Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering

Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator variance, which appears as visually distracting noise. Adaptive sa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 34; číslo 2; s. 667 - 681
Hlavní autoři: Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., Yoon, S.-E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.05.2015
Wiley
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator variance, which appears as visually distracting noise. Adaptive sampling and reconstruction algorithms reduce variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large image regions. In this paper we survey recent advances in this area. We distinguish between “a priori” methods that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis, and “a posteriori” methods that apply statistical techniques to sets of samples to drive the adaptive sampling and reconstruction process. They typically estimate the errors of several reconstruction filters, and select the best filter locally to minimize error. We discuss advantages and disadvantages of recent state‐of‐the‐art techniques, and provide visual and quantitative comparisons. Some of these techniques are proving useful in real‐world applications, and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we discuss directions for potential further improvements.
AbstractList Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. But variance, which appears as visually distracting noise in rendered images, is a persistent challenge. Adaptive sampling and reconstruction algorithms reduce variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large image regions. In this paper we survey recent advances in this area. We distinguish " a priori " methods that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis, and " a posteriori " methods that obtain error estimates, usually with statistical techniques, from sets of samples. They typically estimate the errors of several reconstruction filters, and select the best filter locally to minimize error. We discuss advantages and disadvantages of recent state-of-the-art techniques, and provide visual and quantitative comparisons. Some of these techniques are proving useful in real-world applications, and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we discuss directions for potential further improvements. Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation— Display algorithms Monte Carlo methods are firmly established as the most practical methods for realistic image synthesis by numerically solving the rendering equation. Even simple Monte Carlo rendering algorithms, such as path tracing, come with a number of very desireable properties including unbiasedness, consistency, and applicability to most scene configurations that are relevant in practice. On the other hand, computation times to obtain visually satisfactory results without noticeable noise artifacts are often in the minutes and hours. Therefore , researchers have proposed a wide variety of noise or variance reduction strategies over the years, from different path sampling strategies (importance sampling, bidirectional techniques, Metropolis sampling) to statistical techniques (density estimation, control variates), or signal processing methods (frequency analysis, non-linear filtering), to name the most prominent ones. In this paper, we survey recent advances in adaptive sampling and reconstruction, which have proven very effective and are making Monte Carlo techniques more practical.
Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator variance, which appears as visually distracting noise. Adaptive sampling and reconstruction algorithms reduce variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large image regions. In this paper we survey recent advances in this area. We distinguish between “a priori” methods that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis, and “a posteriori” methods that apply statistical techniques to sets of samples to drive the adaptive sampling and reconstruction process. They typically estimate the errors of several reconstruction filters, and select the best filter locally to minimize error. We discuss advantages and disadvantages of recent state‐of‐the‐art techniques, and provide visual and quantitative comparisons. Some of these techniques are proving useful in real‐world applications, and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we discuss directions for potential further improvements.
Author Ramamoorthi, R.
Rousselle, F.
Zwicker, M.
Moon, B.
Soler, C.
Jarosz, W.
Yoon, S.-E.
Lehtinen, J.
Sen, P.
Author_xml – sequence: 1
  givenname: M.
  surname: Zwicker
  fullname: Zwicker, M.
  organization: University of Bern
– sequence: 2
  givenname: W.
  surname: Jarosz
  fullname: Jarosz, W.
  organization: Disney Research Zürich
– sequence: 3
  givenname: J.
  surname: Lehtinen
  fullname: Lehtinen, J.
  organization: Aalto University and NVIDIA
– sequence: 4
  givenname: B.
  surname: Moon
  fullname: Moon, B.
  organization: KAIST (Korea Advanced Institute of Science and Technology)
– sequence: 5
  givenname: R.
  surname: Ramamoorthi
  fullname: Ramamoorthi, R.
  organization: University of California, San Diego
– sequence: 6
  givenname: F.
  surname: Rousselle
  fullname: Rousselle, F.
  organization: Disney Research Zürich
– sequence: 7
  givenname: P.
  surname: Sen
  fullname: Sen, P.
  organization: University of California, Santa Barbara
– sequence: 8
  givenname: C.
  surname: Soler
  fullname: Soler, C.
  organization: INRIA Rhône-Alpes
– sequence: 9
  givenname: S.-E.
  surname: Yoon
  fullname: Yoon, S.-E.
  organization: KAIST (Korea Advanced Institute of Science and Technology)
BackLink https://inria.hal.science/hal-01252647$$DView record in HAL
BookMark eNp1kU1PGzEQhi0EUgP00H-wUi_tYcHe9cf6GEVNUimAaEEcLeMdg-nGTm0nLf--DgEqoXYuMxo_72g87yHa98EDQh8IPiElTs2dPSENk80eGhHKRd1xJvfRCJNSC8zYO3SY0gPGmArORujyGxjwuRr3G-0NpMr5UutVdhuovuvlanD-rtK-rwoYfMpxbbILvrIhVmfBZ6gmOg6hPPseYoGP0YHVQ4L3z_kIXU-_XE3m9eJi9nUyXtSG4bap-77rpRaScw2Ud7fUYsmsFZRYCbppWiupMZbghvSCUGoYBdCiA8OZsPK2PUKfd3Pv9aBW0S11fFRBOzUfL9S2h8sdGk7FhhT2045dxfBzDSmrpUsGhkF7COukiBAdpm2Du4J-fIM-hHX05SeKcIlJx6ighTrdUSaGlCJYZVzW28PkqN2gCFZbO1SxQz3Z8XfdV8XLzv9in6f_cgM8_h9Uk9n0RVHvFC5l-P2q0PGH4qIVTN2cz9RcTLvLK7FQZ-0fGcio1w
CitedBy_id crossref_primary_10_1145_2980179_2982411
crossref_primary_10_1111_cgf_14052
crossref_primary_10_1007_s41095_023_0361_5
crossref_primary_10_1111_cgf_12829
crossref_primary_10_1111_cgf_13481
crossref_primary_10_1111_cgf_14454
crossref_primary_10_1145_2963097
crossref_primary_10_1111_cgf_14015
crossref_primary_10_1109_TVCG_2021_3135764
crossref_primary_10_1111_cgf_14457
crossref_primary_10_1111_cgf_14337
crossref_primary_10_1111_cgf_14019
crossref_primary_10_1111_cgf_14338
crossref_primary_10_1109_ACCESS_2020_2999891
crossref_primary_10_1145_3355089_3356547
crossref_primary_10_1145_3072959_3073601
crossref_primary_10_1145_3658182
crossref_primary_10_1145_3368313
crossref_primary_10_1109_ACCESS_2020_3010452
crossref_primary_10_1007_s00371_017_1381_x
crossref_primary_10_1007_s00371_021_02204_4
crossref_primary_10_1111_cgf_13771
crossref_primary_10_1007_s42979_025_03863_z
crossref_primary_10_1109_TVCG_2020_3037680
crossref_primary_10_1111_cgf_13652
crossref_primary_10_1111_cgf_14587
crossref_primary_10_1145_3651299
crossref_primary_10_1111_cgf_13335
crossref_primary_10_1111_cgf_13533
crossref_primary_10_1111_cgf_13777
crossref_primary_10_1111_cgf_14987
crossref_primary_10_1109_ACCESS_2022_3214516
crossref_primary_10_1109_TVCG_2019_2934313
crossref_primary_10_3390_s24072314
crossref_primary_10_1007_s11042_020_09650_7
crossref_primary_10_1587_transinf_2016EDP7017
crossref_primary_10_1007_s00371_018_1521_y
crossref_primary_10_1007_s11390_019_1964_2
crossref_primary_10_1145_3355089_3356538
crossref_primary_10_1016_j_gmod_2025_101301
crossref_primary_10_1145_3072959_3073656
crossref_primary_10_1145_3528223_3530126
crossref_primary_10_1145_3355089_3356578
crossref_primary_10_1145_2980179_2980256
crossref_primary_10_1145_3504002
crossref_primary_10_1016_j_cagd_2016_02_013
crossref_primary_10_1007_s41095_019_0142_3
crossref_primary_10_1111_cgf_13548
crossref_primary_10_1007_s00371_023_02951_6
crossref_primary_10_1109_ACCESS_2021_3076898
crossref_primary_10_1007_s00371_017_1360_2
crossref_primary_10_1145_2980179_2982443
crossref_primary_10_1007_s00371_017_1363_z
crossref_primary_10_1007_s00371_024_03446_8
crossref_primary_10_1111_cgf_15050
crossref_primary_10_1007_s41095_021_0209_9
crossref_primary_10_1109_TVCG_2017_2722414
crossref_primary_10_1109_TVCG_2024_3445339
crossref_primary_10_1145_2897824_2925936
crossref_primary_10_1109_ACCESS_2024_3517163
crossref_primary_10_1111_cgf_12914
crossref_primary_10_1111_cgf_13231
crossref_primary_10_1111_cgf_13473
crossref_primary_10_1111_cgf_13155
crossref_primary_10_1111_cgf_13232
crossref_primary_10_1134_S0361768821040034
crossref_primary_10_1111_cgf_12954
crossref_primary_10_1111_cgf_14049
crossref_primary_10_1111_cgf_14885
crossref_primary_10_1145_3182162
crossref_primary_10_1145_3072959_2963097
crossref_primary_10_1145_3522606
crossref_primary_10_1109_TVCG_2022_3217305
crossref_primary_10_1111_cgf_14406
crossref_primary_10_1111_cgf_14407
crossref_primary_10_1007_s00371_025_03935_4
crossref_primary_10_1111_cgf_13919
crossref_primary_10_1109_ACCESS_2018_2886005
crossref_primary_10_1109_ACCESS_2021_3059887
crossref_primary_10_1145_3386569_3392374
Cites_doi 10.1145/2366145.2366210
10.1145/15886.15902
10.1145/2366145.2366212
10.1145/2461912.2461947
10.1111/cgf.12029
10.1145/1090122.1090148
10.1111/cgf.12301
10.1145/2185520.2185547
10.1111/cgf.12004
10.1109/CVPR.2014.372
10.1145/127719.122736
10.1145/2629490
10.1111/cgf.12424
10.1201/b10685
10.1145/2614106.2614149
10.1145/74334.74362
10.1137/040616024
10.1145/1360612.1360632
10.1145/2010324.1964950
10.1145/2366145.2366182
10.1145/318009.318015
10.1145/2366145.2366214
10.1145/2167076.2167083
10.1145/1015706.1015778
10.1145/2532708
10.1145/1618452.1618486
10.1111/cgf.12415
10.1145/2661229.2661251
10.1111/j.1467-8659.2010.01799.x
10.1145/1516522.1516529
10.1145/2641762
10.1109/TVCG.2010.46
10.1145/2231816.2231823
10.1145/2070781.2024193
10.1145/1189762.1189764
10.1145/2010324.1964990
10.1109/TIP.2007.901238
10.1145/1141911.1141996
10.1093/biomet/81.3.425
10.1111/cgf.12219
10.1145/2461912.2461925
10.1111/j.1467-8659.2011.01996.x
10.1109/LSP.2009.2027669
10.1145/1015706.1015777
10.1145/2487228.2487239
10.1109/TVCG.2012.298
10.1145/1944846.1944849
10.1145/2601097.2601113
10.1109/ICCV.1998.710815
10.1145/1073204.1073318
10.1145/1531326.1531403
10.1145/1141911.1141997
10.1109/TVCG.2005.83
10.1145/1073204.1073320
10.1145/1179849.1179983
10.1145/1531326.1531399
10.1145/2070781.2024214
10.1145/2366145.2366213
10.1145/37402.37410
10.1109/CADGraphics.2013.24
10.1145/378456.378490
10.1109/TIP.2006.881969
10.1111/j.1467-8659.2004.00792.x
10.1111/j.1467-8659.2008.01246.x
10.1109/MCG.2005.31
10.1145/2601097.2601219
10.1145/1330511.1330518
10.1145/2366145.2366211
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Copyright
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
1XC
VOOES
DOI 10.1111/cgf.12592
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Technology Research Database

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1467-8659
EndPage 681
ExternalDocumentID oai:HAL:hal-01252647v1
3721827421
10_1111_cgf_12592
CGF12592
ark_67375_WNG_H7F8QT7L_M
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
ALUQN
JQ2
L7M
L~C
L~D
F28
FR3
1XC
VOOES
ID FETCH-LOGICAL-c5032-dd8d9a7966ae468b4f095ff741f9ea223f94ccf1021d7144c54eea78ec657f9b3
IEDL.DBID DRFUL
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358326600061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Tue Oct 14 20:54:08 EDT 2025
Fri Sep 05 13:21:56 EDT 2025
Fri Jul 25 23:46:01 EDT 2025
Sat Nov 29 07:48:17 EST 2025
Tue Nov 18 22:20:27 EST 2025
Tue Oct 28 04:18:46 EDT 2025
Tue Nov 11 03:32:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5032-dd8d9a7966ae468b4f095ff741f9ea223f94ccf1021d7144c54eea78ec657f9b3
Notes ark:/67375/WNG-H7F8QT7L-M
ArticleID:CGF12592
istex:30DDA18868856554ADF4533868534D116913804F
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3214-4183
OpenAccessLink https://inria.hal.science/hal-01252647
PQID 1690185474
PQPubID 30877
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_01252647v1
proquest_miscellaneous_1778043208
proquest_journals_1690185474
crossref_citationtrail_10_1111_cgf_12592
crossref_primary_10_1111_cgf_12592
wiley_primary_10_1111_cgf_12592_CGF12592
istex_primary_ark_67375_WNG_H7F8QT7L_M
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Petschnigg G., Szeliski R., Agrawala M., Cohen M., Hoppe H., Toyama K.: Digital photography with flash and noflash image pairs. ACM Trans. Graph. 23, 3 (Aug. 2004), 664-672. 9, 10
Ward G.J., Rubinstein F.M., Clear R.D.: A ray tracing solution for diffuse interreflection. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 85-92. 2, 6
Georgiev I., Křivánek J., Davidovi T., Slusallek P.: Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (Nov. 2012), 192:1-192:10. 11
Hachisuka T., Jarosz W., Weistroffer R.P., Dale K., Humphreys G., Zwicker M., Jensen H.W.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3 (Aug. 2008), 33:1-33:10. 7, 11, 13
Egan K., Durand F., Ramamoorthi R.: Practical filtering for efficient raytraced directional occlusion. ACM Trans. Graph. 30, 6 (Dec. 2011), 180:1-180:10. 4, 5
Egan K., Tseng Y.T., Holzschuch N., Durand F., Ramamoorthi R.: Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3 (July 2009), 93:1-93:13. 3, 4, 5, 8, 13
Moon B., Jun J.Y., Lee J., Kim K., Hachisuka T., Yoon S.E.: Robust image denoising using a virtual flash image for Monte Carlo ray tracing. Computer Graphics Forum 32, 1 (2013), 139-151. 10, 13
Sen P., Darabi S.: Compressive rendering: A rendering application of compressed sensing. IEEE Trans. Vis. Comput. Graph. 17, 4 (April 2011), 487-499. 11
Jarosz W., Schönefeld V., Kobbelt L., Jensen H.W.: Theory, analysis and applications of 2D global illumination. ACM Trans. Graph. 31, 5 (Sept. 2012), 125:1-125:21. 6
Rousselle F., Manzi M., Zwicker M.: Robust denoising using feature and color information. Computer Graphics Forum 32, 7 (2013), 121-130. 9, 10, 12, 13
Jensen H.W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001. 11
Mehta S.U., Wang B., Ramamoorthi R.: Axisaligned filtering for interactive sampled soft shadows. ACM Trans. Graph. 31, 6 (Nov. 2012), 163:1-163:10. 4, 5, 13
Elad M., Aharon M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 12 (Dec 2006), 3736-3745. 8
McCool M.D.: Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans. Graph. 18, 2 (Apr. 1999), 171-194. 2, 9, 12
Jarosz W., Zwicker M., Jensen H.W.: Irradiance gradients in the presence of participating media and occlusions. Computer Graphics Forum (Proc. EGSR) 27, 4 (June 2008), 1087-1096. 6
Mehta S.U., Yao J., Ramamoorthi R., Durand F.: Factored axisaligned filtering for rendering multiple distribution effects. ACM Trans. Graph. 33, 4 (July 2014), 57:1-57:12. 4, 5, 9, 10
Lehtinen J., Aila T., Chen J., Laine S., Durand F.: Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30, 4 (July 2011), 55:1-55:12. 5, 6, 13
Muñoz A.: Higher order ray marching. Computer Graphics Forum 33, 8 (2014), 167-176. 5
Belcour L., Bala K., Soler C.: A local frequency analysis of light scattering and absorption. ACM Trans. Graph. 33, 5 (Aug. 2014). 5, 6
Schwarzhaupt J., Jensen H.W., Jarosz W.: Practical Hessianbased error control for irradiance caching. ACM Trans. Graph. 31, 6 (Nov. 2012), 193:1-193:10. 6, 7
Soler C., Subr K., Durand F., Holzschuch N., Sillion F.: Fourier depth of field. ACM Trans. Graph. 28, 2 (May 2009), 18:1-18:12. 4, 5
Křivánek J., Gautron P., Pattanaik S., Bouatouch K.: Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comput. Graph. 11, 5 (2005), 550-561. 6
Lehtinen J., Aila T., Laine S., Durand F.: Reconstructing the indirect light field for global illumination. ACM Trans. Graph. 31, 4 (July 2012), 51:1-51:10. 6, 13
DeCoro C., Weyrich T., Rusinkiewicz S.: Densitybased outlier rejection in Monte Carlo rendering. Computer Graphics Forum 29, 7 (2010), 2119-2125. 11
Mitchell D.P.: Spectrally optimal sampling for distribution ray tracing. SIGGRAPH Comput. Graph. 25, 4 (July 1991), 157-164. 2
Painter J., Sloan K.: Antialiased ray tracing by adaptive progressive refinement. SIGGRAPH Comput. Graph. 23, 3 (July 1989), 281-288. 2
Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 3 (1994), 425-455. 7, 8
Eisemann E., Durand F.: Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 3 (Aug. 2004), 673-678. 9, 10
Li T.M., Wu Y.T., Chuang Y.Y.: Surebased optimization for adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6 (Nov. 2012), 194:1-194:9. 9, 10, 11, 12, 13
Xu R., Pattanaik S.: A novel Monte Carlo noise reduction operator. IEEE Comput. Graph. Appl. 25, 2 (2005), 31-35. 8, 12
Bagher M., Soler C., Subr K., Belcour L., Holzschuch N.: Interactive rendering of acquired materials on dynamic geometry using frequency analysis. IEEE Trans. Vis. Comput. Graph. 19, 5 (May 2013), 749-761. 3, 5
Walter B., Fernandez S., Arbree A., Bala K., Donikian M., Greenberg D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24, 3 (2005), 1098-1107. 11
Van De Ville D., Kocher M.: Surebased nonlocal means. IEEE Signal Process. Lett. 16, 11 (2009), 973-976. 9
Egan K., Hecht F., Durand F., Ramamoorthi R.: Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30, 2 (Apr. 2011), 91-9:13. 4,5
Pharr M., Humphreys G.: Physically Based Rendering: From Theory To Implementation, 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2010. 9
Moon B., Carr N., Yoon S.E.: Adaptive rendering based on weighted local regression. ACM Trans. Graph. 33, 5 (Sept. 2014), 170:1-170:14. 10, 11, 12, 13
Meyer M., Anderson J.: Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3 (July 2006), 1075-1080. 12
Kajiya J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 143-150. 1
Overbeck R.S., Donner C., Ramamoorthi R.: Adaptive wavelet rendering. ACM Trans. Graph. 28, 5 (Dec. 2009), 140:1-140:12. 2, 7, 8, 12, 13
Rousselle F., Knaus C., Zwicker M.: Adaptive rendering with nonlocal means filtering. ACM Trans. Graph. 31, 6 (Nov. 2012), 195:1-195:11. 8, 12, 13
Delbracio M., Musé P., Buades A., Chauvier J., Phelps N., Morel J.M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Graph. 33, 1 (Feb. 2014), 81-8:15. 8, 12, 13
Hanika J., Dachsbacher C.: Efficient Monte Carlo rendering with realistic lenses. Computer Graphics Forum 33, 2 (2014), 323-332. 5
Křivánek J., Georgiev I., Hachisuka T., Vévoda P., Šik M., Nowrouzezahrai D., Jarosz W.: Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. 33, 4 (July 2014), 103:1-103:13. 5
Durand F., Holzschuch N., Soler C., Chan E., Sillion F.X.: A frequency analysis of light transport. ACM Trans. Graph. 24, 3 (July 2005), 1115-1126. 2, 3, 4, 5
Wetzstein G., Lanman D., Heidrich W., Raskar R.: Layered 3d: Tomographic image synthesis for attenuationbased light field and high dynamic range displays. ACM Trans. Graph. 30, 4 (July 2011), 95:1-95:12. 3
Buades A., Coll B., Morel J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 2 (2005), 490-530. 8
Belcour L., Soler C., Subr K., Holzschuch N., Durand F.: 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32, 3 (July 2013), 31:1-31:18. 4, 5
Mehta S.U., Wang B., Ramamoorthi R., Durand F.: Axisaligned filtering for interactive physicallybased diffuse indirect lighting. ACM Trans. Graph. 32, 4 (July 2013), 96:1-96:12. 4, 5, 13
Kalantari N.K., Sen P.: Removing the noise in Monte Carlo rendering with general image denoising algorithms. Computer Graphics Forum 32, 2 (2013), 93-102. 8, 10, 12, 13
Heide F., Wetzstein G., Raskar R., Heidrich W.: Adaptive image synthesis for compressive displays. ACM Trans. Graph. 32, 4 (July 2013), 132:1-132:12. 11
Oppenheim A.V., Schafer R.W.: DiscreteTime Signal Processing, 3rd ed. Prentice Hall, 2009. 2
Munkberg J., Vaidyanathan K., Hasselgren J., CLARBERG P., AkenineMöller T.: Layered reconstruction for defocus and motion blur. Computer Graphics Forum 33, 4 (2014), 81-92. 5, 13
Ramamoorthi R., Mahajan D., Belhumeur P.: A firstorder analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1 (Jan. 2007). 6
Bauszat P., Eisemann M., Magnor M.: Guided image filtering for interactive highquality global illumination. Computer Graphics Forum 30, 4 (2011), 1361-1368. 10, 12
Rousselle F., Knaus C., Zwicker M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 159:1-159:12. 7, 12, 13
Dabov K., Foi A., Katkovnik V., Egiazarian K.: Image denoising by sparse 3d transformdomain collaborative filtering. IEEE Trans. Image Process. 16, 8 (2007), 2080-2095. 8
Sen P., Darabi S.: On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31, 3 (June 2012), 18:1-18:15. 9, 11, 12, 13
Mitchell D.P.: Generating antialiased images at low sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 65-72. 2, 7, 12
Jarosz W., Donner C., Zwicker M., Jensen H.W.: Radiance caching for participating media. ACM Trans. Graph. 27, 1 (Mar. 2008). 6
Levin A., Hasinoff S.W., Green P., Durand F., Freeman W.T.: 4d frequency analysis of computational cameras for depth of field extension. ACM Trans. Graph. 28, 3 (July 2009), 97:1-97:14. 3
Walter B., Arbree A., Bala K., Greenberg D. P.: Multidimensional lightcuts. ACM Trans. Graph. 25, 3 (2006), 1081-1088. 11
Hachisuka T., Pantaleoni J., Jensen H. W.: A path space extension for robust light transport simulation. ACM Trans. Graph. 31, 6 (Nov. 2012), 191:1-191:10. 11
Jarabo A., Marco J., Muñoz A., Buisan R., Jarosz W., Gutierrez D.: A framework for transient rendering. ACM Trans. Graph. 33, 6 (Nov. 2014), 177:1-177:10. 11
Farrugia J.P., Péroche B.: A progressive rendering algorithm using an adaptive perceptually based image metric. Computer Graphics Forum 23, 3 (Sept. 2004), 605-614. 12
1989; 23
2010
2004; 23
2006; 15
1998
2009
2011; 30
1996
1992; 8598
2006
2005
1994
1993
1994; 81
2011; 17
2012; 31
2005; 24
2007; 16
2009; 28
1999
2005; 25
2013; 19
1987; 21
1991; 25
2001
2013; 32
2000
1986; 20
2010; 29
1999; 18
2008; 27
2006; 25
2005; 4
1986
1988; 22
2014
2005; 11
2009; 16
2014; 33
2007; 26
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
Ward G.J. (e_1_2_7_80_2) 1992
e_1_2_7_83_2
e_1_2_7_15_2
e_1_2_7_81_2
Shinya M. (e_1_2_7_72_2) 1993
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
Bolin M.R. (e_1_2_7_5_2) 1998
Pharr M. (e_1_2_7_60_2) 2010
Ramasubramanian M. (e_1_2_7_68_2) 1999
Chai J.X. (e_1_2_7_8_2) 2000
e_1_2_7_71_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_35_2
e_1_2_7_77_2
Rushmeier H.E. (e_1_2_7_69_2) 1994
e_1_2_7_37_2
e_1_2_7_39_2
Oppenheim A.V. (e_1_2_7_58_2) 2009
Levoy M. (e_1_2_7_43_2) 1996
e_1_2_7_4_2
e_1_2_7_2_2
He K. (e_1_2_7_28_2) 2010
Dammertz H. (e_1_2_7_13_2) 2010
e_1_2_7_6_2
Guo B. (e_1_2_7_23_2) 1998
e_1_2_7_18_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Goddard L. (e_1_2_7_22_2) 2014
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_78_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – reference: Egan K., Durand F., Ramamoorthi R.: Practical filtering for efficient raytraced directional occlusion. ACM Trans. Graph. 30, 6 (Dec. 2011), 180:1-180:10. 4, 5
– reference: Mehta S.U., Wang B., Ramamoorthi R., Durand F.: Axisaligned filtering for interactive physicallybased diffuse indirect lighting. ACM Trans. Graph. 32, 4 (July 2013), 96:1-96:12. 4, 5, 13
– reference: Dabov K., Foi A., Katkovnik V., Egiazarian K.: Image denoising by sparse 3d transformdomain collaborative filtering. IEEE Trans. Image Process. 16, 8 (2007), 2080-2095. 8
– reference: Jarosz W., Donner C., Zwicker M., Jensen H.W.: Radiance caching for participating media. ACM Trans. Graph. 27, 1 (Mar. 2008). 6
– reference: Lehtinen J., Aila T., Laine S., Durand F.: Reconstructing the indirect light field for global illumination. ACM Trans. Graph. 31, 4 (July 2012), 51:1-51:10. 6, 13
– reference: Levin A., Hasinoff S.W., Green P., Durand F., Freeman W.T.: 4d frequency analysis of computational cameras for depth of field extension. ACM Trans. Graph. 28, 3 (July 2009), 97:1-97:14. 3
– reference: DeCoro C., Weyrich T., Rusinkiewicz S.: Densitybased outlier rejection in Monte Carlo rendering. Computer Graphics Forum 29, 7 (2010), 2119-2125. 11
– reference: Petschnigg G., Szeliski R., Agrawala M., Cohen M., Hoppe H., Toyama K.: Digital photography with flash and noflash image pairs. ACM Trans. Graph. 23, 3 (Aug. 2004), 664-672. 9, 10
– reference: Mitchell D.P.: Generating antialiased images at low sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 65-72. 2, 7, 12
– reference: Wetzstein G., Lanman D., Heidrich W., Raskar R.: Layered 3d: Tomographic image synthesis for attenuationbased light field and high dynamic range displays. ACM Trans. Graph. 30, 4 (July 2011), 95:1-95:12. 3
– reference: Jarosz W., Schönefeld V., Kobbelt L., Jensen H.W.: Theory, analysis and applications of 2D global illumination. ACM Trans. Graph. 31, 5 (Sept. 2012), 125:1-125:21. 6
– reference: Hachisuka T., Pantaleoni J., Jensen H. W.: A path space extension for robust light transport simulation. ACM Trans. Graph. 31, 6 (Nov. 2012), 191:1-191:10. 11
– reference: Munkberg J., Vaidyanathan K., Hasselgren J., CLARBERG P., AkenineMöller T.: Layered reconstruction for defocus and motion blur. Computer Graphics Forum 33, 4 (2014), 81-92. 5, 13
– reference: Belcour L., Soler C., Subr K., Holzschuch N., Durand F.: 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32, 3 (July 2013), 31:1-31:18. 4, 5
– reference: Walter B., Arbree A., Bala K., Greenberg D. P.: Multidimensional lightcuts. ACM Trans. Graph. 25, 3 (2006), 1081-1088. 11
– reference: Heide F., Wetzstein G., Raskar R., Heidrich W.: Adaptive image synthesis for compressive displays. ACM Trans. Graph. 32, 4 (July 2013), 132:1-132:12. 11
– reference: Moon B., Jun J.Y., Lee J., Kim K., Hachisuka T., Yoon S.E.: Robust image denoising using a virtual flash image for Monte Carlo ray tracing. Computer Graphics Forum 32, 1 (2013), 139-151. 10, 13
– reference: Mehta S.U., Yao J., Ramamoorthi R., Durand F.: Factored axisaligned filtering for rendering multiple distribution effects. ACM Trans. Graph. 33, 4 (July 2014), 57:1-57:12. 4, 5, 9, 10
– reference: Sen P., Darabi S.: On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31, 3 (June 2012), 18:1-18:15. 9, 11, 12, 13
– reference: Soler C., Subr K., Durand F., Holzschuch N., Sillion F.: Fourier depth of field. ACM Trans. Graph. 28, 2 (May 2009), 18:1-18:12. 4, 5
– reference: Bauszat P., Eisemann M., Magnor M.: Guided image filtering for interactive highquality global illumination. Computer Graphics Forum 30, 4 (2011), 1361-1368. 10, 12
– reference: Rousselle F., Knaus C., Zwicker M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 159:1-159:12. 7, 12, 13
– reference: Bagher M., Soler C., Subr K., Belcour L., Holzschuch N.: Interactive rendering of acquired materials on dynamic geometry using frequency analysis. IEEE Trans. Vis. Comput. Graph. 19, 5 (May 2013), 749-761. 3, 5
– reference: Jarosz W., Zwicker M., Jensen H.W.: Irradiance gradients in the presence of participating media and occlusions. Computer Graphics Forum (Proc. EGSR) 27, 4 (June 2008), 1087-1096. 6
– reference: Pharr M., Humphreys G.: Physically Based Rendering: From Theory To Implementation, 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2010. 9
– reference: Egan K., Hecht F., Durand F., Ramamoorthi R.: Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30, 2 (Apr. 2011), 91-9:13. 4,5
– reference: Li T.M., Wu Y.T., Chuang Y.Y.: Surebased optimization for adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6 (Nov. 2012), 194:1-194:9. 9, 10, 11, 12, 13
– reference: Egan K., Tseng Y.T., Holzschuch N., Durand F., Ramamoorthi R.: Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3 (July 2009), 93:1-93:13. 3, 4, 5, 8, 13
– reference: Painter J., Sloan K.: Antialiased ray tracing by adaptive progressive refinement. SIGGRAPH Comput. Graph. 23, 3 (July 1989), 281-288. 2
– reference: Hachisuka T., Jarosz W., Weistroffer R.P., Dale K., Humphreys G., Zwicker M., Jensen H.W.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3 (Aug. 2008), 33:1-33:10. 7, 11, 13
– reference: Elad M., Aharon M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 12 (Dec 2006), 3736-3745. 8
– reference: Lehtinen J., Aila T., Chen J., Laine S., Durand F.: Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30, 4 (July 2011), 55:1-55:12. 5, 6, 13
– reference: Ward G.J., Rubinstein F.M., Clear R.D.: A ray tracing solution for diffuse interreflection. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 85-92. 2, 6
– reference: Křivánek J., Gautron P., Pattanaik S., Bouatouch K.: Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comput. Graph. 11, 5 (2005), 550-561. 6
– reference: McCool M.D.: Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans. Graph. 18, 2 (Apr. 1999), 171-194. 2, 9, 12
– reference: Moon B., Carr N., Yoon S.E.: Adaptive rendering based on weighted local regression. ACM Trans. Graph. 33, 5 (Sept. 2014), 170:1-170:14. 10, 11, 12, 13
– reference: Ramamoorthi R., Mahajan D., Belhumeur P.: A firstorder analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1 (Jan. 2007). 6
– reference: Jarabo A., Marco J., Muñoz A., Buisan R., Jarosz W., Gutierrez D.: A framework for transient rendering. ACM Trans. Graph. 33, 6 (Nov. 2014), 177:1-177:10. 11
– reference: Farrugia J.P., Péroche B.: A progressive rendering algorithm using an adaptive perceptually based image metric. Computer Graphics Forum 23, 3 (Sept. 2004), 605-614. 12
– reference: Kalantari N.K., Sen P.: Removing the noise in Monte Carlo rendering with general image denoising algorithms. Computer Graphics Forum 32, 2 (2013), 93-102. 8, 10, 12, 13
– reference: Muñoz A.: Higher order ray marching. Computer Graphics Forum 33, 8 (2014), 167-176. 5
– reference: Overbeck R.S., Donner C., Ramamoorthi R.: Adaptive wavelet rendering. ACM Trans. Graph. 28, 5 (Dec. 2009), 140:1-140:12. 2, 7, 8, 12, 13
– reference: Mitchell D.P.: Spectrally optimal sampling for distribution ray tracing. SIGGRAPH Comput. Graph. 25, 4 (July 1991), 157-164. 2
– reference: Georgiev I., Křivánek J., Davidovi T., Slusallek P.: Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (Nov. 2012), 192:1-192:10. 11
– reference: Delbracio M., Musé P., Buades A., Chauvier J., Phelps N., Morel J.M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Graph. 33, 1 (Feb. 2014), 81-8:15. 8, 12, 13
– reference: Van De Ville D., Kocher M.: Surebased nonlocal means. IEEE Signal Process. Lett. 16, 11 (2009), 973-976. 9
– reference: Meyer M., Anderson J.: Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3 (July 2006), 1075-1080. 12
– reference: Xu R., Pattanaik S.: A novel Monte Carlo noise reduction operator. IEEE Comput. Graph. Appl. 25, 2 (2005), 31-35. 8, 12
– reference: Eisemann E., Durand F.: Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 3 (Aug. 2004), 673-678. 9, 10
– reference: Hanika J., Dachsbacher C.: Efficient Monte Carlo rendering with realistic lenses. Computer Graphics Forum 33, 2 (2014), 323-332. 5
– reference: Durand F., Holzschuch N., Soler C., Chan E., Sillion F.X.: A frequency analysis of light transport. ACM Trans. Graph. 24, 3 (July 2005), 1115-1126. 2, 3, 4, 5
– reference: Schwarzhaupt J., Jensen H.W., Jarosz W.: Practical Hessianbased error control for irradiance caching. ACM Trans. Graph. 31, 6 (Nov. 2012), 193:1-193:10. 6, 7
– reference: Mehta S.U., Wang B., Ramamoorthi R.: Axisaligned filtering for interactive sampled soft shadows. ACM Trans. Graph. 31, 6 (Nov. 2012), 163:1-163:10. 4, 5, 13
– reference: Sen P., Darabi S.: Compressive rendering: A rendering application of compressed sensing. IEEE Trans. Vis. Comput. Graph. 17, 4 (April 2011), 487-499. 11
– reference: Rousselle F., Knaus C., Zwicker M.: Adaptive rendering with nonlocal means filtering. ACM Trans. Graph. 31, 6 (Nov. 2012), 195:1-195:11. 8, 12, 13
– reference: Kajiya J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 143-150. 1
– reference: Křivánek J., Georgiev I., Hachisuka T., Vévoda P., Šik M., Nowrouzezahrai D., Jarosz W.: Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. 33, 4 (July 2014), 103:1-103:13. 5
– reference: Belcour L., Bala K., Soler C.: A local frequency analysis of light scattering and absorption. ACM Trans. Graph. 33, 5 (Aug. 2014). 5, 6
– reference: Buades A., Coll B., Morel J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 2 (2005), 490-530. 8
– reference: Jensen H.W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001. 11
– reference: Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 3 (1994), 425-455. 7, 8
– reference: Oppenheim A.V., Schafer R.W.: DiscreteTime Signal Processing, 3rd ed. Prentice Hall, 2009. 2
– reference: Rousselle F., Manzi M., Zwicker M.: Robust denoising using feature and color information. Computer Graphics Forum 32, 7 (2013), 121-130. 9, 10, 12, 13
– reference: Walter B., Fernandez S., Arbree A., Bala K., Donikian M., Greenberg D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24, 3 (2005), 1098-1107. 11
– start-page: 68:1
  year: 2014
  end-page: 68:1
– volume: 31
  start-page: 193:1
  issue: 6
  year: 2012
  end-page: 193:10
  article-title: Practical Hessianbased error control for irradiance caching
  publication-title: ACM Trans. Graph
– year: 2009
– volume: 28
  start-page: 97:1
  issue: 3
  year: 2009
  end-page: 97:14
  article-title: 4d frequency analysis of computational cameras for depth of field extension
  publication-title: ACM Trans. Graph
– volume: 27
  issue: 1
  year: 2008
  article-title: Radiance caching for participating media
  publication-title: ACM Trans. Graph
– volume: 32
  start-page: 96:1
  issue: 4
  year: 2013
  end-page: 96:12
  article-title: Axisaligned filtering for interactive physicallybased diffuse indirect lighting
  publication-title: ACM Trans. Graph
– volume: 31
  start-page: 195:1
  issue: 6
  year: 2012
  end-page: 195:11
  article-title: Adaptive rendering with nonlocal means filtering
  publication-title: ACM Trans. Graph
– volume: 33
  start-page: 323
  issue: 2
  year: 2014
  end-page: 332
  article-title: Efficient Monte Carlo rendering with realistic lenses
  publication-title: Computer Graphics Forum
– volume: 16
  start-page: 973
  issue: 11
  year: 2009
  end-page: 976
  article-title: Surebased nonlocal means
  publication-title: IEEE Signal Process. Lett
– volume: 32
  start-page: 31:1
  issue: 3
  year: 2013
  end-page: 31:18
  article-title: 5D covariance tracing for efficient defocus and motion blur
  publication-title: ACM Trans. Graph
– year: 2001
– volume: 20
  start-page: 143
  issue: 4
  year: 1986
  end-page: 150
  article-title: The rendering equation
  publication-title: SIGGRAPH Comput. Graph
– start-page: 155
  year: 2005
  end-page: 159
– volume: 31
  start-page: 192:1
  issue: 6
  year: 2012
  end-page: 192:10
  article-title: Light transport simulation with vertex connection and merging
  publication-title: ACM Trans. Graph
– volume: 33
  start-page: 81
  issue: 4
  year: 2014
  end-page: 92
  article-title: Layered reconstruction for defocus and motion blur
  publication-title: Computer Graphics Forum
– volume: 33
  issue: 5
  year: 2014
  article-title: A local frequency analysis of light scattering and absorption
  publication-title: ACM Trans. Graph
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  end-page: 3745
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process
– volume: 81
  start-page: 425
  issue: 3
  year: 1994
  end-page: 455
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 24
  start-page: 1115
  issue: 3
  year: 2005
  end-page: 1126
  article-title: A frequency analysis of light transport
  publication-title: ACM Trans. Graph
– start-page: 289
  year: 1993
  end-page: 296
– volume: 26
  issue: 1
  year: 2007
  article-title: A firstorder analysis of lighting, shading, and shadows
  publication-title: ACM Trans. Graph
– volume: 28
  start-page: 93:1
  issue: 3
  year: 2009
  end-page: 93:13
  article-title: Frequency analysis and sheared reconstruction for rendering motion blur
  publication-title: ACM Trans. Graph
– volume: 4
  start-page: 490
  issue: 2
  year: 2005
  end-page: 530
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Modeling & Simulation
– volume: 19
  start-page: 749
  issue: 5
  year: 2013
  end-page: 761
  article-title: Interactive rendering of acquired materials on dynamic geometry using frequency analysis
  publication-title: IEEE Trans. Vis. Comput. Graph
– volume: 28
  start-page: 18:1
  issue: 2
  year: 2009
  end-page: 18:12
  article-title: Fourier depth of field
  publication-title: ACM Trans. Graph
– volume: 30
  start-page: 55:1
  issue: 4
  year: 2011
  end-page: 55:12
  article-title: Temporal light field reconstruction for rendering distribution effects
  publication-title: ACM Trans. Graph
– start-page: 1
  year: 2010
  end-page: 14
– volume: 18
  start-page: 171
  issue: 2
  year: 1999
  end-page: 194
  article-title: Anisotropic diffusion for Monte Carlo noise reduction
  publication-title: ACM Trans. Graph
– volume: 17
  start-page: 487
  issue: 4
  year: 2011
  end-page: 499
  article-title: Compressive rendering: A rendering application of compressed sensing
  publication-title: IEEE Trans. Vis. Comput. Graph
– year: 1986
– volume: 33
  start-page: 103:1
  issue: 4
  year: 2014
  end-page: 103:13
  article-title: Unifying points, beams, and paths in volumetric light transport simulation
  publication-title: ACM Trans. Graph
– volume: 30
  start-page: 159:1
  issue: 6
  year: 2011
  end-page: 159:12
  article-title: Adaptive sampling and reconstruction using greedy error minimization
  publication-title: ACM Trans. Graph
– volume: 23
  start-page: 673
  issue: 3
  year: 2004
  end-page: 678
  article-title: Flash photography enhancement via intrinsic relighting
  publication-title: ACM Trans. Graph
– volume: 27
  start-page: 1087
  issue: 4
  year: 2008
  end-page: 1096
  article-title: Irradiance gradients in the presence of participating media and occlusions
  publication-title: Computer Graphics Forum (Proc. EGSR)
– volume: 33
  start-page: 170:1
  issue: 5
  year: 2014
  end-page: 170:14
  article-title: Adaptive rendering based on weighted local regression
  publication-title: ACM Trans. Graph
– start-page: 255
  year: 1998
  end-page: 266
– volume: 33
  start-page: 167
  issue: 8
  year: 2014
  end-page: 176
  article-title: Higher order ray marching
  publication-title: Computer Graphics Forum
– volume: 23
  start-page: 281
  issue: 3
  year: 1989
  end-page: 288
  article-title: Antialiased ray tracing by adaptive progressive refinement
  publication-title: SIGGRAPH Comput. Graph
– volume: 33
  start-page: 177:1
  issue: 6
  year: 2014
  end-page: 177:10
  article-title: A framework for transient rendering
  publication-title: ACM Trans. Graph
– start-page: 131
  year: 1994
  end-page: 138
– volume: 11
  start-page: 550
  issue: 5
  year: 2005
  end-page: 561
  article-title: Radiance caching for efficient global illumination computation
  publication-title: IEEE Trans. Vis. Comput. Graph
– start-page: 73
  year: 2006
  end-page: 82
– volume: 30
  start-page: 91
  issue: 2
  year: 2011
  end-page: 9:13
  article-title: Frequency analysis and sheared filtering for shadow light fields of complex occluders
  publication-title: ACM Trans. Graph
– volume: 27
  start-page: 33:1
  issue: 3
  year: 2008
  end-page: 33:10
  article-title: Multidimensional adaptive sampling and reconstruction for ray tracing
  publication-title: ACM Trans. Graph
– volume: 23
  start-page: 605
  issue: 3
  year: 2004
  end-page: 614
  article-title: A progressive rendering algorithm using an adaptive perceptually based image metric
  publication-title: Computer Graphics Forum
– start-page: 67
  year: 2010
  end-page: 75
– volume: 31
  start-page: 191:1
  issue: 6
  year: 2012
  end-page: 191:10
  article-title: A path space extension for robust light transport simulation
  publication-title: ACM Trans. Graph
– start-page: 73
  year: 1999
  end-page: 82
– volume: 30
  start-page: 180:1
  issue: 6
  year: 2011
  end-page: 180:10
  article-title: Practical filtering for efficient raytraced directional occlusion
  publication-title: ACM Trans. Graph
– start-page: 31
  year: 1996
  end-page: 42
– volume: 8598
  year: 1992
– start-page: 38:1
  year: 2014
  end-page: 38:1
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  article-title: Image denoising by sparse 3d transformdomain collaborative filtering
  publication-title: IEEE Trans. Image Process
– volume: 31
  start-page: 163:1
  issue: 6
  year: 2012
  end-page: 163:10
  article-title: Axisaligned filtering for interactive sampled soft shadows
  publication-title: ACM Trans. Graph
– volume: 25
  start-page: 31
  issue: 2
  year: 2005
  end-page: 35
  article-title: A novel Monte Carlo noise reduction operator
  publication-title: IEEE Comput. Graph. Appl
– volume: 32
  start-page: 132:1
  issue: 4
  year: 2013
  end-page: 132:12
  article-title: Adaptive image synthesis for compressive displays
  publication-title: ACM Trans. Graph
– volume: 33
  start-page: 57:1
  issue: 4
  year: 2014
  end-page: 57:12
  article-title: Factored axisaligned filtering for rendering multiple distribution effects
  publication-title: ACM Trans. Graph
– volume: 32
  start-page: 121
  issue: 7
  year: 2013
  end-page: 130
  article-title: Robust denoising using feature and color information
  publication-title: Computer Graphics Forum
– volume: 29
  start-page: 2119
  issue: 7
  year: 2010
  end-page: 2125
  article-title: Densitybased outlier rejection in Monte Carlo rendering
  publication-title: Computer Graphics Forum
– volume: 31
  start-page: 125:1
  issue: 5
  year: 2012
  end-page: 125:21
  article-title: Theory, analysis and applications of 2D global illumination
  publication-title: ACM Trans. Graph
– start-page: 299
  year: 1998
  end-page: 309
– year: 2010
– volume: 31
  start-page: 51:1
  issue: 4
  year: 2012
  end-page: 51:10
  article-title: Reconstructing the indirect light field for global illumination
  publication-title: ACM Trans. Graph
– start-page: 307
  year: 2000
  end-page: 318
– volume: 25
  start-page: 157
  issue: 4
  year: 1991
  end-page: 164
  article-title: Spectrally optimal sampling for distribution ray tracing
  publication-title: SIGGRAPH Comput. Graph
– volume: 25
  start-page: 1081
  issue: 3
  year: 2006
  end-page: 1088
  article-title: Multidimensional lightcuts
  publication-title: ACM Trans. Graph
– volume: 31
  start-page: 194:1
  issue: 6
  year: 2012
  end-page: 194:9
  article-title: Surebased optimization for adaptive sampling and reconstruction
  publication-title: ACM Trans. Graph
– start-page: 123
  end-page: 130
– volume: 30
  start-page: 1361
  issue: 4
  year: 2011
  end-page: 1368
  article-title: Guided image filtering for interactive highquality global illumination
  publication-title: Computer Graphics Forum
– volume: 32
  start-page: 139
  issue: 1
  year: 2013
  end-page: 151
  article-title: Robust image denoising using a virtual flash image for Monte Carlo ray tracing
  publication-title: Computer Graphics Forum
– start-page: 839
  year: 1998
  end-page: 846
– volume: 21
  start-page: 65
  issue: 4
  year: 1987
  end-page: 72
  article-title: Generating antialiased images at low sampling densities
  publication-title: SIGGRAPH Comput. Graph
– volume: 25
  start-page: 1075
  issue: 3
  year: 2006
  end-page: 1080
  article-title: Statistical acceleration for animated global illumination
  publication-title: ACM Trans. Graph
– volume: 31
  start-page: 18:1
  issue: 3
  year: 2012
  end-page: 18:15
  article-title: On filtering the noise from the random parameters in Monte Carlo rendering
  publication-title: ACM Trans. Graph
– volume: 24
  start-page: 1098
  issue: 3
  year: 2005
  end-page: 1107
  article-title: Lightcuts: a scalable approach to illumination
  publication-title: ACM Trans. Graph
– volume: 28
  start-page: 140:1
  issue: 5
  year: 2009
  end-page: 140:12
  article-title: Adaptive wavelet rendering
  publication-title: ACM Trans. Graph
– volume: 23
  start-page: 664
  issue: 3
  year: 2004
  end-page: 672
  article-title: Digital photography with flash and noflash image pairs
  publication-title: ACM Trans. Graph
– volume: 33
  start-page: 81
  issue: 1
  year: 2014
  end-page: 8:15
  article-title: Boosting Monte Carlo rendering by ray histogram fusion
  publication-title: ACM Trans. Graph
– volume: 32
  start-page: 93
  issue: 2
  year: 2013
  end-page: 102
  article-title: Removing the noise in Monte Carlo rendering with general image denoising algorithms
  publication-title: Computer Graphics Forum
– volume: 22
  start-page: 85
  issue: 4
  year: 1988
  end-page: 92
  article-title: A ray tracing solution for diffuse interreflection
  publication-title: SIGGRAPH Comput. Graph
– volume: 30
  start-page: 95:1
  issue: 4
  year: 2011
  end-page: 95:12
  article-title: Layered 3d: Tomographic image synthesis for attenuationbased light field and high dynamic range displays
  publication-title: ACM Trans. Graph
– start-page: 2909
  year: 2014
  end-page: 2916
– ident: e_1_2_7_27_2
  doi: 10.1145/2366145.2366210
– start-page: 307
  volume-title: Proc. 27th Annual Conf. on Computer Graphics and Interactive Techniques
  year: 2000
  ident: e_1_2_7_8_2
– ident: e_1_2_7_35_2
  doi: 10.1145/15886.15902
– ident: e_1_2_7_73_2
  doi: 10.1145/2366145.2366212
– ident: e_1_2_7_55_2
  doi: 10.1145/2461912.2461947
– ident: e_1_2_7_77_2
– ident: e_1_2_7_40_2
  doi: 10.1111/cgf.12029
– start-page: 299
  volume-title: Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques
  year: 1998
  ident: e_1_2_7_5_2
– ident: e_1_2_7_37_2
  doi: 10.1145/1090122.1090148
– ident: e_1_2_7_24_2
  doi: 10.1111/cgf.12301
– ident: e_1_2_7_42_2
  doi: 10.1145/2185520.2185547
– ident: e_1_2_7_51_2
  doi: 10.1111/cgf.12004
– ident: e_1_2_7_59_2
  doi: 10.1109/CVPR.2014.372
– ident: e_1_2_7_50_2
  doi: 10.1145/127719.122736
– ident: e_1_2_7_2_2
  doi: 10.1145/2629490
– ident: e_1_2_7_52_2
  doi: 10.1111/cgf.12424
– ident: e_1_2_7_31_2
  doi: 10.1201/b10685
– ident: e_1_2_7_36_2
  doi: 10.1145/2614106.2614149
– ident: e_1_2_7_62_2
  doi: 10.1145/74334.74362
– ident: e_1_2_7_3_2
  doi: 10.1137/040616024
– ident: e_1_2_7_26_2
  doi: 10.1145/1360612.1360632
– ident: e_1_2_7_41_2
  doi: 10.1145/2010324.1964950
– start-page: 1
  volume-title: Proc. 11th European Conf. on Computer Vision: Part I
  year: 2010
  ident: e_1_2_7_28_2
– start-page: 289
  volume-title: Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques
  year: 1993
  ident: e_1_2_7_72_2
– start-page: 31
  volume-title: Proc. 23rd Annual Conf. on Computer Graphics and Interactive Techniques
  year: 1996
  ident: e_1_2_7_43_2
– ident: e_1_2_7_54_2
  doi: 10.1145/2366145.2366182
– start-page: 73
  volume-title: Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques
  year: 1999
  ident: e_1_2_7_68_2
– ident: e_1_2_7_47_2
  doi: 10.1145/318009.318015
– ident: e_1_2_7_65_2
  doi: 10.1145/2366145.2366214
– ident: e_1_2_7_71_2
  doi: 10.1145/2167076.2167083
– start-page: 38:1
  volume-title: ACM SIGGRAPH 2014 Talks
  year: 2014
  ident: e_1_2_7_22_2
– ident: e_1_2_7_16_2
  doi: 10.1145/1015706.1015778
– ident: e_1_2_7_12_2
  doi: 10.1145/2532708
– ident: e_1_2_7_57_2
  doi: 10.1145/1618452.1618486
– ident: e_1_2_7_53_2
  doi: 10.1111/cgf.12415
– ident: e_1_2_7_32_2
  doi: 10.1145/2661229.2661251
– ident: e_1_2_7_14_2
  doi: 10.1111/j.1467-8659.2010.01799.x
– ident: e_1_2_7_74_2
  doi: 10.1145/1516522.1516529
– ident: e_1_2_7_48_2
  doi: 10.1145/2641762
– ident: e_1_2_7_70_2
  doi: 10.1109/TVCG.2010.46
– ident: e_1_2_7_33_2
  doi: 10.1145/2231816.2231823
– ident: e_1_2_7_64_2
  doi: 10.1145/2070781.2024193
– ident: e_1_2_7_66_2
  doi: 10.1145/1189762.1189764
– ident: e_1_2_7_81_2
  doi: 10.1145/2010324.1964990
– ident: e_1_2_7_9_2
  doi: 10.1109/TIP.2007.901238
– ident: e_1_2_7_46_2
  doi: 10.1145/1141911.1141996
– ident: e_1_2_7_11_2
  doi: 10.1093/biomet/81.3.425
– start-page: 131
  volume-title: Proc. 21st annual Conf. on Computer graphics and interactive techniques
  year: 1994
  ident: e_1_2_7_69_2
– ident: e_1_2_7_67_2
  doi: 10.1111/cgf.12219
– ident: e_1_2_7_29_2
  doi: 10.1145/2461912.2461925
– ident: e_1_2_7_4_2
  doi: 10.1111/j.1467-8659.2011.01996.x
– volume-title: Physically Based Rendering: From Theory To Implementation
  year: 2010
  ident: e_1_2_7_60_2
– ident: e_1_2_7_76_2
  doi: 10.1109/LSP.2009.2027669
– ident: e_1_2_7_63_2
  doi: 10.1145/1015706.1015777
– volume-title: Third Eurographics Workshop on Rendering
  year: 1992
  ident: e_1_2_7_80_2
– ident: e_1_2_7_7_2
  doi: 10.1145/2487228.2487239
– ident: e_1_2_7_6_2
  doi: 10.1109/TVCG.2012.298
– ident: e_1_2_7_18_2
  doi: 10.1145/1944846.1944849
– ident: e_1_2_7_56_2
  doi: 10.1145/2601097.2601113
– ident: e_1_2_7_75_2
  doi: 10.1109/ICCV.1998.710815
– ident: e_1_2_7_79_2
  doi: 10.1145/1073204.1073318
– ident: e_1_2_7_44_2
  doi: 10.1145/1531326.1531403
– ident: e_1_2_7_78_2
  doi: 10.1145/1141911.1141997
– ident: e_1_2_7_39_2
  doi: 10.1109/TVCG.2005.83
– ident: e_1_2_7_10_2
  doi: 10.1145/1073204.1073320
– ident: e_1_2_7_84_2
  doi: 10.1145/1179849.1179983
– ident: e_1_2_7_25_2
– start-page: 67
  volume-title: Proc. Conf. on High Performance Graphics
  year: 2010
  ident: e_1_2_7_13_2
– ident: e_1_2_7_19_2
  doi: 10.1145/1531326.1531399
– ident: e_1_2_7_17_2
  doi: 10.1145/2070781.2024214
– ident: e_1_2_7_45_2
  doi: 10.1145/2366145.2366213
– ident: e_1_2_7_49_2
  doi: 10.1145/37402.37410
– ident: e_1_2_7_61_2
  doi: 10.1109/CADGraphics.2013.24
– ident: e_1_2_7_82_2
  doi: 10.1145/378456.378490
– ident: e_1_2_7_15_2
  doi: 10.1109/TIP.2006.881969
– ident: e_1_2_7_20_2
  doi: 10.1111/j.1467-8659.2004.00792.x
– ident: e_1_2_7_34_2
  doi: 10.1111/j.1467-8659.2008.01246.x
– ident: e_1_2_7_83_2
  doi: 10.1109/MCG.2005.31
– ident: e_1_2_7_38_2
  doi: 10.1145/2601097.2601219
– volume-title: DiscreteTime Signal Processing
  year: 2009
  ident: e_1_2_7_58_2
– ident: e_1_2_7_30_2
  doi: 10.1145/1330511.1330518
– start-page: 255
  volume-title: Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques
  year: 1998
  ident: e_1_2_7_23_2
– ident: e_1_2_7_21_2
  doi: 10.1145/2366145.2366211
SSID ssj0004765
Score 2.5263507
Snippet Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality....
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 667
SubjectTerms Adaptive sampling
Algorithms
Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Computer Science
Computer simulation
Graphics
I.3.3 [Computer Graphics]: Picture/Image Generation- Display algorithms
Image processing systems
Monte Carlo methods
Monte Carlo simulation
Reconstruction
Samples
Sampling
Statistical methods
Studies
Title Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering
URI https://api.istex.fr/ark:/67375/WNG-H7F8QT7L-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12592
https://www.proquest.com/docview/1690185474
https://www.proquest.com/docview/1778043208
https://inria.hal.science/hal-01252647
Volume 34
WOSCitedRecordID wos000358326600061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9Buwf2MNgHWjZA3jRNvGRqUjuOtaeqEPpQqrEB481yHJuhoRS1G9qfv7t8UaRNQuItsi-Sc_b5fhff_QzwIR5wr2zkQ5cnLuQq5yGicIExDzfKICQQVYXc-VTOZunFhfqyBp_bWpiaH6L74UaWUe3XZOAmX64Yub30n9A7K9x_-zGuW9GD_sHX7Gx6VxYpE9FSexNpTEMsRIk83cv33NH6D0qG7JN-_9xDnKu4tXI82eajhrwFzxq8yUb1AnkOa658AU9XWAhfwglCR3Q9bFSnAyzZVYnP5oY2QvbNUMp5eclMWTCKVe8YZxniXXZM7FZsbBbXc-ymShkUfgVn2eHpeBI2Ny2EVgyGcVgUaaGMxNDHOJ6kOfeIvLxHtOGVM4ggvOLWeroGvJAYglnBnTMydTYR0qt8uA29cl6618CiFJsRUwrnLU9jl6uCR5H3AqFMYvM4gP1W4do2NOR0G8a1bsMR1JKutBTA-070pube-KcQzlrXT2zZk9FUUxv6XoF4T95GAXysJrUTM4uflNEmhf4-O9ITmaUnp3KqjwPYaWddN8a81HSSiLCGSx7Au64bzZDOVkzp5r9RRhKT0zAepPiB1Rr4_5D1-CirHt48XPQtbCBUE3Wq5Q70cKrdLjyxt7-ulou9ZuX_BQfwA1c
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFQl44BstMMAghHgJalI7jiVeqkJWRFox6NjeLMext4kpnVqY-PO5y9c6CSQk3iz7Ijlnn-939vlngFfxkHtlIx-6InEhVwUPEYULjHm4UQYhgahvyH3L5XyeHh2pz1vwrrsL0_BD9BtuZBn1ek0GThvSG1Zuj_1bdM8KF-ABx2mE83vw_kt2kF_ei5SJ6Li9iTWmZRaiTJ7-4yv-6NoJZUMOSMG_rkDOTeBae57szv_1-S7cbhEnGzdT5B5sueo-3NrgIXwA-wge0fmwcZMQsGanFZbNOS2F7KuhpPPqmJmqZBStXnLOMkS8bEb8VmxiVmdLbKa7Mij8EA6yD4vJNGzfWgitGI7isCzTUhmJwY9xPEkL7hF7eY94wytnEEN4xa319BB4KTEIs4I7Z2TqbCKkV8XoEWxXy8rtAItSrEZUKZy3PI1doUoeRd4LBDOJLeIA3nQa17YlIqf3MM50F5CglnStpQBe9qLnDfvGH4Vw2Pp24suejnNNdeh9BSI-eREF8Loe1V7MrL5TTpsU-nC-p6cyS_cXMtezAHa7YdetOa81nSUisOGSB_Cib0ZDpNMVU7nlT5SRxOU0iocp_mA9Cf7eZT3Zy-rC438XfQ43potZrvOP809P4CYCN9EkXu7CNg67ewrX7cWP0_XqWWsGvwGQ8gdH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFiF44BsRGGAQQrwENakdxxIvVUdWRFZtsLG9WY5jj4kprVqY-PO5y9c6CSQk3iL7Ijk-n-938fl3AK_jEffKRj50ReJCrgoeIgoXGPNwowxCAlHfkPuay_k8PTlR-1vwvrsL0_BD9D_cyDLq_ZoM3C1Lv2Hl9tS_Q_escAMecioiM4DhzufsKL-8FykT0XF7E2tMyyxEmTz9y1f80bVvlA05pAn-dQVybgLX2vNkd_5vzHfhdos42aRZIvdgy1X34dYGD-EDOEDwiM6HTZqEgDU7q_DZLGkrZF8MJZ1Xp8xUJaNo9ZJzliHiZXvEb8WmZnW-wG66K4PCD-Eo-3A4nYVtrYXQitE4DssyLZWRGPwYx5O04B6xl_eIN7xyBjGEV9xaT4XAS4lBmBXcOSNTZxMhvSrGj2BQLSr3GFiUYjOiSuG85WnsClXyKPJeIJhJbBEH8LabcW1bInKqh3Guu4AEZ0nXsxTAq1502bBv_FEI1db3E1_2bJJrakPvKxDxyYsogDe1Vnsxs_pOOW1S6OP5rp7JLD04lLneC2C7U7tuzXmt6SwRgQ2XPICXfTcaIp2umMotfqKMJC6ncTxK8QPrRfD3IevpblY_PPl30RdwY38n0_nH-aencBNxm2jyLrdhgFp3z-C6vfhxtl49b63gNxB-BsI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Adaptive+Sampling+and+Reconstruction+for+Monte+Carlo+Rendering&rft.jtitle=Computer+graphics+forum&rft.au=Zwicker%2C+M&rft.au=Jarosz%2C+W&rft.au=Lehtinen%2C+J&rft.au=Moon%2C+B&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=2&rft.spage=667&rft_id=info:doi/10.1111%2Fcgf.12592&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3721827421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon