A Unifying Representer Theorem for Inverse Problems and Machine Learning

Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the origin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Foundations of computational mathematics Ročník 21; číslo 4; s. 941 - 960
Hlavný autor: Unser, Michael
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2021
Springer Nature B.V
Predmet:
ISSN:1615-3375, 1615-3383
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an ℓ 1 -norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones.
AbstractList Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an $$\ell _1$$ ℓ 1 -norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones.
Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an ℓ1-norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones.
Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an ℓ 1 -norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones.
Author Unser, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Unser
  fullname: Unser, Michael
  email: michael.unser@epfl.ch
  organization: Biomedical Imaging Group, Ecole polytechnique fédérale de Lausanne (EPFL)
BookMark eNp9kE1PAjEQhhujiYD-AU9NPK_2Y7sfR0JUSDAaA-emW6ZQAi22i4F_b3WNJh64zMzhfWYmTx-dO-8AoRtK7igh5X2khJEqSyUjdV6y7HCGerSgIuO84ue_cykuUT_GNSFU1DTvofEQz501R-uW-A12ASK4FgKercAH2GLjA564DwgR8GvwzQa2ESu3wM9Kr6wDPAUVXKKv0IVRmwjXP32A5o8Ps9E4m748TUbDaaYFYW1mTK5K0mihtKKGL0iRKyZqKBivGINcN7osKdOEU9ZwXSjBdMVLU1MqjFrkfIBuu7274N_3EFu59vvg0knJRJFciLqmKVV1KR18jAGM1LZVrfWuDcpuJCXyy5vsvMlU5Lc3eUgo-4fugt2qcDwN8Q6KKeyWEP6-OkF9AsKkgiM
CitedBy_id crossref_primary_10_1109_TCI_2024_3402376
crossref_primary_10_1112_blms_12509
crossref_primary_10_1007_s00211_024_01439_2
crossref_primary_10_1016_j_acha_2024_101713
crossref_primary_10_1016_j_apnum_2023_02_011
crossref_primary_10_3390_electronics10060738
crossref_primary_10_1007_s00245_023_10096_0
crossref_primary_10_1007_s40305_025_00596_x
crossref_primary_10_1007_s00526_023_02611_6
crossref_primary_10_1007_s00205_023_01938_w
crossref_primary_10_1007_s40314_025_03387_5
crossref_primary_10_1007_s00013_024_01978_y
crossref_primary_10_1080_03605302_2022_2109172
crossref_primary_10_1109_LSP_2022_3149377
crossref_primary_10_1007_s10589_025_00699_4
crossref_primary_10_1137_21M1458144
crossref_primary_10_1007_s10208_023_09624_9
crossref_primary_10_1007_s11401_024_0041_5
crossref_primary_10_1016_j_jco_2023_101818
crossref_primary_10_1017_S0962492921000052
crossref_primary_10_1109_TCI_2023_3236161
crossref_primary_10_1080_01630563_2021_1922438
crossref_primary_10_1111_exsy_13747
crossref_primary_10_1007_s10208_022_09561_z
crossref_primary_10_1016_j_patcog_2024_110800
crossref_primary_10_1088_1361_6420_adc0b5
crossref_primary_10_1109_LSP_2023_3275916
crossref_primary_10_1007_s10092_023_00564_y
crossref_primary_10_1137_24M1657948
crossref_primary_10_1088_1361_6420_acad22
crossref_primary_10_1137_23M1616716
Cites_doi 10.1162/0899766052530802
10.1007/BF01171098
10.1007/s10898-010-9575-z
10.1109/TSP.2018.2860549
10.1090/S0002-9947-1950-0051437-7
10.1111/j.2517-6161.1996.tb02080.x
10.1080/10485250903388886
10.1090/memo/1243
10.1007/3-540-44581-1_27
10.1016/0021-9045(76)90093-9
10.1109/TIT.2016.2590421
10.1016/j.patcog.2008.06.011
10.1007/978-1-4612-0603-3
10.1137/060657704
10.1007/s00211-004-0541-x
10.1007/BF02591622
10.1007/s00041-016-9502-x
10.1137/16M1061199
10.1023/A:1018946025316
10.1088/0266-5611/23/3/008
10.1002/cpa.21455
10.1007/978-3-662-41583-2
10.1007/s10208-014-9228-6
10.1016/0021-9045(75)90016-7
10.7551/mitpress/4175.001.0001
10.1137/1.9781611971088
10.1109/TIT.2006.871582
