Semiparametric Regression Analysis of Interval-Censored Competing Risks Data

Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (exte...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics Vol. 73; no. 3; pp. 857 - 865
Main Authors: Mao, Lu, Lin, Dan-Yu, Zeng, Donglin
Format: Journal Article
Language:English
Published: England Wiley-Blackwell 01.09.2017
Blackwell Publishing Ltd
Subjects:
ISSN:0006-341X, 1541-0420, 1541-0420
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes.
AbstractList Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes.
Summary Interval‐censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time‐varying (external) covariates on the cumulative incidence or sub‐distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non‐proportional hazards structures for the sub‐distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM‐type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV‐1 infection with different viral subtypes.
Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes.Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes.
Summary Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes.
Author Zeng, Donglin
Mao, Lu
Lin, Dan-Yu
AuthorAffiliation 2 Department of Biostatistics, CB 7420, University of North Carolina, Chapel Hill, North Carolina 27599-7420, U.S.A
1 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53792, U.S.A
AuthorAffiliation_xml – name: 1 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53792, U.S.A
– name: 2 Department of Biostatistics, CB 7420, University of North Carolina, Chapel Hill, North Carolina 27599-7420, U.S.A
Author_xml – sequence: 1
  givenname: Lu
  surname: Mao
  fullname: Mao, Lu
– sequence: 2
  givenname: Dan-Yu
  surname: Lin
  fullname: Lin, Dan-Yu
– sequence: 3
  givenname: Donglin
  surname: Zeng
  fullname: Zeng, Donglin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28211951$$D View this record in MEDLINE/PubMed
BookMark eNqFkdFrFDEQxoO02Ovpi-_Kgi9S2Jpkk-zmpVBPaw9OClXBt5DNzp45d5MzyVXuvzf1ekWLaF6GML_vY2a-Y3TgvAOEnhF8SvJ73Vo_nhIqBHuEJoQzUmJG8QGaYIxFWTHy5Qgdx7jKX8kxfYyOaEMJkZxM0OIjjHatgx4hBWuKa1gGiNF6V5w7PWyjjYXvi7lLEG70UM7ARR-gK2Z-XEOybllc2_gtFm910k_QYa-HCE_v6hR9vnj3aXZZLq7ez2fni9JwXLGyNrw2Gpq-63nP6l43VEjW1abtGQWCRUeBd41pNWhJ27rFXUVZK3VWyZ531RSd7XzXm3aEzoBLQQ9qHeyow1Z5bdWfHWe_qqW_UZwLwiuSDV7dGQT_fQMxqdFGA8OgHfhNVDSfijNR1_K_KGmElEJy3mT05QN05TchXzFTklWiIiLvP0Uvfh_-fup9JhnAO8AEH2OAXhmbdMqR5F3soAhWt7Gr29jVr9iz5OSBZO_6V5js4B92gO0_SPVmfvVhr3m-06xi8uFew5iQOTxa_QSGlMgu
CitedBy_id crossref_primary_10_1080_02331888_2020_1811281
crossref_primary_10_1111_sjos_12768
crossref_primary_10_1080_02664763_2023_2230533
crossref_primary_10_29220_CSAM_2025_32_2_249
crossref_primary_10_1080_19466315_2020_1741445
crossref_primary_10_1002_sim_9927
crossref_primary_10_1002_sim_8201
crossref_primary_10_1111_biom_12970
crossref_primary_10_1080_03610918_2025_2499059
crossref_primary_10_1002_sim_9668
crossref_primary_10_1002_sim_8544
crossref_primary_10_1093_biostatistics_kxaa052
crossref_primary_10_1177_0962280220939123
Cites_doi 10.1111/j.2517-6161.1976.tb01597.x
10.1016/j.jmva.2015.10.001
10.1002/9781118032985
10.1093/biomet/82.4.835
10.1214/aos/1176350951
10.1111/biom.12389
10.1093/biomet/90.1.183
10.1017/CBO9781139020893
10.1093/biomet/89.3.659
10.1007/978-1-4684-6316-3_8
10.1093/biomet/91.2.331
10.1007/978-1-4757-2545-2
10.1080/01621459.1999.10474144
10.1111/biom.12109
10.1093/biomet/asw013
10.1214/aos/1032894452
10.1080/01621459.2000.10474219
10.1111/j.0006-341X.2001.00074.x
10.1093/biomet/ass053
ContentType Journal Article
Copyright Copyright © 2017 International Biometric Society
2017, The International Biometric Society
2017, The International Biometric Society.
Copyright_xml – notice: Copyright © 2017 International Biometric Society
– notice: 2017, The International Biometric Society
– notice: 2017, The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
DOI 10.1111/biom.12664
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
ProQuest Computer Science Collection

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 865
ExternalDocumentID PMC5561531
28211951
10_1111_biom_12664
BIOM12664
44698262
Genre article
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R01 GM047845
– fundername: NIAID NIH HHS
  grantid: R37 AI029168
– fundername: NIAID NIH HHS
  grantid: R01 AI029168
– fundername: NIAID NIH HHS
  grantid: P30 AI050410
– fundername: NCI NIH HHS
  grantid: R01 CA082659
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
2AX
2QV
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXSQ
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADODI
ADOZA
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGLNM
AGORE
AGTJU
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HQ6
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NU-
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
RXW
SA0
SUPJJ
SV3
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
.GJ
.Y3
3-9
31~
7X7
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AANHP
ABJCF
ABUWG
ACBWZ
ACKIV
ACRPL
ACYXJ
ADNMO
ADULT
AFKRA
AGQPQ
AHGBF
AJBYB
ALEEW
ARAPS
ASPBG
AS~
AVWKF
AZFZN
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
DWQXO
ESTFP
FEDTE
FXEWX
FYUFA
GNUQQ
H13
HCIFZ
HF~
HGD
HMCUK
HVGLF
IHE
K6V
K7-
L6V
LK8
M1P
M2P
M7P
M7S
NHB
P0-
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
PTHSS
PUEGO
Q2X
RNS
RWL
TAE
UAP
UKHRP
ZGI
ZXP
ZY4
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5034-7c57cae8fdf5f47fa82694d7cbf42e106d2e5d8cbaea92b7b0d324b9a7ca9f5d3
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411878000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Tue Nov 04 01:58:21 EST 2025
Fri Oct 03 00:06:48 EDT 2025
Sun Nov 09 13:43:52 EST 2025
Wed Aug 13 04:41:11 EDT 2025
Mon Jul 21 05:52:01 EDT 2025
Tue Nov 18 22:46:19 EST 2025
Sat Nov 29 02:10:03 EST 2025
Sun Sep 21 06:15:59 EDT 2025
Thu Jul 03 22:05:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cumulative incidence
Interval censoring
Time-varying covariates
Nonparametric maximum likelihood estimation
Self-consistency algorithm
Transformation models
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2017, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5034-7c57cae8fdf5f47fa82694d7cbf42e106d2e5d8cbaea92b7b0d324b9a7ca9f5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
dzeng@email.unc.edu
lin@bios.unc.edu
lmao@biostat.wisc.edu
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5561531
PMID 28211951
PQID 1943631650
PQPubID 35366
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5561531
proquest_miscellaneous_2000546779
proquest_miscellaneous_1869969558
proquest_journals_1943631650
pubmed_primary_28211951
crossref_citationtrail_10_1111_biom_12664
crossref_primary_10_1111_biom_12664
wiley_primary_10_1111_biom_12664_BIOM12664
jstor_primary_44698262
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2017
Publisher Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References 2008a; 36
1995; 82
2014; 70
2003; 90
2015; 72
2002; 89
1988; 16
1997
2013; 100
2000; 95
1996
2016; 143
2006
2008b; 36
2016
1993
2014
1999; 94
2002
2016; 103
1996; 24
2004; 91
2001; 57
1976; 38
Li (2024011603223859700_biom12664-bib-0016) 2013; 100
Cheng (2024011603223859700_biom12664-bib-0003) 1995; 82
Groeneboom (2024011603223859700_biom12664-bib-0006) 2014
Zeng (2024011603223859700_biom12664-bib-0024) 2016; 103
Lu (2024011603223859700_biom12664-bib-0017) 2004; 91
Jewell (2024011603223859700_biom12664-bib-0013) 2003; 90
Gray (2024011603223859700_biom12664-bib-0005) 1988; 16
Turnbull (2024011603223859700_biom12664-bib-0021) 1976; 38
Hudgens (2024011603223859700_biom12664-bib-0012) 2014; 70
Mao (2024011603223859700_biom12664-bib-0018) 2016
Martinussen (2024011603223859700_biom12664-bib-0019) 2006
Wang (2024011603223859700_biom12664-bib-0023) 2015; 72
Hudgens (2024011603223859700_biom12664-bib-0011) 2001; 57
Huang (2024011603223859700_biom12664-bib-0010) 1997
Fine (2024011603223859700_biom12664-bib-0004) 1999; 94
Kalbfleisch (2024011603223859700_biom12664-bib-0014) 2002
Li (2024011603223859700_biom12664-bib-0015) 2016; 143
Bickel (2024011603223859700_biom12664-bib-0001) 1993
Groeneboom (2024011603223859700_biom12664-bib-0007) 2008; 36
van der Vaart (2024011603223859700_biom12664-bib-0022) 1996
Groeneboom (2024011603223859700_biom12664-bib-0008) 2008; 36
Chen (2024011603223859700_biom12664-bib-0002) 2002; 89
Huang (2024011603223859700_biom12664-bib-0009) 1996; 24
Murphy (2024011603223859700_biom12664-bib-0020) 2000; 95
References_xml – volume: 94
  start-page: 496
  year: 1999
  end-page: 509
  article-title: A proportional hazards model for the subdistribution of a competing risk
  publication-title: Journal of the American Statistical Association
– volume: 24
  start-page: 540
  year: 1996
  end-page: 568
  article-title: Efficient estimation for the proportional hazards model with interval censoring
  publication-title: The Annals of Statistics
– volume: 36
  start-page: 1031
  year: 2008a
  end-page: 1063
  article-title: Current status data with competing risks: Consistency and rates of convergence of the MLE
  publication-title: The Annals of Statistics
– volume: 38
  start-page: 290
  year: 1976
  end-page: 295
  article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 89
  start-page: 659
  year: 2002
  end-page: 668
  article-title: Semiparametric analysis of transformation models with censored data
  publication-title: Biometrika
– year: 2002
– year: 2016
  article-title: Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks
  publication-title: Journal of the Royal Statistical Society
– volume: 95
  start-page: 449
  year: 2000
  end-page: 465
  article-title: On profile likelihood
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 1064
  year: 2008b
  end-page: 1089
  article-title: Current status data with competing risks: Limiting distribution of the MLE
  publication-title: The Annals of Statistics
– start-page: 123
  year: 1997
  end-page: 169
– year: 2006
– volume: 90
  start-page: 183
  year: 2003
  end-page: 197
  article-title: Nonparametric estimation from current status data with competing risks
  publication-title: Biometrika
– volume: 143
  start-page: 327
  year: 2016
  end-page: 344
  article-title: The Fine‐Gray model under interval censored competing risks data
  publication-title: Journal of Multivariate Analysis
– volume: 100
  start-page: 173
  year: 2013
  end-page: 187
  article-title: Smoothed nonparametric estimation for current status competing risks data
  publication-title: Biometrika
– year: 1996
– volume: 82
  start-page: 835
  year: 1995
  end-page: 845
  article-title: Analysis of transformation models with censored data
  publication-title: Biometrika
– volume: 72
  start-page: 222
  year: 2015
  end-page: 231
  article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval censored data
  publication-title: Biometrics
– volume: 16
  start-page: 1141
  year: 1988
  end-page: 1154
  article-title: A class of K‐sample tests for comparing the cumulative incidence of a competing risk
  publication-title: The Annals of Statistics
– volume: 70
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Parametric likelihood inference for interval censored competing risks data
  publication-title: Biometrics
– year: 1993
– volume: 103
  start-page: 253
  year: 2016
  end-page: 271
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval‐censored data
  publication-title: Biometrika
– year: 2014
– volume: 57
  start-page: 74
  year: 2001
  end-page: 80
  article-title: Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation
  publication-title: Biometrics
– volume: 91
  start-page: 331
  year: 2004
  end-page: 343
  article-title: On semiparametric transformation cure models
  publication-title: Biometrika
– volume: 38
  start-page: 290
  year: 1976
  ident: 2024011603223859700_biom12664-bib-0021
  article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1976.tb01597.x
– volume-title: Efficient and Adaptive Estimation for Semiparametric Models
  year: 1993
  ident: 2024011603223859700_biom12664-bib-0001
– volume: 36
  start-page: 1064
  year: 2008
  ident: 2024011603223859700_biom12664-bib-0008
  article-title: Current status data with competing risks: Limiting distribution of the MLE
  publication-title: The Annals of Statistics
– volume: 143
  start-page: 327
  year: 2016
  ident: 2024011603223859700_biom12664-bib-0015
  article-title: The Fine-Gray model under interval censored competing risks data
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2015.10.001
– volume-title: The Statistical Analysis of Failure Time Data
  year: 2002
  ident: 2024011603223859700_biom12664-bib-0014
  doi: 10.1002/9781118032985
– volume: 82
  start-page: 835
  year: 1995
  ident: 2024011603223859700_biom12664-bib-0003
  article-title: Analysis of transformation models with censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.835
– volume: 16
  start-page: 1141
  year: 1988
  ident: 2024011603223859700_biom12664-bib-0005
  article-title: A class of K-sample tests for comparing the cumulative incidence of a competing risk
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176350951
– volume-title: Dynamic Regression Models for Survival Data
  year: 2006
  ident: 2024011603223859700_biom12664-bib-0019
– volume: 72
  start-page: 222
  year: 2015
  ident: 2024011603223859700_biom12664-bib-0023
  article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval censored data
  publication-title: Biometrics
  doi: 10.1111/biom.12389
– year: 2016
  ident: 2024011603223859700_biom12664-bib-0018
  article-title: Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks
  publication-title: Journal of the Royal Statistical Society
– volume: 90
  start-page: 183
  year: 2003
  ident: 2024011603223859700_biom12664-bib-0013
  article-title: Nonparametric estimation from current status data with competing risks
  publication-title: Biometrika
  doi: 10.1093/biomet/90.1.183
– volume-title: Nonparametric Estimation Under Shape Constraints: Estimators, Algorithms and Asymptotics
  year: 2014
  ident: 2024011603223859700_biom12664-bib-0006
  doi: 10.1017/CBO9781139020893
– volume: 89
  start-page: 659
  year: 2002
  ident: 2024011603223859700_biom12664-bib-0002
  article-title: Semiparametric analysis of transformation models with censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/89.3.659
– start-page: 123
  volume-title: Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis
  year: 1997
  ident: 2024011603223859700_biom12664-bib-0010
  article-title: Interval censored survival data: A review of recent progress%
  doi: 10.1007/978-1-4684-6316-3_8
– volume: 91
  start-page: 331
  year: 2004
  ident: 2024011603223859700_biom12664-bib-0017
  article-title: On semiparametric transformation cure models
  publication-title: Biometrika
  doi: 10.1093/biomet/91.2.331
– volume-title: Weak Convergence and Empirical Processes
  year: 1996
  ident: 2024011603223859700_biom12664-bib-0022
  doi: 10.1007/978-1-4757-2545-2
– volume: 94
  start-page: 496
  year: 1999
  ident: 2024011603223859700_biom12664-bib-0004
  article-title: A proportional hazards model for the subdistribution of a competing risk
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1999.10474144
– volume: 70
  start-page: 1
  year: 2014
  ident: 2024011603223859700_biom12664-bib-0012
  article-title: Parametric likelihood inference for interval censored competing risks data
  publication-title: Biometrics
  doi: 10.1111/biom.12109
– volume: 103
  start-page: 253
  year: 2016
  ident: 2024011603223859700_biom12664-bib-0024
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/asw013
– volume: 24
  start-page: 540
  year: 1996
  ident: 2024011603223859700_biom12664-bib-0009
  article-title: Efficient estimation for the proportional hazards model with interval censoring
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1032894452
– volume: 95
  start-page: 449
  year: 2000
  ident: 2024011603223859700_biom12664-bib-0020
  article-title: On profile likelihood
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2000.10474219
– volume: 36
  start-page: 1031
  year: 2008
  ident: 2024011603223859700_biom12664-bib-0007
  article-title: Current status data with competing risks: Consistency and rates of convergence of the MLE
  publication-title: The Annals of Statistics
– volume: 57
  start-page: 74
  year: 2001
  ident: 2024011603223859700_biom12664-bib-0011
  article-title: Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00074.x
– volume: 100
  start-page: 173
  year: 2013
  ident: 2024011603223859700_biom12664-bib-0016
  article-title: Smoothed nonparametric estimation for current status competing risks data
  publication-title: Biometrika
  doi: 10.1093/biomet/ass053
SSID ssj0009502
Score 2.3111088
Snippet Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not...
Summary Interval‐censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time...
Summary Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time...
Interval‐censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 857
SubjectTerms algorithms
biometry
Computer Simulation
Cumulative incidence
Data processing
DISCUSSION PAPER
Distribution functions
Economic models
Empirical analysis
Failure
Hazards
HIV
HIV infections
Human immunodeficiency virus
Human immunodeficiency virus 1
Interval censoring
Likelihood Functions
Maximum likelihood estimation
Models, Statistical
Nonparametric maximum likelihood estimation
Normality
Parameter estimation
Regression Analysis
Regression models
Risk
Self‐consistency algorithm
Time‐varying covariates
Transformation models
Title Semiparametric Regression Analysis of Interval-Censored Competing Risks Data
URI https://www.jstor.org/stable/44698262
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12664
https://www.ncbi.nlm.nih.gov/pubmed/28211951
https://www.proquest.com/docview/1943631650
https://www.proquest.com/docview/1869969558
https://www.proquest.com/docview/2000546779
https://pubmed.ncbi.nlm.nih.gov/PMC5561531
Volume 73
WOSCitedRecordID wos000411878000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB21W5DKgY-FQkqpguACUtDGseNY4sLXCiS6IKDS3iLbsWGlNos2FIkbP6G_sb-kM0427IqChLhF8liK7Rn7TfL8BuAh5x5T2ZQnCvFCghueSIpU2ETptNBKK4TQPBSbkJNJMZ2q9xvwdHkXptWH6D-4UWSE_ZoCXJtmJcjpevqTFM8XvglbDB2XD2Dr5Yfx4dsV0d1RqxZO_C6eTjt5UmLy_Oq9diC1nMSL0ObvpMlVMBtOo_G1_xvHdbjaodD4Wes2N2DD1UO43Nal_DGEKwe9mGszhG0CpK2e802YfHTHM9ILP6ZSXDZeuM8tk7aOdadvEs99PAtUSn109vMUR9LMF66KbYDoeFTGxGdvYiKn3oLD8atPL14nXU2GxAqc4kRaIa12ha-88Fx6XdBV2Epa4zlzmF9WzImqsEY7XGgjzahCyGaUxl7KiyrbgUE9r90diE2uNOOe9HY8twKNTDYaOeZlllnuTQSPlgtT2k6wnOpmHJXLxIWmrgxTF8GD3vZrK9NxodVOWN_ehFP9TJazCPaWC152MdyUqeJZnqUIYSO43zdj9NEvFV27-QnaFDkmjEqI4s82LODiXEoVwe3Wh_oXwISXNPfSCOSad_UGpP693lLPvgQVcKprihtoBI-Dd_1l2OXzN-8OwtPuvxjfhW1GGCYQ6vZg8G1x4u7BJfsdXW6xD5tyWux3EXcOdiQwTw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB3BFkT7wGWhJVAgCF6KFJSLHceP3Fat2F0QtNK-RY5jw0ptFu22SLzxCf1GvoQZOxt2RUFCvEXyWIrjGfuMc3wG4CljFlPZhEUS8UKECx6PioTrSKqkUFJJhNDMFZsQ43Exmcj3LTeH7sJ4fYjuwI0iw63XFOB0IL0S5XQ__XmCGwy7DBsM_Yj3YOP1h8HRcEV1N_Zy4UTwYsmk1SclKs-v3ms7kiclXgQ3f2dNrqJZtx0NbvznQG7C9RaHhi-849yCS6bpw1VfmfJbH7ZGnZzrog-bBEm9ovNtGH80J1NSDD-hYlw6nJtPnkvbhKpVOAlnNpw6MqU6_vH9HIeymM1NHWoH0nGzDInRvgiJnnoHjgZvDl_tR21VhkjzOGOR0FxoZQpbW26ZsKqgy7C10JVlqcEMs04NrwtdKYNTXYkqrhG0VVJhL2l5nW1Dr5k15i6EVS5Vyiwp7limORpVWRyb1Ios08xWAewtZ6bUrWQ5Vc44LpepC3260n26AJ50tl-8UMeFVttugjsTRhU00zwNYHc542UbxYsykSzLswRBbACPu2aMP_qpohozO0ObIseUUXJe_Nkmdcg4F0IGsOOdqHsBTHlJdS8JQKy5V2dA-t_rLc30s9MBp8qmuIQG8My511-GXb48eDdyT_f-xfgRXNs_HA3L4cH47X3YTAnROHrdLvRO52fmAVzRX9H95g_bwPsJZRszVw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BC6gc-FgoBAoYwQWkoHzYcXwEyoqKdqmASnuLHMduV2qz1S5F4sZP4DfyS5ixs2FXFCTELZLHUmzP2G-S5zcATzl3mMqmPFaIF2Lc8ERcpsLESqelVlohhOa-2IQcjcrxWO133By6CxP0IfoPbhQZfr-mALenjVuKcrqf_iLFA4ZfhHUuVIFxub79YXiwu6S6mwS5cCJ48XTc6ZMSledX75UTKZASz4Obv7Mml9GsP46G1_9zIDfgWodD2cvgODfhgm0HcDlUpvw6gKt7vZzrfAAbBEmDovMtGH20JxNSDD-hYlyGzexh4NK2THcKJ2zq2MSTKfXxj2_fcSjz6cw2zHiQjoclI0b7nBE99TYcDN98ev027qoyxEYkOY-lEdJoW7rGCcel0yVdhm2kqR3PLGaYTWZFU5paW1zqWtZJg6CtVhp7KSeafBPW2mlr7wKrC6Uz7khxx3Ej0KjOk8RmTua54a6O4NliZSrTSZZT5YzjapG60NRVfuoieNLbngahjnOtNv0C9yacKmhmRRbB1mLFqy6K51WqeF7kKYLYCB73zRh_9FNFt3Z6hjZlgSmjEqL8s03mkXEhpYrgTnCi_gUw5SXVvTQCueJevQHpf6-2tJMjrwNOlU1xC43guXevvwy7erXzfs8_3fsX40dwZX97WO3ujN7dh42MAI1n123B2ufZmX0Al8wX9L7Zwy7ufgKnyDLS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+regression+analysis+of+interval-censored+competing+risks+data&rft.jtitle=Biometrics&rft.au=Mao%2C+Lu&rft.au=Lin%2C+Dan-Yu&rft.au=Zeng%2C+Donglin&rft.date=2017-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=73&rft.issue=3&rft.spage=857&rft_id=info:doi/10.1111%2Fbiom.12664&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon