy7-FsR0lRUuLDjBx73ZlxaDTcOvbcaebYZakNbafHL0DlE6W8ChyKrqZJRTAmcsMi56fLMWW0xcJa8kEZXQtljEji-nQzNuK43TVFpYeOxLjv6e63P4a50YAjSHMPBdr2jE7jjr7fLzfpFnLI3sdLimg
  priority: 102
  providerName: IEEE
Title DeepFake Detection for Human Face Images and Videos: A Survey
URI https://ieeexplore.ieee.org/document/9712265
https://cir.nii.ac.jp/crid/1870020693043634944
https://www.proquest.com/docview/2631959790
https://doaj.org/article/48fdcc73dc524eafa630960d99dd5493
Volume 10
WOSCitedRecordID wos000760748700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2higMcELQg0i_50CNRk9ixYyQOy7ar9kBVqYB6sxKPLa2gabW7rcSF386Mk64WIcGFiw9RYtnP9swb23kDcKSaurVBy9z7uspV8LSkUOm85iOqqlNdYTAlmzAXF831tb3cSPXFd8IGeeABuGPVRPTeSKS6VGhjqyWzbrQWkWKbpPNJrGcjmEo2uCm1rc0oM1QW9ngynVKPKCCsKopTmVfr31xRUuwfU6yQn-nn8z-sc3I5s5fwYuSKYjK08RU8Cf02PN9QENyBDych3M3ab0GchFW6VdULoqEi7c2LWeuDOL8hk7EUbY_i6xzD7fK9mIir-8VD-PEavsxOP0_P8jEjQu7rQq7IYGrERnWWz7O0Kj3GruOkUtiR3w-KAYnSI9qosEQKtmQkf1MRj_KhjFG-ga3-tg9vQZR1Y4I0te6UIYyLtiNmVEXboKIgrIkZVI_gOD_KhXPWiu8uhQ2FdQOijhF1I6IZvFt_dDeoZfz99Y-M-vpVlrpOD2gCuHECuH9NgAx2eMzWlVhTEqWsMzigMaSmc1mSVSJezGkfldSsyKMy2H8cXTcu26WrtGSxHWOL3f_RtD14xt0ddmz2YWu1uA8H8NQ_rObLxWGasVR--nl6mP47_AVtc-hD
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQ98GoRgRZ84NjQJHYertTDsmXVirJCoqDerMQzllZAttpHpf57xk4agagqcYmiyLFsjz3zzdj-BuCdqvJaUyFja_MsVmR5SaEq4txvUWWNapISQ7KJcjqtLi70lw3YH-7CEFE4fEbv_WvYy8e5XftQ2YEuU0YL-T24nyuVpd1trSGi4lNI6LzsqYXSRB-MxmPuBTuBWca-qcfSxV_mJ7D092lV2La0s9k_GjmYmcmT_2vgU3jcw0kx6uT_DDaofQ5bf5AMbsPRMdHlpP5B4phW4eBVKxipihC-F5Pakjj9xVplKeoWxfcZ0nx5KEbi63pxRdc78G3y8Xx8EvdJE2KbJ3LFOrVArFSj_ZZXoVKLrml83ilsGBqQYn9QOmkRtVOYIvtj0rFJyhhqWUqdky9gs5239BJEmlclyTIvGlWqyiV1w-Apc7pCxX5a5SLIbsbS2J5R3Ce2-GmCZ5Fo0wnAeAGYXgAR7A8_XXaEGncX_-CFNBT1bNjhA4-76ReX4cahtaVEnm-KalcX0ntmqDWi728E215WQyW9mCLYY5Fz0_0zZcXF0NlnhlSy8KQ9KoLdm8lg-pW9NFkhPR9PqZNXt9f6Fh6enH8-M2en00-v4ZHvTBey2YXN1WJNe_DAXq1my8WbMH1_A6ab5eE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepFake+Detection+for+Human+Face+Images+and+Videos%3A+A+Survey&rft.jtitle=IEEE+access&rft.au=Malik%2C+Asad&rft.au=Kuribayashi%2C+Minoru&rft.au=Abdullahi%2C+Sani+M.&rft.au=Khan%2C+Ahmad+Neyaz&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=18757&rft.epage=18775&rft_id=info:doi/10.1109%2FACCESS.2022.3151186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3151186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon