A Hybrid Multi-Objective Evolutionary Algorithm for Optimal Groundwater Management under Variable Density Conditions

In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability conte...

Full description

Saved in:
Bibliographic Details
Published in:Acta geologica Sinica (Beijing) Vol. 86; no. 1; pp. 246 - 255
Main Authors: Yun, YANG, Jianfeng, WU, Xiaomin, SUN, Jin, LIN, Jichun, WU
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01.02.2012
Wiley Subscription Services, Inc
Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing,Jiangsu 210093, China%Nanfing Hydraulic Research Institute, Nanfing, Jiangsu 210029, China
Edition:English ed.
Subjects:
ISSN:1000-9515, 1755-6724
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
AbstractList In this paper, a new hybrid multi‐objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density‐dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto‐optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi‐objective design of variable‐density groundwater resources.
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources. [PUBLICATION ABSTRACT]
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
: In this paper, a new hybrid multi‐objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density‐dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto‐optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi‐objective design of variable‐density groundwater resources.
P641.8; In this paper,a new hybrid multi-objective evolutionary algorithm (MOEA),the niched Pareto tabu search combined with a genetic algorithm (NPTSGA),is proposed for the management of groundwater resources under variable density conditions.Relatively few MOEAs can possess global search ability contenting with intensified search in a local area.Moreover,the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size.The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA,the niched Pareto tabu search (NPTS),which helps to alleviate both of the above difficulties.Here,the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population.Furthermore,the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator,SEAWAT,is developed and its performance is evaluated through a synthetic seawater intrusion management problem.Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives.A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
Author Xiaomin, SUN
Jin, LIN
Jianfeng, WU
Yun, YANG
Jichun, WU
AuthorAffiliation Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210029, China
AuthorAffiliation_xml – name: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing,Jiangsu 210093, China%Nanfing Hydraulic Research Institute, Nanfing, Jiangsu 210029, China
Author_xml – sequence: 1
  givenname: YANG
  surname: Yun
  fullname: Yun, YANG
  organization: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
– sequence: 2
  givenname: WU
  surname: Jianfeng
  fullname: Jianfeng, WU
  email: jfwu@nju.edu.cn
  organization: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
– sequence: 3
  givenname: SUN
  surname: Xiaomin
  fullname: Xiaomin, SUN
  organization: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
– sequence: 4
  givenname: LIN
  surname: Jin
  fullname: Jin, LIN
  organization: Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210029, China
– sequence: 5
  givenname: WU
  surname: Jichun
  fullname: Jichun, WU
  organization: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
BookMark eNqNkcFv0zAUxiM0JLbB_2DEAS4pdhwnzgGkqtvSSRtFAraj9ZI4nUtqd7azNfz1c2jpYRfmi5-ef9_np_edREfaaBlFiOAJCefzakJyxuIsT9JJgkkywThL2GT7Kjo-PByFGmMcF4ywN9GJc6sAsYyw48hP0XyorGrQdd95FS-qlay9epDo_MF0vVdGgx3QtFsaq_zdGrXGosXGqzV0qLSm180jeGnRNWhYyrXUHoVeaNyAVVB1Ep1J7ZQf0MzoRo2G7m30uoXOyXf7-zT6dXH-czaPrxbl5Wx6FdcMUxYnVUs5KXgKHDiWXFa0YqylwJOqkm2T8CyHpgCayII2AK1sUwxZ1uRZldOspqfRx53vI-gW9FKsTG91-FE0f7aVkOO-MMEJDuSnHbmx5r6Xzou1crXsOtDS9E6QPHAUY57_H01pkWcspyygH56hhwEIS1OeMkx4oL7uqNoa56xsRa08jIvyFlQnCBZj0mIlxkDFGKgYJxd_kxbbYMCfGWxsyMcOL5F-2W9IdXJ4sU5MZ-WPUAV9vNMr5-X2oAf7O4hozsTtt1J8Jxfz2U15K8blvd-Pemf08l6FTP5pUoJTQpKCPgEG6d0e
CitedBy_id crossref_primary_10_1007_s12665_016_5606_5
crossref_primary_10_1061__ASCE_IR_1943_4774_0000689
crossref_primary_10_1007_s10040_021_02383_3
crossref_primary_10_1016_j_jenvman_2021_111964
crossref_primary_10_1016_j_jhydrol_2013_10_042
crossref_primary_10_1007_s11356_020_08367_2
crossref_primary_10_1007_s10040_020_02219_6
crossref_primary_10_1007_s11769_016_0812_3
crossref_primary_10_1016_j_ecolind_2014_09_011
Cites_doi 10.1023/A:1022863019997
10.1080/03052159908941394
10.1061/(ASCE)0733-9496(1999)125:2(76)
10.1109/59.780892
10.1109/SCCC.2000.890386
10.1029/2005WR004221
10.1002/nme.1455
10.1016/j.jhydrol.2003.11.025
10.1016/S0309-1708(00)00069-5
10.3133/ofr01434
10.1162/106365602760234108
10.1061/(ASCE)HE.1943-5584.0000097
10.1111/j.1755-6724.2011.00488.x
10.1061/(ASCE)HE.1943-5584.0000155
10.1007/3-540-44719-9_24
10.1109/CCIE.2010.71
10.1007/3-540-44719-9_27
10.3133/ofr96486
ClassificationCodes P641.8
ContentType Journal Article
Copyright 2012 Geological Society of China
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2012 Geological Society of China
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
BSCLL
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1111/j.1755-6724.2012.00625.x
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Istex
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Technology Research Database
Civil Engineering Abstracts

Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Geology
DocumentTitleAlternate A Hybrid Multi-Objective Evolutionary Algorithm for Optimal Groundwater Management under Variable Density Conditions
EISSN 1755-6724
Edition English ed.
EndPage 255
ExternalDocumentID dzxb_e201201020
3371366971
10_1111_j_1755_6724_2012_00625_x
ACGS625
ark_67375_WNG_P1FHCVGW_7
41041129
Genre article
GrantInformation_xml – fundername: This study is jointly funded by the National Basic Research Program of China.the 973 Program; the National Natural Science Foundation of China(41072175; 40902069; 40725010)
  funderid: (2010CB428803); the National Natural Science Foundation of China(41072175; 40902069; 40725010)
GroupedDBID -01
-0A
-SA
-S~
.3N
.GA
05W
0R~
1L6
1OB
1OC
23M
2B.
2C.
2RA
33P
3SF
4.4
50Y
50Z
52M
52O
52T
52U
52W
5GY
5HH
5VR
5XA
5XB
5XL
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
92E
92I
92L
92M
92Q
930
93N
9D9
9DA
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
COF
CQIGP
CW9
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F00
F01
F04
F21
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
JUIAU
LATKE
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PALCI
Q--
Q-0
Q.N
QB0
R-A
R.K
RJQFR
RT1
RWI
RX1
S..
SAMSI
SUPJJ
T8Q
TCJ
TGP
U1F
U1G
U5A
U5K
UB1
W8V
W94
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XV2
ZZTAW
~02
~IA
~LI
~WA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABJIA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAXDM
AAYXX
CITATION
O8X
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
4A8
PSX
ID FETCH-LOGICAL-c5035-2bf381984a8a80e8eb3b55f3a82bbefd2867ad9a32e93daafef40a66d76b736c3
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300871900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1000-9515
IngestDate Thu May 29 04:00:33 EDT 2025
Thu Sep 04 15:03:19 EDT 2025
Thu Sep 04 18:44:50 EDT 2025
Sun Jul 13 05:17:37 EDT 2025
Sat Nov 29 05:29:27 EST 2025
Tue Nov 18 21:42:07 EST 2025
Wed Jan 22 16:25:13 EST 2025
Sun Sep 21 06:17:48 EDT 2025
Wed Feb 14 10:47:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genetic algorithm
multi-objective optimization
niched Pareto tabu search combined with genetic algorithm
niched Pareto tabu search
seawater intrusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5035-2bf381984a8a80e8eb3b55f3a82bbefd2867ad9a32e93daafef40a66d76b736c3
Notes seawater intrusion, multi-objective optimization, niched Pareto tabu search combined with genetic algorithm, niched Pareto tabu search, genetic algorithm
11-2001/P
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
ark:/67375/WNG-P1FHCVGW-7
istex:12946AE45380E67EDFEAE6991DFDECB4308FD459
ArticleID:ACGS625
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1544845018
PQPubID 23500
PageCount 10
ParticipantIDs wanfang_journals_dzxb_e201201020
proquest_miscellaneous_1701030087
proquest_miscellaneous_1439765735
proquest_journals_1544845018
crossref_citationtrail_10_1111_j_1755_6724_2012_00625_x
crossref_primary_10_1111_j_1755_6724_2012_00625_x
wiley_primary_10_1111_j_1755_6724_2012_00625_x_ACGS625
istex_primary_ark_67375_WNG_P1FHCVGW_7
chongqing_primary_41041129
PublicationCentury 2000
PublicationDate February 2012
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: February 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Richmond
PublicationTitle Acta geologica Sinica (Beijing)
PublicationTitleAlternate Acta Geologica Sinica
PublicationTitle_FL Acta Geologica Sinica
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing,Jiangsu 210093, China%Nanfing Hydraulic Research Institute, Nanfing, Jiangsu 210029, China
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing,Jiangsu 210093, China%Nanfing Hydraulic Research Institute, Nanfing, Jiangsu 210029, China
References Yao Jinmei, Zhou Xun and Xie Chaohai, 2011. On the Geochemical processes of seawater intrusion in the western section of the Haicheng district of Beihai, Guangxi. Acta Geologica Sinica, 85(1): 136-144 (in Chinese with English abstract).
Kalangutkar, N.G., Iyer, S.D., and IlanGovan, D., 2011. Physical properties, morphology and petrological characteristics of pumices from the central Indian ocean basin. Acta Geologica Sinica (English Edition), 85(4): 826-839.
Mantawy, A.H., Abdel-Magid, Y.L., and Selim, S.Z., 1999. Integrating genetic algorithms, tabu search and simulated annealing for the unit commitment problem. IEEE Trans. Power System, 14(3): 829-836.
Dhar, A., and Datta, B., 2009a. Saltwater intrusion management of coastal aquifers. I: linked simulation-optimization. J. Hydrol. Eng., 14(12): 1263-1272.
Dhar, A., and Datta, B., 2009b. Saltwater intrusion management of coastal aquifers. II: Operation uncertainty and monitoring. J. Hydrol. Eng., 14(12): 1341-1350.
Baykasoglu, A., 2006. Applying multiple objective tabu search to continuous optimization problems with a simple neighborhood strategy. Int. J. Numer. Meth. Eng., 65: 406-424.
Baykasoglu, A., Owen, S., and Gindy, N.N., 1999. A taboo search based approach to find the Pareto optimal set in multiple objective optimization. Eng. Optimiz., 31(6): 731-748.
Lin Jin, Zheng Chunmiao, Wu Jianfeng and Chien, C.C., 2007. Ground water simulation optimization model based on genetic algorithm under variable density conditions. J. Hydraul. Eng., 38(10): 1236-1244 (in Chinese with English abstract).
Park, C.H., and Aral, M.M., 2004. Multi-objective optimization of pumping rates and well placement in coastal aquifers. J. Hydrol., 290: 80-99.
Cai, X., McKinney, D.C., and Lasdon, L., 2001. Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Adv. Water Resour., 24: 667-676.
Espinoza, F., and Minsker, B., 2006. Development of the enhanced self-adaptive hybrid genetic algorithm (e-SAHGA). Water Resour., 42, W08501.
Das, A., and Datta, B., 1999. Development of multiobjective management models for coastal aquifers. J. Water Resour. Plan. Manage., 125(2): 76-87.
Zheng, C., and Wang, P.P., 2003. MGO: A Modular Groundwater Optimizer Incorporating MODFLOW/MT3DMS, Documentation and User's Guide. University of Alabama and Groundwater Systems Research Ltd., Tuscaloosa , AL , USA .
Laumanns, M., Thiele, L., Deb, K., and Zitzler, E., 2006. Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput., 10(3): 263-282.
Tan, K.C., Khor, E.F., Lee, T.H., and Yang, Y.J. 2003. A tabu-based exploratory evolutionary algorithm for multiobjective optimization. Artif. Intell. Rev., 19(3): 231-260.
2006; 42
2009b; 14
2001
2000
2004; 290
2006; 65
2006; 10
2010
1999; 14
2009
2011; 85
1996
1995
1999; 31
1999; 125
2009a; 14
2003; 19
2003
2002
2001; 1993
2001; 24
2007; 38
1999
Zheng C. (e_1_2_1_27_1) 2003
e_1_2_1_20_1
Goel T. (e_1_2_1_10_1) 2002
e_1_2_1_21_1
e_1_2_1_22_1
Mahfoud S.W. (e_1_2_1_19_1) 1995
e_1_2_1_25_1
e_1_2_1_26_1
Jin Lin (e_1_2_1_18_1) 2007; 38
Kurahashi S. (e_1_2_1_15_1) 2000
e_1_2_1_7_1
e_1_2_1_8_1
Yang Y. (e_1_2_1_24_1) 2009
e_1_2_1_5_1
e_1_2_1_6_1
Jinmei Yao (e_1_2_1_23_1) 2011; 85
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_9_1
References_xml – reference: Dhar, A., and Datta, B., 2009b. Saltwater intrusion management of coastal aquifers. II: Operation uncertainty and monitoring. J. Hydrol. Eng., 14(12): 1341-1350.
– reference: Park, C.H., and Aral, M.M., 2004. Multi-objective optimization of pumping rates and well placement in coastal aquifers. J. Hydrol., 290: 80-99.
– reference: Espinoza, F., and Minsker, B., 2006. Development of the enhanced self-adaptive hybrid genetic algorithm (e-SAHGA). Water Resour., 42, W08501.
– reference: Baykasoglu, A., Owen, S., and Gindy, N.N., 1999. A taboo search based approach to find the Pareto optimal set in multiple objective optimization. Eng. Optimiz., 31(6): 731-748.
– reference: Laumanns, M., Thiele, L., Deb, K., and Zitzler, E., 2006. Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput., 10(3): 263-282.
– reference: Mantawy, A.H., Abdel-Magid, Y.L., and Selim, S.Z., 1999. Integrating genetic algorithms, tabu search and simulated annealing for the unit commitment problem. IEEE Trans. Power System, 14(3): 829-836.
– reference: Cai, X., McKinney, D.C., and Lasdon, L., 2001. Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Adv. Water Resour., 24: 667-676.
– reference: Das, A., and Datta, B., 1999. Development of multiobjective management models for coastal aquifers. J. Water Resour. Plan. Manage., 125(2): 76-87.
– reference: Baykasoglu, A., 2006. Applying multiple objective tabu search to continuous optimization problems with a simple neighborhood strategy. Int. J. Numer. Meth. Eng., 65: 406-424.
– reference: Yao Jinmei, Zhou Xun and Xie Chaohai, 2011. On the Geochemical processes of seawater intrusion in the western section of the Haicheng district of Beihai, Guangxi. Acta Geologica Sinica, 85(1): 136-144 (in Chinese with English abstract).
– reference: Zheng, C., and Wang, P.P., 2003. MGO: A Modular Groundwater Optimizer Incorporating MODFLOW/MT3DMS, Documentation and User's Guide. University of Alabama and Groundwater Systems Research Ltd., Tuscaloosa , AL , USA .
– reference: Lin Jin, Zheng Chunmiao, Wu Jianfeng and Chien, C.C., 2007. Ground water simulation optimization model based on genetic algorithm under variable density conditions. J. Hydraul. Eng., 38(10): 1236-1244 (in Chinese with English abstract).
– reference: Tan, K.C., Khor, E.F., Lee, T.H., and Yang, Y.J. 2003. A tabu-based exploratory evolutionary algorithm for multiobjective optimization. Artif. Intell. Rev., 19(3): 231-260.
– reference: Dhar, A., and Datta, B., 2009a. Saltwater intrusion management of coastal aquifers. I: linked simulation-optimization. J. Hydrol. Eng., 14(12): 1263-1272.
– reference: Kalangutkar, N.G., Iyer, S.D., and IlanGovan, D., 2011. Physical properties, morphology and petrological characteristics of pumices from the central Indian ocean basin. Acta Geologica Sinica (English Edition), 85(4): 826-839.
– volume: 24
  start-page: 667
  year: 2001
  end-page: 676
  article-title: Solving nonlinear water management models using a combined genetic algorithm and linear programming approach
  publication-title: Adv. Water Resour.
– volume: 65
  start-page: 406
  year: 2006
  end-page: 424
  article-title: Applying multiple objective tabu search to continuous optimization problems with a simple neighborhood strategy
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 42
  start-page: W08501
  year: 2006
  article-title: Development of the enhanced self‐adaptive hybrid genetic algorithm (e‐SAHGA)
  publication-title: Water Resour.
– volume: 38
  start-page: 1236
  issue: 10
  year: 2007
  end-page: 1244
  article-title: Ground water simulation optimization model based on genetic algorithm under variable density conditions
  publication-title: J. Hydraul. Eng.
– volume: 85
  start-page: 136
  issue: 1
  year: 2011
  end-page: 144
  article-title: On the Geochemical processes of seawater intrusion in the western section of the Haicheng district of Beihai, Guangxi
  publication-title: Acta Geologica Sinica
– volume: 31
  start-page: 731
  issue: 6
  year: 1999
  end-page: 748
  article-title: A taboo search based approach to find the Pareto optimal set in multiple objective optimization
  publication-title: Eng. Optimiz.
– start-page: 385
  year: 2001
  end-page: 399
– year: 2003
– year: 1996
– volume: 14
  start-page: 1263
  issue: 12
  year: 2009a
  end-page: 1272
  article-title: Saltwater intrusion management of coastal aquifers. I: linked simulation‐optimization
  publication-title: J. Hydrol. Eng.
– volume: 1993
  start-page: 344
  year: 2001
  end-page: 358
– start-page: 251
  year: 2010
  end-page: 254
– start-page: 103
  year: 2009
  end-page: 106
– volume: 290
  start-page: 80
  year: 2004
  end-page: 99
  article-title: Multi‐objective optimization of pumping rates and well placement in coastal aquifers
  publication-title: J. Hydrol.
– volume: 85
  start-page: 826
  issue: 4
  year: 2011
  end-page: 839
  article-title: Physical properties, morphology and petrological characteristics of pumices from the central Indian ocean basin
  publication-title: Acta Geologica Sinica (English Edition)
– start-page: 188
  year: 2002
  end-page: 192
– start-page: 7
  year: 2000
  end-page: 13
– volume: 10
  start-page: 263
  issue: 3
  year: 2006
  end-page: 282
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
– volume: 125
  start-page: 76
  issue: 2
  year: 1999
  end-page: 87
  article-title: Development of multiobjective management models for coastal aquifers
  publication-title: J. Water Resour. Plan. Manage.
– volume: 14
  start-page: 829
  issue: 3
  year: 1999
  end-page: 836
  article-title: Integrating genetic algorithms, tabu search and simulated annealing for the unit commitment problem
  publication-title: IEEE Trans. Power System
– year: 2002
– volume: 14
  start-page: 1341
  issue: 12
  year: 2009b
  end-page: 1350
  article-title: Saltwater intrusion management of coastal aquifers. II: Operation uncertainty and monitoring
  publication-title: J. Hydrol. Eng.
– start-page: 136
  year: 1995
  end-page: 143
– start-page: 291
  year: 2000
  end-page: 298
– volume: 19
  start-page: 231
  issue: 3
  year: 2003
  end-page: 260
  article-title: A tabu‐based exploratory evolutionary algorithm for multiobjective optimization
  publication-title: Artif. Intell. Rev.
– year: 1999
– ident: e_1_2_1_22_1
  doi: 10.1023/A:1022863019997
– volume: 85
  start-page: 136
  issue: 1
  year: 2011
  ident: e_1_2_1_23_1
  article-title: On the Geochemical processes of seawater intrusion in the western section of the Haicheng district of Beihai, Guangxi
  publication-title: Acta Geologica Sinica
– ident: e_1_2_1_3_1
  doi: 10.1080/03052159908941394
– ident: e_1_2_1_5_1
  doi: 10.1061/(ASCE)0733-9496(1999)125:2(76)
– ident: e_1_2_1_20_1
  doi: 10.1109/59.780892
– ident: e_1_2_1_17_1
  doi: 10.1109/SCCC.2000.890386
– ident: e_1_2_1_9_1
  doi: 10.1029/2005WR004221
– ident: e_1_2_1_2_1
  doi: 10.1002/nme.1455
– ident: e_1_2_1_26_1
– ident: e_1_2_1_21_1
  doi: 10.1016/j.jhydrol.2003.11.025
– start-page: 291
  volume-title: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '2000)
  year: 2000
  ident: e_1_2_1_15_1
– ident: e_1_2_1_4_1
  doi: 10.1016/S0309-1708(00)00069-5
– start-page: 188
  volume-title: Proceedings of the 4th Asia‐Pacific Conference on Simulated Evolution and Learning (SEAL '02)
  year: 2002
  ident: e_1_2_1_10_1
– ident: e_1_2_1_11_1
  doi: 10.3133/ofr01434
– ident: e_1_2_1_16_1
  doi: 10.1162/106365602760234108
– ident: e_1_2_1_7_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000097
– ident: e_1_2_1_13_1
  doi: 10.1111/j.1755-6724.2011.00488.x
– start-page: 103
  volume-title: Proceedings Calibration and Reliability in Groundwater Modeling “Management Groundwater and the Environment”
  year: 2009
  ident: e_1_2_1_24_1
– ident: e_1_2_1_8_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000155
– ident: e_1_2_1_14_1
  doi: 10.1007/3-540-44719-9_24
– volume: 38
  start-page: 1236
  issue: 10
  year: 2007
  ident: e_1_2_1_18_1
  article-title: Ground water simulation optimization model based on genetic algorithm under variable density conditions
  publication-title: J. Hydraul. Eng.
– ident: e_1_2_1_25_1
  doi: 10.1109/CCIE.2010.71
– volume-title: MGO: A Modular Groundwater Optimizer Incorporating MODFLOW/MT3DMS, Documentation and User's Guide
  year: 2003
  ident: e_1_2_1_27_1
– ident: e_1_2_1_6_1
  doi: 10.1007/3-540-44719-9_27
– start-page: 136
  volume-title: Proceedings of the Sixth International Conference on Genetic Algorithms
  year: 1995
  ident: e_1_2_1_19_1
– ident: e_1_2_1_12_1
  doi: 10.3133/ofr96486
SSID ssj0065615
Score 1.9613757
Snippet In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is...
: In this paper, a new hybrid multi‐objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is...
In this paper, a new hybrid multi‐objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is...
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is...
P641.8; In this paper,a new hybrid multi-objective evolutionary algorithm (MOEA),the niched Pareto tabu search combined with a genetic algorithm (NPTSGA),is...
SourceID wanfang
proquest
crossref
wiley
istex
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 246
SubjectTerms Algorithms
Coastal aquifers
Density
Evolutionary algorithms
genetic algorithm
Genetic algorithms
Groundwater
Groundwater flow
Groundwater management
Heuristic
multi-objective optimization
niched Pareto tabu search
niched Pareto tabu search combined with genetic algorithm
Optimization
Pareto optimality
Saline water intrusion
Searching
Seawater
seawater intrusion
Solute transport
Tabu search
Water resources
优化
全局搜索能力
地下水管理
地下水资源管理
多目标进化算法
度条件
混合
禁忌搜索
Title A Hybrid Multi-Objective Evolutionary Algorithm for Optimal Groundwater Management under Variable Density Conditions
URI http://lib.cqvip.com/qk/86253X/201201/41041129.html
https://api.istex.fr/ark:/67375/WNG-P1FHCVGW-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1755-6724.2012.00625.x
https://www.proquest.com/docview/1544845018
https://www.proquest.com/docview/1439765735
https://www.proquest.com/docview/1701030087
https://d.wanfangdata.com.cn/periodical/dzxb-e201201020
Volume 86
WOSCitedRecordID wos000300871900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1755-6724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065615
  issn: 1000-9515
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQQyUuvBFbCjIS4rZoX15vjlHaJIcqrYA-bpa9tttCu9tu0jThxE_gN_JLmPFutg1CgBC3KPEja8-Mv5md-UzIGxPrHGB17mujwUHhGfNVYjFzxwYSwJwNap7ZHT4eZ0dH3b0m_wlrYWp-iDbghprh7DUquFSTVSXnDBPnIwyNYEgvgEnfAZ7sYI0VOGKdrfeD_Z2lXQbg4u4zwIC2D7iC_ZTX86uxkHDhpCyOL-EYWTm4OrgH8xVUun4tCyux3W2U646pwYP_-YAPyf0GrNJeLV2PyB1TPCbrQ3cZ8OIJmfXoaIEVX9SV8X7_-m1XfaoNKN2eNTIN89Pe2XFZnU5PzilAZLoLVuochsWwV6GvAexW9CYLh2JVW0UPwIfHqi66hRn20wXtl_hyHZXkKdkfbH_sj_zmHgc_Z8iIGSmLfmGWyExmgcnAf1eM2VhmkVLG6ihLudRdGUemG2sprbFJINNU81TxOM3jZ2StKAvznFAjI2tSC3bKhglTIcgSQNY8DkNpwyjXHtloN0xc1HwdIgGXE2GlR_hyB0XeMKDjRRxn4pYnBEsucMkFLrlwSy7mHgnbnstR_9znrROStoOsPmMWHWficDwUe-Fg1D8YHgrukc2lFInGgEwEkiRlCbIteuR1-zOoPr7PkYUpr6CNA5OMx-w3bThe5IHEgx6hjYTezKK_zJUw-K-RWjDwSOoE8q-fUfT6ww_waeNfO74g9_DrOg1-k6xNqyvzktzNZ9PTSfWq0eAfqzVDvg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hhAouvBEuBRYJcTPyezfHKG0SREgr6Ou2Wtu7bWlrFzdNE078BH4jv4QZ23EbhAAhbpa8u7Z3Z2a_Gc9-A_BK-2mCsDqxU52ig8JFaMeBocwd4ygEc8apeGZHfDwW-_udrbocEJ2FqfghmoAbaUZpr0nBKSC9rOU8pMx5j2IjFNNz8KlvEFC2g8jnogXt9Q_9ndHCMCNyKQsaUETbRmAR_pTY86uxiHHhMM8OPuM-srRztWkRZkuwdOVSZUZRu-swt9yn-nf_6xfegzs1XGXdSr7uww2dPYCVQVkOeP4Qpl02nNOZL1Ye5P3-9dtm_KkyoWxjWks1vgDrnhzkxdHk8JQhSGabaKdOcVgKfGXpJcLdgl3l4TA611awXfTi6VwXW6cc-8mc9XL6vU5q8gh2-hvbvaFdV3Kwk5A4Mb3YkGcoAiWUcLRADz4OQ-Mr4cWxNqknIq7SjvI93fFTpYw2gaOiKOVRzP0o8R9DK8sz_QSYVp7RkUFLZdwgjF2UJgStie-6yrheklqw2qyYPKsYO2SATicBSwv4YgllUnOgUymOE3nNF8IplzTlkqZcllMuZxa4Tc_FqH_u87qUkqaDKo4pj46Hcm88kFtuf9jbHexJbsHaQoxkbULOJdEkiYD4Fi142dxG5ac_OirT-QW2KeFkyP3wN204lfIg6kELWC2iV09Jv8xiqemtiVzQsSAqJfKvv1F2e4OPeLX6rx1fwK3h9vuRHL0dv3sKt6lJlRS_Bq1JcaGfwc1kOjk6L57X6vwDCq9Hrg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hlqG98D2RMcBIiLeifDlOH6t2bRFVVwH7eLOc2N7GtnRkXdfyxJ_A38hfwl2SditCgBBvkWI7iX13_t3l_DuAVybQKcLqtKGNRgdFxLyRhJYyd6yrEMxZt-SZHYjhMD44aI6qckB0Fqbkh1gG3EgzCntNCm7OtV3VcsEpc96n2AjF9Fx86hsElPWQN3lYg3rnfXd3sDDMiFyKggYU0W4gsOA_Jfb8aixiXDgaZ4efcR9Z2bnqtAizFVi6dqUyq6jdTZhb7FPde__1C-_D3QquslYpXw_glskewlqvKAc8fwTTFuvP6cwXKw7yfv_6bSf5VJpQtj2tpBpfgLVOD8f58eTojCFIZjtop85wWAp8ZfoK4W7OrvNwGJ1ry9keevF0rot1KMd-MmftMf1eJzV5DLvd7Y_tfqOq5NBIOXFi-oklzzAOVaxi18TowSec20DFfpIYq_04Eko3VeCbZqCVssaGrooiLaJEBFEabEAtG2fmCTCjfGsii5bKeiFPPJQmBK1p4HnKen6qHdhcrpg8Lxk7ZIhOJwFLB8RiCWVacaBTKY5TecMXwimXNOWSplwWUy5nDnjLnotR_9zndSElyw4qP6E8OsHl_rAnR163397r7UvhwNZCjGRlQi4k0STFIfEtOvByeRuVn_7oqMyML7FNASe5CPhv2ggq5UHUgw6wSkSvn6K_zBJp6K2JXNB1ICok8q-_UbbavQ94tfmvHV_AnVGnKwdvh--ewjq1KHPit6A2yS_NM7idTifHF_nzSpt_ACr3Ryk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Multi-Objective+Evolutionary+Algorithm+for+Optimal+Groundwater+Management+under+Variable+Density+Conditions&rft.jtitle=Acta+geologica+Sinica+%28Beijing%29&rft.au=Yun%2C+YANG&rft.au=Jianfeng%2C+WU&rft.au=Xiaomin%2C+SUN&rft.au=Jin%2C+LIN&rft.date=2012-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1000-9515&rft.eissn=1755-6724&rft.volume=86&rft.issue=1&rft.spage=246&rft_id=info:doi/10.1111%2Fj.1755-6724.2012.00625.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3371366971
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86253X%2F86253X.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzxb-e%2Fdzxb-e.jpg