10.1214/009053607000000677
10.1016/j.jco.2012.09.002
10.1561/2200000036
10.1016/0022-247X(71)90184-3
10.1109/78.650102
10.1142/S0219530516500202
10.1109/29.57544
10.1109/TNN.2003.809398
10.1007/978-0-8176-4948-7
10.1007/s00041-013-9292-3
10.1007/BFb0086566
10.1109/5.58326
10.1137/18M1200750
10.1515/9783110255720
10.1137/1.9781611970128
10.1093/imaiai/iaw005
10.1126/science.247.4945.978
10.1137/17M1147822
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-020-09472-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 960
ExternalDocumentID 10_1007_s10208_020_09472_x
GrantInformation_xml – fundername: EPFL Lausanne
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c502t-ff4a70bc5aca1f3d064a259e623822e4cbc7712c0312b3c6a52c837f9115fad43
IEDL.DBID RSV
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572724200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Fri Jul 25 19:13:59 EDT 2025
Tue Nov 18 21:55:56 EST 2025
Sat Nov 29 06:41:15 EST 2025
Fri Feb 21 02:47:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 68T05
Convex optimization
Machine learning
Representer theorem
65J20
Banach space
Regularization
46N10
47A52
Inverse problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-ff4a70bc5aca1f3d064a259e623822e4cbc7712c0312b3c6a52c837f9115fad43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10208-020-09472-x
PQID 2560075991
PQPubID 43692
PageCount 20
ParticipantIDs proquest_journals_2560075991
crossref_citationtrail_10_1007_s10208_020_09472_x
crossref_primary_10_1007_s10208_020_09472_x
springer_journals_10_1007_s10208_020_09472_x
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Poggio, Girosi (CR36) 1990; 247
Fernandez-Granda (CR24) 2016; 5
Tibshirani (CR49) 1996; 58
Singer (CR47) 1970
Dodu, Rabut (CR18) 2004; 98
CR32
Riesz (CR38) 1927; 27
Gelfand, Vilenkin (CR27) 1964
Unser, Fageot, Gupta (CR52) 2016; 62
Hofmann, Schölkopf, Smola (CR29) 2008; 36
Argyriou, Micchelli, Pontil (CR2) 2009; 10
Unser (CR51) 2019; 20
Boyer, Chambolle, De Castro, Duval, De Gournay, Weiss (CR8) 2019; 29
de Boor, Lynch (CR7) 1966; 15
Rudin (CR40) 1987
Steinke, Schölkopf (CR48) 2008; 41
CR45
CR43
Candès, Fernandez-Granda (CR12) 2013; 19
Combettes, Salzo, Villa (CR16) 2018; 16
CR41
Schölkopf, Sung, Burges, Girosi, Niyogi, Poggio, Vapnik (CR44) 1997; 45
Bruckstein, Donoho, Elad (CR11) 2009; 51
Duval, Peyré (CR21) 2015; 15
Mosamam, Kent (CR34) 2010; 22
de Boor (CR6) 1976; 16
Evgeniou, Pontil, Poggio (CR23) 2000; 13
Micchelli, Pontil (CR33) 2005; 17
Schölkopf, Herbrich, Smola, Helmbold, Williamson (CR42) 2001
Karayiannis, Venetsanopoulos (CR30) 1990; 38
Beurling, Livingston (CR4) 1962; 4
CR15
Poggio, Girosi (CR35) 1990; 78
Denoyelle, Duval, Peyré (CR17) 2017; 23
Poon, Peyré (CR37) 2019; 51
Bohn, Rieger, Griebel (CR5) 2019; 20
CR55
Gupta, Fageot, Unser (CR28) 2018; 66
Donoho (CR19) 2006; 52
Aronszajn (CR3) 1950; 68
Schwartz (CR46) 1966
Unser, Fageot, Ward (CR53) 2017; 59
Wahba (CR54) 1990
Zhang, Zhang (CR57) 2012; 54
Zhang, Xu, Zhang (CR56) 2009; 10
CR26
Tikhonov (CR50) 1963; 4
CR22
Roth (CR39) 2004; 15
Candès, Romberg (CR14) 2007; 23
Alvarez, Rosasco, Lawrence (CR1) 2012; 4
Bredies, Pikkarainen (CR10) 2013; 19
Duchon, Schempp, Zeller (CR20) 1977
Bredies, Carioni (CR9) 2020; 59
Fisher, Jerome (CR25) 1975; 13
Kimeldorf, Wahba (CR31) 1971; 33
Zhang, Zhang (CR58) 2013; 29
Candès, Fernandez-Granda (CR13) 2014; 67
A Argyriou (9472_CR2) 2009; 10
A Beurling (9472_CR4) 1962; 4
M Riesz (9472_CR38) 1927; 27
T Poggio (9472_CR36) 1990; 247
F Dodu (9472_CR18) 2004; 98
9472_CR45
9472_CR41
M Unser (9472_CR52) 2016; 62
9472_CR43
B Schölkopf (9472_CR42) 2001
C de Boor (9472_CR7) 1966; 15
MA Alvarez (9472_CR1) 2012; 4
K Bredies (9472_CR9) 2020; 59
SD Fisher (9472_CR25) 1975; 13
C Boyer (9472_CR8) 2019; 29
H Zhang (9472_CR58) 2013; 29
Q Denoyelle (9472_CR17) 2017; 23
DL Donoho (9472_CR19) 2006; 52
G Kimeldorf (9472_CR31) 1971; 33
9472_CR15
G Wahba (9472_CR54) 1990
9472_CR55
AM Bruckstein (9472_CR11) 2009; 51
EJ Candès (9472_CR14) 2007; 23
J Duchon (9472_CR20) 1977
C Poon (9472_CR37) 2019; 51
EJ Candès (9472_CR13) 2014; 67
AN Tikhonov (9472_CR50) 1963; 4
T Hofmann (9472_CR29) 2008; 36
H Gupta (9472_CR28) 2018; 66
C de Boor (9472_CR6) 1976; 16
H Zhang (9472_CR57) 2012; 54
9472_CR26
I Singer (9472_CR47) 1970
9472_CR22
B Schölkopf (9472_CR44) 1997; 45
R Tibshirani (9472_CR49) 1996; 58
B Bohn (9472_CR5) 2019; 20
H Zhang (9472_CR56) 2009; 10
N Aronszajn (9472_CR3) 1950; 68
F Steinke (9472_CR48) 2008; 41
K Bredies (9472_CR10) 2013; 19
C Fernandez-Granda (9472_CR24) 2016; 5
V Roth (9472_CR39) 2004; 15
V Duval (9472_CR21) 2015; 15
9472_CR32
W Rudin (9472_CR40) 1987
M Unser (9472_CR53) 2017; 59
NB Karayiannis (9472_CR30) 1990; 38
T Evgeniou (9472_CR23) 2000; 13
L Schwartz (9472_CR46) 1966
PL Combettes (9472_CR16) 2018; 16
M Unser (9472_CR51) 2019; 20
IM Gelfand (9472_CR27) 1964
T Poggio (9472_CR35) 1990; 78
EJ Candès (9472_CR12) 2013; 19
CA Micchelli (9472_CR33) 2005; 17
A Mosamam (9472_CR34) 2010; 22
References_xml – ident: CR45
– ident: CR22
– volume: 23
  start-page: 1153
  issue: 5
  year: 2017
  end-page: 1194
  ident: CR17
  article-title: Support recovery for sparse super-resolution of positive measures
  publication-title: Journal of Fourier Analysis and Applications
– volume: 10
  start-page: 2741
  year: 2009
  end-page: 2775
  ident: CR56
  article-title: Reproducing kernel Banach spaces for machine learning
  publication-title: Journal of Machine Learning Research
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  end-page: 81
  ident: CR11
  article-title: From sparse solutions of systems of equations to sparse modeling of signals and images
  publication-title: SIAM Review
– volume: 29
  start-page: 195
  issue: 2
  year: 2013
  end-page: 215
  ident: CR58
  article-title: Vector-valued reproducing kernel Banach spaces with applications to multi-task learning
  publication-title: Journal of Complexity
– volume: 66
  start-page: 4670
  issue: 17
  year: 2018
  end-page: 4684
  ident: CR28
  article-title: Continuous-domain solutions of linear inverse problems with Tikhonov generalized TV regularization
  publication-title: IEEE Transactions on Signal Processing
– year: 1987
  ident: CR40
  publication-title: Real and Complex Analysis
– volume: 13
  start-page: 1
  issue: 1
  year: 2000
  end-page: 50
  ident: CR23
  article-title: Regularization networks and support vector machines
  publication-title: Advances in Computational Mathematics
– volume: 247
  start-page: 978
  issue: 4945
  year: 1990
  end-page: 982
  ident: CR36
  article-title: Regularization algorithms for learning that are equivalent to multilayer networks
  publication-title: Science
– volume: 19
  start-page: 1229
  issue: 6
  year: 2013
  end-page: 1254
  ident: CR12
  article-title: Super-resolution from noisy data
  publication-title: Journal of Fourier Analysis and Applications
– start-page: 416
  year: 2001
  end-page: 426
  ident: CR42
  article-title: A generalized representer theorem
  publication-title: Computational Learning Theory
– volume: 58
  start-page: 265
  issue: 1
  year: 1996
  end-page: 288
  ident: CR49
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: Journal of the Royal Statistical Society. Series B
– volume: 45
  start-page: 2758
  issue: 11
  year: 1997
  end-page: 2765
  ident: CR44
  article-title: Comparing support vector machines with Gaussian kernels to radial basis function classifiers
  publication-title: IEEE Transactions on Signal Processing
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: CR19
  article-title: Compressed sensing
  publication-title: IEEE Transactions on Information Theory
– volume: 15
  start-page: 16
  issue: 1
  year: 2004
  end-page: 28
  ident: CR39
  article-title: The generalized LASSO
  publication-title: IEEE Transactions on Neural Networks
– volume: 33
  start-page: 82
  issue: 1
  year: 1971
  end-page: 95
  ident: CR31
  article-title: Some results on Tchebycheffian spline functions
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 62
  start-page: 5167
  issue: 9
  year: 2016
  end-page: 5180
  ident: CR52
  article-title: Representer theorems for sparsity-promoting regularization
  publication-title: IEEE Transactions on Information Theory
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  end-page: 404
  ident: CR3
  article-title: Theory of reproducing kernels
  publication-title: Transactions of the American Mathematical Society
– volume: 29
  start-page: 1260
  issue: 2
  year: 2019
  end-page: 1281
  ident: CR8
  article-title: On representer theorems and convex regularization
  publication-title: SIAM Journal of Optimization
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  end-page: 1220
  ident: CR29
  article-title: Kernel methods in machine learning
  publication-title: Annals of Statistics
– volume: 51
  start-page: 1
  issue: 1
  year: 2019
  end-page: 44
  ident: CR37
  article-title: Multidimensional sparse super-resolution
  publication-title: SIAM Journal on Mathematical Analysis
– volume: 41
  start-page: 3271
  issue: 11
  year: 2008
  end-page: 32286
  ident: CR48
  article-title: Kernels, regularization and differential equations
  publication-title: Pattern Recognition
– volume: 59
  start-page: 769
  issue: 4
  year: 2017
  end-page: 793
  ident: CR53
  article-title: Splines are universal solutions of linear inverse problems with generalized-TV regularization
  publication-title: SIAM Review
– volume: 38
  start-page: 1155
  issue: 7
  year: 1990
  end-page: 1179
  ident: CR30
  article-title: Regularization theory in image restoration—The stabilizing functional approach
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
– volume: 4
  start-page: 195
  issue: 3
  year: 2012
  end-page: 266
  ident: CR1
  article-title: Kernels for vector-valued functions: A review
  publication-title: Foundations and Trends in Machine Learning
– ident: CR15
– volume: 22
  start-page: 711
  issue: 6
  year: 2010
  end-page: 722
  ident: CR34
  article-title: Semi-reproducing kernel Hilbert spaces, splines and increment kriging
  publication-title: Journal of Nonparametric Statistics
– year: 1964
  ident: CR27
  publication-title: Generalized Functions
– volume: 54
  start-page: 235
  issue: 2
  year: 2012
  end-page: 250
  ident: CR57
  article-title: Regularized learning in Banach spaces as an optimization problem: representer theorems
  publication-title: Journal of Global Optimization
– start-page: 85
  year: 1977
  end-page: 100
  ident: CR20
  article-title: Splines minimizing rotation-invariant semi-norms in Sobolev spaces
  publication-title: Constructive Theory of Functions of Several Variables
– volume: 16
  start-page: 1
  issue: 01
  year: 2018
