INTERSECTION BOUNDS: ESTIMATION AND INFERENCE

We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or, equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica Jg. 81; H. 2; S. 667 - 737
Hauptverfasser: Chernozhukov, Victor, Lee, Sokbae, Rosen, Adam M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Econometric Society 01.03.2013
Blackwell Publishing Ltd
Schlagworte:
ISSN:0012-9682, 1468-0262
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or, equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many bounds characterizations in econometrics, for instance bounds on parameters under conditional moment inequalities, can be formulated as intersection bounds. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are nonseparable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a medianbias-corrected estimator of such bounds as a by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of "penultimate" Gaussian processes. These penultimate processes are generally not weakly convergent, and thus are non-Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest.
AbstractList We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or, equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many bounds characterizations in econometrics, for instance bounds on parameters under conditional moment inequalities, can be formulated as intersection bounds. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are nonseparable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a median‐bias‐corrected estimator of such bounds as a by‐product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel‐based empirical processes by a sequence of “penultimate” Gaussian processes. These penultimate processes are generally not weakly convergent, and thus are non‐Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest.
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or, equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many bounds characterizations in econometrics, for instance bounds on parameters under conditional moment inequalities, can be formulated as intersection bounds. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are nonseparable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a medianbias-corrected estimator of such bounds as a by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of "penultimate" Gaussian processes. These penultimate processes are generally not weakly convergent, and thus are non-Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest.
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or, equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many bounds characterizations in econometrics, for instance bounds on parameters under conditional moment inequalities, can be formulated as intersection bounds. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are nonseparable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a median-bias‐ ;corrected estimator of such bounds as a by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of “ ;penultimate' Gaussian processes. These penultimate processes are generally not weakly convergent, and thus are non‐ ;Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest. Reprinted by permission of the Econometric Society
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or, equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many bounds characterizations in econometrics, for instance bounds on parameters under conditional moment inequalities, can be formulated as intersection bounds. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are nonseparable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a median-bias-corrected estimator of such bounds as a by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of "penultimate" Gaussian processes. These penultimate processes are generally not weakly convergent, and thus are non-Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest. [PUBLICATION ABSTRACT]
Author Lee, Sokbae
Chernozhukov, Victor
Rosen, Adam M.
Author_xml – sequence: 1
  givenname: Victor
  surname: Chernozhukov
  fullname: Chernozhukov, Victor
– sequence: 2
  givenname: Sokbae
  surname: Lee
  fullname: Lee, Sokbae
– sequence: 3
  givenname: Adam M.
  surname: Rosen
  fullname: Rosen, Adam M.
BackLink http://www.econis.eu/PPNSET?PPN=749555645$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
BookMark eNp9kF9rwjAUxcNwMHWDfYExYS97qcv_pntztW4FV0Hrc4lphEptXVIZfvtF3RwIG1zI5fI7J4fTAa2qrjQAtwj2SSDwUxSmA-EjcQHaiHLhQcxxC7QhRNgLuMBXoGPtCkLI3LSBFydpNJ05VTxJei-TeTKcPfeiWRq_Dw6nQTLsxckomkZJGF2Dy6Usrb75frtgPorS8M0bT17jcDD2FIOEeQuaUxwssIA854RTH_s-y3PJlBJSB0pTrnPiLwXSuaLal1wSEbgbJgs_UJB0wePRd2Pqj622TbYurNJlKStdb22GCKYBo4QThz6coat6ayqXzlFICAY5Qo66P1Ja1VVhs40p1tLsMt_ZMMYp-_1Smdpao5cnBsFs32z206xD-2eoKhrZFHXVGFmU_wg-i1Lv_jQ-LC70PszdUbCyTW1OAkwYdsUy8gVnLowQ
CODEN ECMTA7
CitedBy_id crossref_primary_10_1016_j_euroecorev_2020_103392
crossref_primary_10_1093_qje_qjy015
crossref_primary_10_1080_01621459_2022_2093729
crossref_primary_10_1177_1536867X1501500205
crossref_primary_10_3982_ECTA18979
crossref_primary_10_1016_j_jeconom_2022_06_013
crossref_primary_10_1111_ecin_12900
crossref_primary_10_1016_j_jeconom_2019_08_001
crossref_primary_10_1162_REST_a_00618
crossref_primary_10_1016_j_jeconom_2013_08_005
crossref_primary_10_1016_j_jeconom_2023_105553
crossref_primary_10_1016_j_jspi_2015_12_005
crossref_primary_10_1162_REST_a_00622
crossref_primary_10_1016_j_jeconom_2023_105558
crossref_primary_10_1016_j_jeconom_2022_12_010
crossref_primary_10_1016_j_jeconom_2023_105556
crossref_primary_10_1016_j_jeconom_2025_105952
crossref_primary_10_1017_S0266466614000425
crossref_primary_10_3102_1076998618776435
crossref_primary_10_1515_snde_2014_0030
crossref_primary_10_1080_07474938_2025_2460540
crossref_primary_10_1002_sim_10108
crossref_primary_10_1080_07350015_2020_1847122
crossref_primary_10_1016_j_jeconom_2018_04_002
crossref_primary_10_1016_j_jeconom_2022_04_011
crossref_primary_10_1111_1756_2171_12323
crossref_primary_10_1016_j_jeconom_2016_04_001
crossref_primary_10_1016_j_jeconom_2024_105785
crossref_primary_10_1093_restud_rdaf001
crossref_primary_10_3982_QE1367
crossref_primary_10_1016_j_jeoa_2023_100467
crossref_primary_10_1007_s40505_014_0061_5
crossref_primary_10_1080_07350015_2023_2219283
crossref_primary_10_1016_j_jeconom_2020_03_020
crossref_primary_10_1016_j_jeconom_2016_01_010
crossref_primary_10_1016_j_labeco_2022_102185
crossref_primary_10_1093_restud_rdab039
crossref_primary_10_1016_j_jeconom_2015_03_005
crossref_primary_10_1146_annurev_economics_081720_120019
crossref_primary_10_1016_j_jeconom_2015_03_006
crossref_primary_10_1214_14_AOS1235
crossref_primary_10_1007_s10614_017_9758_5
crossref_primary_10_1017_S0266466618000282
crossref_primary_10_1080_19345747_2016_1273412
crossref_primary_10_1007_s00181_014_0867_x
crossref_primary_10_1111_biom_12883
crossref_primary_10_1111_ectj_12018
crossref_primary_10_1111_biom_13101
crossref_primary_10_1177_0081175019887992
crossref_primary_10_1016_j_jeconom_2017_10_007
crossref_primary_10_1214_19_AOS1865
crossref_primary_10_1093_jeea_jvz058
crossref_primary_10_1016_j_jeconom_2018_10_004
crossref_primary_10_1093_restud_rdae022
crossref_primary_10_1080_07350015_2022_2061983
crossref_primary_10_3982_QE1079
crossref_primary_10_1007_s00148_020_00769_3
crossref_primary_10_3982_QE722
crossref_primary_10_1093_ej_uead118
crossref_primary_10_1214_14_AOS1230
crossref_primary_10_1002_jae_2473
crossref_primary_10_1111_rssa_12683
crossref_primary_10_1016_j_jeconom_2015_01_006
crossref_primary_10_1111_ectj_12081
crossref_primary_10_1080_07350015_2016_1272458
crossref_primary_10_1016_j_jeconom_2023_105549
crossref_primary_10_1111_1756_2171_12263
crossref_primary_10_1214_20_AOS2023
crossref_primary_10_1093_ectj_utz025
crossref_primary_10_1016_j_ehb_2022_101190
crossref_primary_10_1162_REST_a_00537
crossref_primary_10_3982_QE399
crossref_primary_10_3233_JEM_160423
crossref_primary_10_3982_ECTA20125
crossref_primary_10_1093_restud_rdz007
crossref_primary_10_1016_j_jeconom_2014_10_013
crossref_primary_10_1016_j_jeconom_2024_105842
crossref_primary_10_1080_07474938_2023_2178086
crossref_primary_10_1214_18_AOS1750
crossref_primary_10_1016_j_jeconom_2019_03_002
crossref_primary_10_1016_j_jeconom_2020_02_005
crossref_primary_10_1017_S0266466620000225
crossref_primary_10_3982_ECTA17764
crossref_primary_10_1093_biomet_asaa003
crossref_primary_10_1016_j_jeconom_2024_105680
crossref_primary_10_1016_j_econlet_2022_110440
crossref_primary_10_1093_biomet_asac042
crossref_primary_10_1080_01621459_2023_2252576
crossref_primary_10_1080_19439342_2020_1828999
crossref_primary_10_1146_annurev_statistics_040120_022239
crossref_primary_10_2139_ssrn_3866876
crossref_primary_10_1093_ectj_utab033
crossref_primary_10_1111_coep_12554
crossref_primary_10_1002_jae_3014
crossref_primary_10_1097_EDE_0000000000001178
crossref_primary_10_3982_QE1727
crossref_primary_10_1111_ectj_12077
crossref_primary_10_1080_07350015_2019_1569527
crossref_primary_10_1093_ectj_utae020
crossref_primary_10_1016_j_jeconom_2015_02_014
crossref_primary_10_1017_S0266466616000359
crossref_primary_10_1093_restud_rdac061
crossref_primary_10_1093_restud_rdy049
crossref_primary_10_1002_jae_2956
crossref_primary_10_1017_S0266466625100042
crossref_primary_10_1177_1536867X1701700104
crossref_primary_10_1017_S0266466617000329
crossref_primary_10_3982_QE268
crossref_primary_10_2139_ssrn_5019869
crossref_primary_10_1146_annurev_economics_081919_113720
crossref_primary_10_1002_jae_3024
crossref_primary_10_1016_j_labeco_2022_102258
crossref_primary_10_1016_j_jspi_2019_09_013
crossref_primary_10_1097_EDE_0000000000000811
crossref_primary_10_1080_07350015_2016_1149071
crossref_primary_10_1016_j_jeconom_2013_10_005
crossref_primary_10_1080_07350015_2024_2388639
crossref_primary_10_1086_708724
crossref_primary_10_3982_QE490
crossref_primary_10_1016_j_econlet_2025_112197
crossref_primary_10_1002_jae_2574
crossref_primary_10_1016_j_econedurev_2016_02_006
crossref_primary_10_1016_j_jmva_2013_10_020
crossref_primary_10_1111_biom_13148
crossref_primary_10_1017_S0266466617000184
crossref_primary_10_1093_ectj_utaf001
crossref_primary_10_1016_j_jeconom_2018_12_024
crossref_primary_10_1080_07350015_2013_822760
crossref_primary_10_3982_QE377
crossref_primary_10_1016_j_jeconom_2020_11_009
crossref_primary_10_1016_j_jeconom_2022_11_009
crossref_primary_10_1111_iere_12072
crossref_primary_10_1016_j_jeconom_2016_09_010
crossref_primary_10_3982_QE1960
crossref_primary_10_1016_j_jeconom_2023_105523
crossref_primary_10_1016_j_jeconom_2023_01_010
crossref_primary_10_1016_j_jeconom_2021_09_017
crossref_primary_10_1002_wics_1614
crossref_primary_10_1016_j_jeconom_2017_11_002
crossref_primary_10_1002_jae_2780
crossref_primary_10_1016_j_jmva_2013_07_017
crossref_primary_10_2139_ssrn_3753058
crossref_primary_10_1177_1536867X1501500103
crossref_primary_10_1111_ectj_12050
crossref_primary_10_1177_1536867X1801800308
crossref_primary_10_1016_j_spl_2017_12_004
crossref_primary_10_1016_j_jeconom_2021_01_012
crossref_primary_10_1086_696228
crossref_primary_10_1007_s42973_023_00138_1
crossref_primary_10_1016_j_jeconom_2019_04_010
crossref_primary_10_1016_j_jeconom_2017_06_019
crossref_primary_10_1017_S0266466616000384
crossref_primary_10_1002_bimj_201700049
crossref_primary_10_1080_07350015_2015_1044008
crossref_primary_10_1016_j_jeconom_2019_04_012
crossref_primary_10_1257_aer_20130824
crossref_primary_10_1016_j_jeconom_2016_04_006
crossref_primary_10_3982_QE240
crossref_primary_10_1146_annurev_economics_063016_103658
crossref_primary_10_1017_S0266466615000250
crossref_primary_10_1016_j_jeconom_2025_106102
crossref_primary_10_1016_j_jeconom_2023_105571
crossref_primary_10_1016_j_jeconom_2025_106063
crossref_primary_10_1093_restud_rdy065
crossref_primary_10_1080_00036846_2022_2137456
crossref_primary_10_1080_10485252_2025_2452225
crossref_primary_10_1111_iere_12722
crossref_primary_10_1016_j_ehb_2020_100895
crossref_primary_10_1016_j_jhealeco_2022_102713
crossref_primary_10_1017_S0266466614000826
crossref_primary_10_3982_QE1776
crossref_primary_10_1111_sjos_12398
crossref_primary_10_1016_j_jeconom_2019_04_003
crossref_primary_10_7202_1026444ar
crossref_primary_10_1017_S0266466623000063
crossref_primary_10_1215_00703370_11865131
crossref_primary_10_1016_j_jpubeco_2022_104621
crossref_primary_10_1080_00036846_2020_1757030
crossref_primary_10_1111_rssb_12113
crossref_primary_10_1016_j_jeconom_2019_09_011
crossref_primary_10_1080_07350015_2014_975229
crossref_primary_10_1515_jem_2017_0007
crossref_primary_10_1016_j_jeconom_2014_05_016
crossref_primary_10_1093_geronb_gbaf057
crossref_primary_10_1111_obes_12056
ContentType Journal Article
Copyright Copyright ©2013 The Econometric Society
2013 The Econometric Society
Copyright Blackwell Publishing Ltd. Mar 2013
Copyright_xml – notice: Copyright ©2013 The Econometric Society
– notice: 2013 The Econometric Society
– notice: Copyright Blackwell Publishing Ltd. Mar 2013
DBID AAYXX
CITATION
OQ6
8BJ
FQK
JBE
DOI 10.3982/ECTA8718
DatabaseName CrossRef
ECONIS
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1468-0262
EndPage 737
ExternalDocumentID 2924261221
749555645
10_3982_ECTA8718
ECTA1315
23524295
Genre article
Feature
GroupedDBID -DZ
-ET
-~X
.L6
0R~
1OC
1OL
2AX
33P
4.4
5GY
702
7WY
8-1
85S
8FL
AABCJ
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AAOUF
AARRQ
AASGY
AAWIL
AAXLS
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABBNM
ABCUV
ABFAN
ABJNI
ABKVW
ABLJU
ABPFR
ABPQH
ABSOO
ABXSQ
ABYWD
ABYYQ
ABZIE
ACAHQ
ACBKW
ACCZN
ACHJO
ACHQT
ACMTB
ACNCT
ACPOU
ACTMH
ACUBG
ACXJH
ACXQS
ADBBV
ADEOM
ADGDI
ADKYN
ADMGS
ADMHG
ADODI
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFAIT
AFBPY
AFFNX
AFFPM
AFGKR
AFTQD
AFVYC
AFWVQ
AFXHP
AGKTX
AGLNM
AGXDD
AHAJD
AHBTC
AIDQK
AIDYY
AIHAF
AIURR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALSLI
ALUQN
ALVPJ
AMYDB
APTMU
ASMEE
ASTYK
AZVAB
BFHJK
BKOMP
BMXJE
BNVMJ
BQESF
CBXGM
CCKSF
CS3
CYVLN
DCZOG
DQDLB
DRFUL
DRSSH
DSRWC
DU5
EBS
ECEWR
EJD
EOH
F5P
GODZA
HGLYW
HQ6
IHE
IPSME
JAAYA
JAS
JBC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JPPEU
JST
K60
K6~
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSSH
MSFUL
MSSSH
MS~
MXFUL
MXSSH
MY~
N9A
NHB
OIG
P2P
P2W
ROL
RWL
RXW
SA0
SUPJJ
TAE
TN5
U5U
UHB
WBKPD
WH7
WIH
WII
WOHZO
WXSBR
XSW
ZZTAW
.Y3
0-V
29G
31~
3R3
3V.
8FI
8G5
8R4
8R5
A00
AAHHS
ABEFU
ABUWG
ABYAD
ACCFJ
ACTWD
ADMHC
ADZOD
AEEZP
AELPN
AEQDE
AFKRA
AFPWT
AFYRF
AFZJQ
AI.
AIFKG
AIWBW
AJBDE
AQUVI
ARALO
AS~
AZQEC
BENPR
BEZIV
BPHCQ
BVXVI
CAG
CCPQU
COF
DWQXO
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HGD
HVGLF
H~9
JSODD
M0C
M0T
M2O
M2R
MVM
P4E
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
Q2X
RNS
S0X
UKHRP
VH1
VQA
WHG
WYJ
YYP
ZCG
AAYXX
AFFHD
AGHNM
CITATION
O8X
PHGZM
PHGZT
PJZUB
PPXIY
PRQQA
OQ6
8BJ
FQK
JBE
ID FETCH-LOGICAL-c5035-b4d429b2806d636472775dda5cc8ae9ce46ed37f81edc4e7a6a3896ed23b79c03
IEDL.DBID DRFUL
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316631600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-9682
IngestDate Sun Sep 28 01:35:17 EDT 2025
Mon Nov 10 21:41:35 EST 2025
Sat Mar 08 16:22:40 EST 2025
Sat Nov 29 06:25:48 EST 2025
Tue Nov 18 20:51:28 EST 2025
Wed Jan 22 16:52:41 EST 2025
Thu Jul 03 21:28:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5035-b4d429b2806d636472775dda5cc8ae9ce46ed37f81edc4e7a6a3896ed23b79c03
Notes We are especially grateful to D. Chetverikov, K. Kato, Y. Luo, A. Santos, five anonymous referees, and a co‐editor for making several extremely useful suggestions that have led to substantial improvements. We thank T. Armstrong, R. Blundell, A. Chesher, F. Molinari, W. Newey, C. Redmond, N. Roys, S. Stouli, and J. Stoye for detailed discussion and suggestions, and participants at numerous seminars and conferences for their comments. This paper is a revised version of “Inference on Intersection Bounds,” which initially was presented and circulated at the University of Virginia and the Harvard/MIT econometrics seminars in December 2007, and presented at the March 2008 CEMMAP/Northwestern Conference on Inference in Partially Identified Models With Applications. We gratefully acknowledge financial support from the National Science Foundation, the Economic and Social Research Council (RES‐589‐28‐0001, RES‐000‐22‐2761), and the European Research Council (ERC‐2009‐StG‐240910‐ROMETA).
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1318850611
PQPubID 48030
PageCount 71
ParticipantIDs proquest_miscellaneous_1324954363
proquest_journals_1318850611
econis_primary_749555645
crossref_primary_10_3982_ECTA8718
crossref_citationtrail_10_3982_ECTA8718
wiley_primary_10_3982_ECTA8718_ECTA1315
jstor_primary_23524295
PublicationCentury 2000
PublicationDate March 2013
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: March 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Evanston
PublicationTitle Econometrica
PublicationYear 2013
Publisher Econometric Society
Blackwell Publishing Ltd
Publisher_xml – name: Econometric Society
– name: Blackwell Publishing Ltd
References 2007; 102
1991; 59
1984; 25
1993; 21
1982; 10
2005; 20
2008; 76
1977; 22
2008; 146
2007; 75
2003; 111
2009; 159
2009; 12
2004; 72
2010; 26
2010; 1
1982; 20
2010; 156
2007; 6
1983; 62
1984
1999; 96
2007; 2
2011; 29
2010; 78
2009; 25
2012; 80
1996; 17
2012
2011
1997; 65
2010
1997; 64
2000; 68
2009
1996
1995
2005
2011; 79
2003
2002
1989; 24
2001; 69
2009; 27
1990; 80
2012; 94
2009; 77
1997; 79
2013; 81
2008; 138
2013
2013; 172
1956; 1
1973; 1
2009; 149
1989; 17
1994; 98
References_xml – year: 2011
– year: 2009
– volume: 98
  start-page: 21
  year: 1994
  end-page: 45
  article-title: Local Invariance Principles and Their Application to Density Estimation
  publication-title: Probability Theory and Related Fields
– year: 2013
  article-title: Inference for Parameters Defined by Conditional Moment Inequalities
  publication-title: Econometrica
– year: 2005
– volume: 27
  start-page: 193
  issue: 2
  year: 2009
  end-page: 205
  article-title: Reform of Unemployment Compensation in Germany: A Nonparametric Bounds Analysis Using Register Data
  publication-title: Journal of Business & Economic Statistics
– volume: 21
  start-page: 1926
  issue: 4
  year: 1993
  end-page: 1947
  article-title: Comparing Nonparametric versus Parametric Regression Fits
  publication-title: The Annals of Statistics
– volume: 78
  start-page: 119
  issue: 1
  year: 2010
  end-page: 157
  article-title: Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection
  publication-title: Econometrica
– volume: 22
  start-page: 236
  year: 1977
  end-page: 247
  article-title: On the Error of the Gaussian Approximation for Convolutions
  publication-title: Theory of Probability and Its Applications
– volume: 111
  start-page: 1
  issue: 1
  year: 2003
  end-page: 51
  article-title: Inference With an Incomplete Model of English Auctions
  publication-title: Journal of Political Economy
– volume: 65
  start-page: 1311
  issue: 6
  year: 1997
  end-page: 1334
  article-title: Monotone Treatment Response
  publication-title: Econometrica
– volume: 94
  start-page: 659
  issue: 3
  year: 2012
  end-page: 671
  article-title: Identification With Imperfect Instruments
  publication-title: Review of Economics and Statistics
– volume: 96
  start-page: 4730
  year: 1999
  end-page: 4734
  article-title: Local Instrumental Variables and Latent Variable Models for Identifying and Bounding Treatment Effects
  publication-title: Proceedings of the National Academy of Sciences
– volume: 80
  start-page: 2805
  issue: 6
  year: 2012
  end-page: 2826
  article-title: Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure
  publication-title: Econometrica
– volume: 138
  start-page: 2786
  issue: 9
  year: 2008
  end-page: 2807
  article-title: Inference for Identifiable Parameters in Partially Identified Econometric Models
  publication-title: Journal of Statistical Planning and Inference
– volume: 17
  start-page: 266
  issue: 1
  year: 1989
  end-page: 291
  article-title: Strong Approximation for Multivariate Empirical and Related Processes, via KMT Constructions
  publication-title: The Annals of Probability
– volume: 20
  start-page: 105
  year: 1982
  end-page: 134
  article-title: Consistent Model Specification Tests
  publication-title: Journal of Econometrics
– volume: 75
  start-page: 323
  issue: 2
  year: 2007
  end-page: 363
  article-title: Changes in the Distribution of Male and Female Wages Accounting for Unemployment Composition Using Bounds
  publication-title: Econometrica
– volume: 156
  start-page: 408
  issue: 2
  year: 2010
  end-page: 425
  article-title: EL Inference for Partially Identified Models: Large Deviations Optimality and Bootstrap Validity
  publication-title: Journal of Econometrics
– volume: 1
  start-page: 255
  issue: 2
  year: 2010
  end-page: 277
  article-title: Set Identification and Sensitivity Analysis With Tobin Regressors
  publication-title: Quantitative Economics
– volume: 149
  start-page: 191
  year: 2009
  end-page: 208
  article-title: Estimating Distributions of Potential Outcomes Using Local Instrumental Variables With an Application to Changes in College Enrollment and Wage Inequality
  publication-title: Journal of Econometrics
– volume: 72
  start-page: 1845
  issue: 6
  year: 2004
  end-page: 1857
  article-title: Confidence Intervals for Partially Identified Parameters
  publication-title: Econometrica
– volume: 77
  start-page: 1299
  issue: 4
  year: 2009
  end-page: 1315
  article-title: More on Confidence Regions for Partially Identified Parameters
  publication-title: Econometrica
– volume: 146
  start-page: 107
  year: 2008
  end-page: 117
  article-title: Confidence Sets for Partially Identified Parameters that Satisfy a Finite Number of Moment Inequalities
  publication-title: Journal of Econometrics
– start-page: 254
  year: 1995
  end-page: 275
– volume: 26
  start-page: 1529
  year: 2010
  end-page: 1564
  article-title: Uniform Bahadur Representation for Local Polynomial Estimates of m‐Regression and Its Application to the Additive Model
  publication-title: Econometric Theory
– volume: 75
  start-page: 1243
  issue: 5
  year: 2007
  end-page: 1284
  article-title: Estimation and Confidence Regions for Parameter Sets in Econometric Models
  publication-title: Econometrica
– volume: 12
  start-page: S200
  issue: s1
  year: 2009
  end-page: S216
  article-title: More on Monotone Instrumental Variables
  publication-title: Econometrics Journal
– volume: 79
  start-page: 949
  issue: 3
  year: 2011
  end-page: 955
  article-title: Partial Identification in Triangular Systems of Equations With Binary Dependent Variables
  publication-title: Econometrica
– volume: 78
  start-page: 575
  issue: 2
  year: 2010
  end-page: 601
  article-title: Instrumental Variable Models for Discrete Outcomes
  publication-title: Econometrica
– volume: 172
  start-page: 14
  year: 2013
  end-page: 32
  article-title: Testing Functional Inequalities
  publication-title: Journal of Econometrics
– volume: 1
  start-page: 261
  year: 1956
  end-page: 290
  article-title: Limit Theorems for Stochastic Processes
  publication-title: Theory of Probability and Its Applications
– volume: 24
  start-page: 343
  issue: 3
  year: 1989
  end-page: 360
  article-title: Anatomy of the Selection Problem
  publication-title: The Journal of Human Resources
– volume: 79
  start-page: 147
  year: 1997
  end-page: 168
  article-title: Convergence Rates and Asymptotic Normality for Series Estimators
  publication-title: Journal of Econometrics
– volume: 25
  start-page: 303
  issue: 3
  year: 1984
  end-page: 325
  article-title: Least Absolute Deviations Estimation for the Censored Regression Model
  publication-title: Journal of Econometrics
– volume: 25
  start-page: 669
  year: 2009
  end-page: 709
  article-title: Validity of Subsampling and Plug‐In Asymptotic Inference for Parameters Defined by Moment Inequalities
  publication-title: Econometric Theory
– volume: 62
  start-page: 509
  year: 1983
  end-page: 552
  article-title: Invariance Principles for Sums of Banach Space Valued Random Elements and Empirical Processes
  publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete
– year: 2003
– volume: 78
  start-page: 735
  issue: 2
  year: 2010
  end-page: 753
  article-title: Bootstrap Inference for Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set
  publication-title: Econometrica
– volume: 102
  start-page: 432
  issue: 478
  year: 2007
  end-page: 441
  article-title: Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors
  publication-title: Journal of the American Statistical Association
– volume: 29
  start-page: 61
  issue: 1
  year: 2011
  end-page: 72
  article-title: Estimating Income Poverty in the Presence of Missing Data and Measurement Error Problems
  publication-title: Journal of Business & Economic Statistics
– year: 1996
– volume: 12
  start-page: S172
  issue: s1
  year: 2009
  end-page: S199
  article-title: Invalidity of the Bootstrap and m Out of n Bootstrap for Interval Endpoints Defined by Moment Inequalities
  publication-title: Econometrics Journal
– volume: 10
  start-page: 1040
  issue: 4
  year: 1982
  end-page: 1053
  article-title: Optimal Global Rates of Convergence for Nonparametric Regression
  publication-title: The Annals of Statistics
– volume: 17
  start-page: 571
  year: 1996
  end-page: 599
  article-title: Multivariate Local Polynomial Regression for Time Series: Uniform Strong Consistency and Rates
  publication-title: Journal of Time Series Analysis
– volume: 78
  start-page: 169
  issue: 1
  year: 2010
  end-page: 211
  article-title: Inference for the Identified Set in Partially Identified Econometric Models
  publication-title: Econometrica
– volume: 6
  start-page: 5549
  year: 2007
  end-page: 5632
– volume: 159
  start-page: 186
  issue: 2
  year: 2009
  end-page: 196
  article-title: A Test of Non‐Identifying Restrictions and Confidence Regions for Partially Identified Parameters
  publication-title: Journal of Econometrics
– year: 2010
– year: 2012
– volume: 69
  start-page: 599
  issue: 3
  year: 2001
  end-page: 631
  article-title: An Adaptive, Rate‐Optimal Test of a Parametric Mean‐Regression Model Against a Nonparametric Alternative
  publication-title: Econometrica
– volume: 81
  issue: Econometrica Supplementary Material
  year: 2013
– volume: 80
  start-page: 1769
  issue: 4
  year: 2012
  end-page: 1790
  article-title: Impossibility Results for Nondifferentiable Functionals
  publication-title: Econometrica
– year: 1984
– volume: 80
  start-page: 319
  issue: 2
  year: 1990
  end-page: 323
  article-title: Nonparametric Bounds on Treatment Effects
  publication-title: American Economic Review
– year: 2002
– volume: 1
  start-page: 1071
  issue: 6
  year: 1973
  end-page: 1095
  article-title: On Some Global Measures of the Deviations of Density Function Estimates
  publication-title: The Annals of Statistics
– volume: 64
  start-page: 487
  year: 1997
  end-page: 537
  article-title: Making the Most Out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts
  publication-title: Review of Economic Studies
– volume: 68
  start-page: 997
  issue: 4
  year: 2000
  end-page: 1010
  article-title: Monotone Instrumental Variables: With an Application to the Returns to Schooling
  publication-title: Econometrica
– volume: 59
  start-page: 307
  issue: 2
  year: 1991
  end-page: 345
  article-title: Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models
  publication-title: Econometrica
– volume: 20
  start-page: 771
  year: 2005
  end-page: 795
  article-title: Nonparametric Bounds on the Returns to Language Skills
  publication-title: Journal of Applied Econometrics
– volume: 76
  start-page: 763
  issue: 4
  year: 2008
  end-page: 814
  article-title: Asymptotic Properties for a Class of Partially Identified Models
  publication-title: Econometrica
– volume: 2
  start-page: 46
  year: 2007
  end-page: 85
SSID ssj0005005
Score 2.548354
Snippet We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or...
SourceID proquest
econis
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 667
SubjectTerms adaptive moment selection
anti‐concentration inequalities
Approximation
Bias
Bound analysis
concentration inequalities
conditional moments
Critical values
Econometrics
Economic analysis
Economic models
Empirical tests
Estimation bias
Estimation methods
Estimators
Induktive Statistik
Inequality
Inference
infinite‐dimensional constraints
Interval estimators
Linear programming
Mathematical functions
Mathematical independent variables
Mathematische Optimierung
moderate deviations
non‐Donsker empirical process methods
partial identification
Probabilities
Schätztheorie
Series convergence
Statistical inference
strong approximation
Studies
Theorie
Title INTERSECTION BOUNDS: ESTIMATION AND INFERENCE
URI https://www.jstor.org/stable/23524295
https://onlinelibrary.wiley.com/doi/abs/10.3982%2FECTA8718
http://www.econis.eu/PPNSET?PPN=749555645
https://www.proquest.com/docview/1318850611
https://www.proquest.com/docview/1324954363
Volume 81
WOSCitedRecordID wos000316631600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0262
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005005
  issn: 0012-9682
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90G-iL37L5RQXBp2Kbtknq29QNBRGRDfZWsiQDQaqsm3-_d-mHCgqCb6W5tLlcLrlLLr8DOAut1crK1DfCcj_mSvipc1xFoNlsxrnUxiWbEA8PcjJJH6uoSroLU-JDNBtupBluviYFV1OXhSRKJYGGDq5HfbT25Sq0GQ7buAXtm6fh-P4zwCMIqvwFzE-5ZCX0LNW-qOt-W4w65IE-F3Vg4jeT86vh6lae4eZ_2rwFG5W96fXLAbINKzbfgbX6OnKxC77bEyxcRFbuXVGWpeLSG6Dml5caPZUb766-FrgH4-FgdH3rVzkUfJ0QGuU0NrjiTOn81HCHFS9EYoxKtJbKptrG3JpIzGRojY6tUFyhCYPvWDQVqQ6ifWjlr7ntgsc4MmGlVjrU8UwFKtI65YbhFICCNXEPzuvOzHQFME55Ll4ydDSoA7Ka_R6cNpRvJajGDzTdUh4NhUBfLiHwmx7sOwk1JQytSOQSC45qkWWVKhZZiLMWwfKFIf62KUYlopMRldvXJdFQCu444hEy4QT4a7vcA34zOfgz5SGsM5dEgyLXjqC1mC_tMXT0--K5mJ9Uw_YDqiLrcw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB5qFfTFu1jPFQSfFvdMsvrk0VKxFpEKvi1pkkJBtuK2_n5nsocKCoJvy2aym8lkkpkk8w3AiW-MkkYkruaGuRGT3E2s48o9FYzHjAmlbbIJPhiI5-fkoQEXVSxMgQ9Rb7iRZtj5mhScNqRJy8NEEGpo53p4iea-WIDFCEdR3ITFm8fuU__zhofnlQkMAjdhIiiwZ6n2WVX322q0RC7oJK9uJn6zOb9arnbp6a79q9HrsFpanM5lMUQ2oGGyTViuApLzLXDtrmBu72RlzhXlWcrPnQ7qfhHW6MhMO7dVYOA2PHU7w-ueW2ZRcFVMeJSjSOOaM6ITVM0sWjznsdYyVkpIkygTMaNDPha-0SoyXDKJRgy-C8IRT5QXtqCZTTOzA07AkAkjlFS-isbSk6FSCdMBTgIoWh214bTqzVSVEOOU6eIlRVeDOiCt2G_DcU35WsBq_ECzUwikpuDozcUEf9OGlhVRXRKgHYlcYsF-JbO0VMY89XHeImA-38ff1sWoRnQ2IjMznRMNJeGOQhYiE1aCv7bLPuA3490_Ux7Bcm9430_7t4O7PVgJbEoNuse2D83Z29wcwJJ6n03yt8NyDH8A0T3vYw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68UF-8xfWsIPhU7JlDnzx2cXFZRBR8K9kkBUG6i1V_vzPpoYKC4FtpJm0mk0lmksk3AEehtVpZIX3DLfMTprgvnePKAx3lOWNCG5dsgg-H4vFR3k7BWXMXpsKHaDfcSDPcfE0KbicmJy2PpSDU0O7l_Tma-2IaZpNUMtTK2au73sPgM8IjCOoEBpEvmYgq7FmqfdLU_bYazZEL-lQ2kYnfbM6vlqtbenrL_2r0CizVFqd3Xg2RVZiyxRosNBeSy3Xw3a5g6WKyCu-C8iyVp14Xdb-61uipwnj95mLgBjz0uveX136dRcHXKeFRjhKDa86ITlANc2jxnKfGqFRroazUNmHWxDwXoTU6sVwxhUYMvoviEZc6iDdhphgXdgu8iCETVmilQ53kKlCx1pKZCCcBFK1JOnDc9Gama4hxynTxnKGrQR2QNex34LClnFSwGj_QbFUCaSk4enMpwd90YNOJqC2J0I5ELrFgt5FZVitjmYU4bxEwXxjib9tiVCM6G1GFHb8RDSXhTmIWIxNOgr-2yz3gN9PtP1MewPztVS8b9Ic3O7AYuYwaFMa2CzOvL292D-b0--tT-bJfD-EPc5Hu3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intersection+Bounds%3A+Estimation+and+Inference&rft.jtitle=Econometrica&rft.au=Chernozhukov%2C+Victor&rft.au=Lee%2C+Sokbae&rft.au=Rosen%2C+Adam+M&rft.date=2013-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0012-9682&rft.eissn=1468-0262&rft.volume=81&rft.issue=2&rft.spage=667&rft_id=info:doi/10.3982%2FECTA8718&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2924261221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-9682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-9682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-9682&client=summon