  end-page: 54
  ident: CR16
  article-title: Regularized learning schemes in feature Banach spaces
  publication-title: Analysis and Applications
– ident: CR32
– volume: 15
  start-page: 953
  issue: 6
  year: 1966
  end-page: 969
  ident: CR7
  article-title: On splines and their minimum properties
  publication-title: Journal of Mathematics and Mechanics
– ident: CR26
– year: 1990
  ident: CR54
  publication-title: Spline Models for Observational Data
– year: 1966
  ident: CR46
  publication-title: Théorie des Distributions
– ident: CR43
– volume: 15
  start-page: 1315
  issue: 5
  year: 2015
  end-page: 1355
  ident: CR21
  article-title: Exact support recovery for sparse spikes deconvolution
  publication-title: Foundations of Computational Mathematics
– volume: 10
  start-page: 2507
  issue: Nov
  year: 2009
  end-page: 2529
  ident: CR2
  article-title: When is there a representer theorem? Vector versus matrix regularizers
  publication-title: Journal of Machine Learning Research
– year: 1970
  ident: CR47
  publication-title: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces
– volume: 27
  start-page: 218
  year: 1927
  end-page: 244
  ident: CR38
  article-title: Sur les fonctions conjuguées
  publication-title: Mathematische Zeitschrift
– volume: 23
  start-page: 969
  issue: 3
  year: 2007
  end-page: 985
  ident: CR14
  article-title: Sparsity and incoherence in compressive sampling
  publication-title: Inverse Problems
– volume: 67
  start-page: 906
  issue: 6
  year: 2014
  end-page: 956
  ident: CR13
  article-title: Towards a mathematical theory of super-resolution
  publication-title: Communications on Pure and Applied Mathematics
– volume: 5
  start-page: 251
  year: 2016
  end-page: 303
  ident: CR24
  article-title: Super-resolution of point sources via convex programming
  publication-title: Information and Inference
– volume: 78
  start-page: 1481
  issue: 9
  year: 1990
  end-page: 1497
  ident: CR35
  article-title: Networks for approximation and learning
  publication-title: Proceedings of the IEEE
– volume: 4
  start-page: 1035
  year: 1963
  end-page: 1038
  ident: CR50
  article-title: Solution of incorrectly formulated problems and the regularization method
  publication-title: Soviet Mathematics
– volume: 16
  start-page: 28
  issue: 1
  year: 1976
  end-page: 42
  ident: CR6
  article-title: On “best” interpolation
  publication-title: Journal of Approximation Theory
– volume: 4
  start-page: 405
  issue: 5
  year: 1962
  end-page: 411
  ident: CR4
  article-title: A theorem on duality mappings in Banach spaces
  publication-title: Arkiv för Matematik
– volume: 20
  start-page: 1
  issue: 64
  year: 2019
  end-page: 32
  ident: CR5
  article-title: A representer theorem for deep kernel learning
  publication-title: Journal of Machine Learning Research
– volume: 19
  start-page: 190
  issue: 1
  year: 2013
  end-page: 218
  ident: CR10
  article-title: Inverse problems in spaces of measures
  publication-title: ESAIM: Control, Optimisation and Calculus of Variations
– volume: 98
  start-page: 477
  year: 2004
  end-page: 498
  ident: CR18
  article-title: Irrotational or divergence-free interpolation
  publication-title: Numerische Mathematik
– volume: 59
  start-page: 26
  issue: 14
  year: 2020
  ident: CR9
  article-title: Sparsity of solutions for variational inverse problems with finite-dimensional data
  publication-title: Calculus of Variations and Partial Differential Equations
– volume: 20
  start-page: 1
  issue: 110
  year: 2019
  end-page: 30
  ident: CR51
  article-title: A representer theorem for deep neural networks
  publication-title: Journal of Machine Learning Research
– ident: CR55
– volume: 17
  start-page: 177
  issue: 1
  year: 2005
  end-page: 204
  ident: CR33
  article-title: On learning vector-valued functions
  publication-title: Neural Computation
– ident: CR41
– volume: 13
  start-page: 73
  issue: 1
  year: 1975
  end-page: 83
  ident: CR25
  article-title: Spline solutions to extremal problems in one and several variables
  publication-title: Journal of Approximation Theory
– volume: 17
  start-page: 177
  issue: 1
  year: 2005
  ident: 9472_CR33
  publication-title: Neural Computation
  doi: 10.1162/0899766052530802
– volume: 27
  start-page: 218
  year: 1927
  ident: 9472_CR38
  publication-title: Mathematische Zeitschrift
  doi: 10.1007/BF01171098
– ident: 9472_CR15
– volume: 54
  start-page: 235
  issue: 2
  year: 2012
  ident: 9472_CR57
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-010-9575-z
– volume: 4
  start-page: 1035
  year: 1963
  ident: 9472_CR50
  publication-title: Soviet Mathematics
– volume-title: Théorie des Distributions
  year: 1966
  ident: 9472_CR46
– volume: 66
  start-page: 4670
  issue: 17
  year: 2018
  ident: 9472_CR28
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2018.2860549
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  ident: 9472_CR3
  publication-title: Transactions of the American Mathematical Society
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 58
  start-page: 265
  issue: 1
  year: 1996
  ident: 9472_CR49
  publication-title: Journal of the Royal Statistical Society. Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 22
  start-page: 711
  issue: 6
  year: 2010
  ident: 9472_CR34
  publication-title: Journal of Nonparametric Statistics
  doi: 10.1080/10485250903388886
– ident: 9472_CR41
– ident: 9472_CR55
  doi: 10.1090/memo/1243
– volume-title: Real and Complex Analysis
  year: 1987
  ident: 9472_CR40
– start-page: 416
  volume-title: Computational Learning Theory
  year: 2001
  ident: 9472_CR42
  doi: 10.1007/3-540-44581-1_27
– volume: 16
  start-page: 28
  issue: 1
  year: 1976
  ident: 9472_CR6
  publication-title: Journal of Approximation Theory
  doi: 10.1016/0021-9045(76)90093-9
– volume: 15
  start-page: 953
  issue: 6
  year: 1966
  ident: 9472_CR7
  publication-title: Journal of Mathematics and Mechanics
– volume: 62
  start-page: 5167
  issue: 9
  year: 2016
  ident: 9472_CR52
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2016.2590421
– volume: 41
  start-page: 3271
  issue: 11
  year: 2008
  ident: 9472_CR48
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.06.011
– ident: 9472_CR32
  doi: 10.1007/978-1-4612-0603-3
– volume: 59
  start-page: 26
  issue: 14
  year: 2020
  ident: 9472_CR9
  publication-title: Calculus of Variations and Partial Differential Equations
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  ident: 9472_CR11
  publication-title: SIAM Review
  doi: 10.1137/060657704
– volume: 98
  start-page: 477
  year: 2004
  ident: 9472_CR18
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-004-0541-x
– volume: 4
  start-page: 405
  issue: 5
  year: 1962
  ident: 9472_CR4
  publication-title: Arkiv för Matematik
  doi: 10.1007/BF02591622
– volume: 23
  start-page: 1153
  issue: 5
  year: 2017
  ident: 9472_CR17
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/s00041-016-9502-x
– volume: 59
  start-page: 769
  issue: 4
  year: 2017
  ident: 9472_CR53
  publication-title: SIAM Review
  doi: 10.1137/16M1061199
– volume: 10
  start-page: 2507
  issue: Nov
  year: 2009
  ident: 9472_CR2
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 1
  issue: 1
  year: 2000
  ident: 9472_CR23
  publication-title: Advances in Computational Mathematics
  doi: 10.1023/A:1018946025316
– volume: 23
  start-page: 969
  issue: 3
  year: 2007
  ident: 9472_CR14
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/23/3/008
– volume: 67
  start-page: 906
  issue: 6
  year: 2014
  ident: 9472_CR13
  publication-title: Communications on Pure and Applied Mathematics
  doi: 10.1002/cpa.21455
– volume-title: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces
  year: 1970
  ident: 9472_CR47
  doi: 10.1007/978-3-662-41583-2
– volume: 15
  start-page: 1315
  issue: 5
  year: 2015
  ident: 9472_CR21
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-014-9228-6
– volume: 13
  start-page: 73
  issue: 1
  year: 1975
  ident: 9472_CR25
  publication-title: Journal of Approximation Theory
  doi: 10.1016/0021-9045(75)90016-7
– ident: 9472_CR43
  doi: 10.7551/mitpress/4175.001.0001
– ident: 9472_CR22
  doi: 10.1137/1.9781611971088
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 9472_CR19
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.871582
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  ident: 9472_CR29
  publication-title: Annals of Statistics
  doi: 10.1214/009053607000000677
– volume: 29
  start-page: 195
  issue: 2
  year: 2013
  ident: 9472_CR58
  publication-title: Journal of Complexity
  doi: 10.1016/j.jco.2012.09.002
– volume: 4
  start-page: 195
  issue: 3
  year: 2012
  ident: 9472_CR1
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000036
– volume: 33
  start-page: 82
  issue: 1
  year: 1971
  ident: 9472_CR31
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(71)90184-3
– volume: 10
  start-page: 2741
  year: 2009
  ident: 9472_CR56
  publication-title: Journal of Machine Learning Research
– volume: 45
  start-page: 2758
  issue: 11
  year: 1997
  ident: 9472_CR44
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650102
– volume: 16
  start-page: 1
  issue: 01
  year: 2018
  ident: 9472_CR16
  publication-title: Analysis and Applications
  doi: 10.1142/S0219530516500202
– volume: 38
  start-page: 1155
  issue: 7
  year: 1990
  ident: 9472_CR30
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
  doi: 10.1109/29.57544
– volume: 20
  start-page: 1
  issue: 110
  year: 2019
  ident: 9472_CR51
  publication-title: Journal of Machine Learning Research
– volume: 19
  start-page: 190
  issue: 1
  year: 2013
  ident: 9472_CR10
  publication-title: ESAIM: Control, Optimisation and Calculus of Variations
– volume: 15
  start-page: 16
  issue: 1
  year: 2004
  ident: 9472_CR39
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.809398
– ident: 9472_CR26
  doi: 10.1007/978-0-8176-4948-7
– volume: 19
  start-page: 1229
  issue: 6
  year: 2013
  ident: 9472_CR12
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/s00041-013-9292-3
– start-page: 85
  volume-title: Constructive Theory of Functions of Several Variables
  year: 1977
  ident: 9472_CR20
  doi: 10.1007/BFb0086566
– volume: 78
  start-page: 1481
  issue: 9
  year: 1990
  ident: 9472_CR35
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58326
– volume: 29
  start-page: 1260
  issue: 2
  year: 2019
  ident: 9472_CR8
  publication-title: SIAM Journal of Optimization
  doi: 10.1137/18M1200750
– ident: 9472_CR45
  doi: 10.1515/9783110255720
– volume-title: Generalized Functions
  year: 1964
  ident: 9472_CR27
– volume: 20
  start-page: 1
  issue: 64
  year: 2019
  ident: 9472_CR5
  publication-title: Journal of Machine Learning Research
– volume-title: Spline Models for Observational Data
  year: 1990
  ident: 9472_CR54
  doi: 10.1137/1.9781611970128
– volume: 5
  start-page: 251
  year: 2016
  ident: 9472_CR24
  publication-title: Information and Inference
  doi: 10.1093/imaiai/iaw005
– volume: 247
  start-page: 978
  issue: 4945
  year: 1990
  ident: 9472_CR36
  publication-title: Science
  doi: 10.1126/science.247.4945.978
– volume: 51
  start-page: 1
  issue: 1
  year: 2019
  ident: 9472_CR37
  publication-title: SIAM Journal on Mathematical Analysis
  doi: 10.1137/17M1147822
SSID ssj0015914
ssib031263371
Score 2.5272353
Snippet Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 941
SubjectTerms Applications of Mathematics
Banach spaces
Computer Science
Economics
Inverse problems
Linear and Multilinear Algebras
Machine learning
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Optimization
Regularization
Theorems
Title A Unifying Representer Theorem for Inverse Problems and Machine Learning
URI https://link.springer.com/article/10.1007/s10208-020-09472-x
https://www.proquest.com/docview/2560075991
Volume 21
WOSCitedRecordID wos000572724200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yBfXB6VScTsmDbxpYm7RZH4c49rIx5g_2VpI0FUGrtFP8872kyaaigr4UmqSh5JLLd9zddwidxioXmVAxEYLGhNGeJDLTjAQylzrQcOGKutgEH497s1kycUlhlY929y5Jq6k_JLuFxlUP5g6YJDwkgBxX4brrmYIN06vbhe8gSiyjt4EyhFIeuVSZ7-f4fB0tMeYXt6i9bQbN__3nNtpy6BL36-2wg1Z00UJNhzSxO8cVNPliDr6thdZ9ijJ0b44WZK7VLhr2MSBTmw-FpzZw1vB4ltim9etHDLAXG7qOstJ4UtenqbAoMjyygZoaOw7Xuz10M7i8vhgSV4CBqKgbzkmeM8G7UkVCiSCnGcAXAeaSkSDgCs2UVJwHoQLFEEqqYhGFCgzeHBRoBFuA0X3UKJ4KfYAwE0rGKktEIBIWKyZ0YnQLvOiYZly0UeDlkCrHTm6KZDykS15ls64pPFK7rulbG50tvnmuuTl-Hd3x4k3dOa1SC_h4BCC5jc69OJfdP892-LfhR2gjNMEwNnKwgxrz8kUfozX1Or-vyhO7f98BG2LqJg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5kCtMHp1Nx_syDbxpYm7RdH4c4Jm5jzCl7K2maiqBV1in--V7SdFNRQV8KTdJQcsnlO-7uO4ATX6YiEdKnQjCfctaKaZwoTp04jZWj8MIVRbGJYDBoTSbh0CaF5WW0e-mSNJr6Q7Kbq131aO6gSRK4FJHjMscbSzPmj65v574DLzSM3hrKUMYCz6bKfD_H5-togTG_uEXNbdOp_e8_N2DdokvSLrbDJiyprA41izSJPcc5NpXFHMq2OlTLFGXsXuvPyVzzLei2CSJTkw9FRiZwVvN4TolJ61ePBGEv0XQd01yRYVGfJiciS0jfBGoqYjlc77bhpnMxPu9SW4CBSq_pzmiachE0Y-kJKZyUJQhfBJpLWoKIKxSXsQwCx5WoGNyYSV94rkSDN0UF6uEW4GwHKtlTpnaBcCFjXyahcETIfcmFCrVuwRflsyQQDXBKOUTSspPrIhkP0YJXWa9rhI_IrGv01oDT-TfPBTfHr6MPSvFG9pzmkQF8gYcguQFnpTgX3T_Ptve34cdQ7Y77vah3Objah1VXB8aYKMIDqMymL-oQVuTr7D6fHpm9_A4dHO0K
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9ExY8Hp1NxOjUPvmnY2qbt-jjUMdGN4Rd7K2maiqB1tFP8872k6TZFBfGl0CQNJXdJfsfd_Q7gyBMJj7nwKOeOR5nTimgUS0atKImkJfHC5UWxCb_fbw2HwWAmi19Hu5cuySKnQbE0pePGKE4aM4lvtnLbo-mD5olvU0SRC0wF0it7_eZ-4kdwA83urWANdRzfNWkz38_x-Wqa4s0vLlJ983Qq___ndVgzqJO0CzXZgDmZVqFiECgx-zvHprLIQ9lWheUydRm7V3sTktd8E7ptgohV50mRax1Qq_g9M6LT_eUzQThMFI1HlksyKOrW5ISnMenpAE5JDLfrwxbcdc5vT7vUFGagwm3aY5okjPvNSLhccCtxYoQ1HM0oJVnEG5KJSPi-ZQs8MOzIER53bYGGcIIHq4uqwZxtmE9fUrkDhHEReSIOuMUD5gnGZaDOHHyRnhP7vAZWKZNQGNZyVTzjKZzyLat1DfER6nUN32twPPlmVHB2_Dq6Xoo6NPs3DzUQ9F0EzzU4KUU77f55tt2_DT-EpcFZJ7y66F_uwYqt4mV0cGEd5sfZq9yHRfE2fsyzA63WH-9-9e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unifying+Representer+Theorem+for+Inverse+Problems+and+Machine+Learning&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Unser%2C+Michael&rft.date=2021-08-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=21&rft.issue=4&rft.spage=941&rft.epage=960&rft_id=info:doi/10.1007%2Fs10208-020-09472-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_020_09472_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon