A Unifying Representer Theorem for Inverse Problems and Machine Learning
Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the origin...
Uložené v:
| Vydané v: | Foundations of computational mathematics Ročník 21; číslo 4; s. 941 - 960 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.08.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an
ℓ
1
-norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones. |
|---|---|
| AbstractList | Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an
$$\ell _1$$
ℓ
1
-norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones. Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an ℓ1-norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones. Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an ℓ 1 -norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones. |
| Author | Unser, Michael |
| Author_xml | – sequence: 1 givenname: Michael surname: Unser fullname: Unser, Michael email: michael.unser@epfl.ch organization: Biomedical Imaging Group, Ecole polytechnique fédérale de Lausanne (EPFL) |
| BookMark | eNp9kE1PAjEQhhujiYD-AU9NPK_2Y7sfR0JUSDAaA-emW6ZQAi22i4F_b3WNJh64zMzhfWYmTx-dO-8AoRtK7igh5X2khJEqSyUjdV6y7HCGerSgIuO84ue_cykuUT_GNSFU1DTvofEQz501R-uW-A12ASK4FgKercAH2GLjA564DwgR8GvwzQa2ESu3wM9Kr6wDPAUVXKKv0IVRmwjXP32A5o8Ps9E4m748TUbDaaYFYW1mTK5K0mihtKKGL0iRKyZqKBivGINcN7osKdOEU9ZwXSjBdMVLU1MqjFrkfIBuu7274N_3EFu59vvg0knJRJFciLqmKVV1KR18jAGM1LZVrfWuDcpuJCXyy5vsvMlU5Lc3eUgo-4fugt2qcDwN8Q6KKeyWEP6-OkF9AsKkgiM |
| CitedBy_id | crossref_primary_10_1109_TCI_2024_3402376 crossref_primary_10_1112_blms_12509 crossref_primary_10_1007_s00211_024_01439_2 crossref_primary_10_1016_j_acha_2024_101713 crossref_primary_10_1016_j_apnum_2023_02_011 crossref_primary_10_3390_electronics10060738 crossref_primary_10_1007_s00245_023_10096_0 crossref_primary_10_1007_s40305_025_00596_x crossref_primary_10_1007_s00526_023_02611_6 crossref_primary_10_1007_s00205_023_01938_w crossref_primary_10_1007_s40314_025_03387_5 crossref_primary_10_1007_s00013_024_01978_y crossref_primary_10_1080_03605302_2022_2109172 crossref_primary_10_1109_LSP_2022_3149377 crossref_primary_10_1007_s10589_025_00699_4 crossref_primary_10_1137_21M1458144 crossref_primary_10_1007_s10208_023_09624_9 crossref_primary_10_1007_s11401_024_0041_5 crossref_primary_10_1016_j_jco_2023_101818 crossref_primary_10_1017_S0962492921000052 crossref_primary_10_1109_TCI_2023_3236161 crossref_primary_10_1080_01630563_2021_1922438 crossref_primary_10_1111_exsy_13747 crossref_primary_10_1007_s10208_022_09561_z crossref_primary_10_1016_j_patcog_2024_110800 crossref_primary_10_1088_1361_6420_adc0b5 crossref_primary_10_1109_LSP_2023_3275916 crossref_primary_10_1007_s10092_023_00564_y crossref_primary_10_1137_24M1657948 crossref_primary_10_1088_1361_6420_acad22 crossref_primary_10_1137_23M1616716 |
| Cites_doi | 10.1162/0899766052530802 10.1007/BF01171098 10.1007/s10898-010-9575-z 10.1109/TSP.2018.2860549 10.1090/S0002-9947-1950-0051437-7 10.1111/j.2517-6161.1996.tb02080.x 10.1080/10485250903388886 10.1090/memo/1243 10.1007/3-540-44581-1_27 10.1016/0021-9045(76)90093-9 10.1109/TIT.2016.2590421 10.1016/j.patcog.2008.06.011 10.1007/978-1-4612-0603-3 10.1137/060657704 10.1007/s00211-004-0541-x 10.1007/BF02591622 10.1007/s00041-016-9502-x 10.1137/16M1061199 10.1023/A:1018946025316 10.1088/0266-5611/23/3/008 10.1002/cpa.21455 10.1007/978-3-662-41583-2 10.1007/s10208-014-9228-6 10.1016/0021-9045(75)90016-7 10.7551/mitpress/4175.001.0001 10.1137/1.9781611971088 10.1109/TIT.2006.871582 10.1214/009053607000000677 10.1016/j.jco.2012.09.002 10.1561/2200000036 10.1016/0022-247X(71)90184-3 10.1109/78.650102 10.1142/S0219530516500202 10.1109/29.57544 10.1109/TNN.2003.809398 10.1007/978-0-8176-4948-7 10.1007/s00041-013-9292-3 10.1007/BFb0086566 10.1109/5.58326 10.1137/18M1200750 10.1515/9783110255720 10.1137/1.9781611970128 10.1093/imaiai/iaw005 10.1126/science.247.4945.978 10.1137/17M1147822 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-020-09472-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 960 |
| ExternalDocumentID | 10_1007_s10208_020_09472_x |
| GrantInformation_xml | – fundername: EPFL Lausanne |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c502t-ff4a70bc5aca1f3d064a259e623822e4cbc7712c0312b3c6a52c837f9115fad43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572724200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Fri Jul 25 19:13:59 EDT 2025 Tue Nov 18 21:55:56 EST 2025 Sat Nov 29 06:41:15 EST 2025 Fri Feb 21 02:47:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 68T05 Convex optimization Machine learning Representer theorem 65J20 Banach space Regularization 46N10 47A52 Inverse problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-ff4a70bc5aca1f3d064a259e623822e4cbc7712c0312b3c6a52c837f9115fad43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10208-020-09472-x |
| PQID | 2560075991 |
| PQPubID | 43692 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2560075991 crossref_citationtrail_10_1007_s10208_020_09472_x crossref_primary_10_1007_s10208_020_09472_x springer_journals_10_1007_s10208_020_09472_x |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Poggio, Girosi (CR36) 1990; 247 Fernandez-Granda (CR24) 2016; 5 Tibshirani (CR49) 1996; 58 Singer (CR47) 1970 Dodu, Rabut (CR18) 2004; 98 CR32 Riesz (CR38) 1927; 27 Gelfand, Vilenkin (CR27) 1964 Unser, Fageot, Gupta (CR52) 2016; 62 Hofmann, Schölkopf, Smola (CR29) 2008; 36 Argyriou, Micchelli, Pontil (CR2) 2009; 10 Unser (CR51) 2019; 20 Boyer, Chambolle, De Castro, Duval, De Gournay, Weiss (CR8) 2019; 29 de Boor, Lynch (CR7) 1966; 15 Rudin (CR40) 1987 Steinke, Schölkopf (CR48) 2008; 41 CR45 CR43 Candès, Fernandez-Granda (CR12) 2013; 19 Combettes, Salzo, Villa (CR16) 2018; 16 CR41 Schölkopf, Sung, Burges, Girosi, Niyogi, Poggio, Vapnik (CR44) 1997; 45 Bruckstein, Donoho, Elad (CR11) 2009; 51 Duval, Peyré (CR21) 2015; 15 Mosamam, Kent (CR34) 2010; 22 de Boor (CR6) 1976; 16 Evgeniou, Pontil, Poggio (CR23) 2000; 13 Micchelli, Pontil (CR33) 2005; 17 Schölkopf, Herbrich, Smola, Helmbold, Williamson (CR42) 2001 Karayiannis, Venetsanopoulos (CR30) 1990; 38 Beurling, Livingston (CR4) 1962; 4 CR15 Poggio, Girosi (CR35) 1990; 78 Denoyelle, Duval, Peyré (CR17) 2017; 23 Poon, Peyré (CR37) 2019; 51 Bohn, Rieger, Griebel (CR5) 2019; 20 CR55 Gupta, Fageot, Unser (CR28) 2018; 66 Donoho (CR19) 2006; 52 Aronszajn (CR3) 1950; 68 Schwartz (CR46) 1966 Unser, Fageot, Ward (CR53) 2017; 59 Wahba (CR54) 1990 Zhang, Zhang (CR57) 2012; 54 Zhang, Xu, Zhang (CR56) 2009; 10 CR26 Tikhonov (CR50) 1963; 4 CR22 Roth (CR39) 2004; 15 Candès, Romberg (CR14) 2007; 23 Alvarez, Rosasco, Lawrence (CR1) 2012; 4 Bredies, Pikkarainen (CR10) 2013; 19 Duchon, Schempp, Zeller (CR20) 1977 Bredies, Carioni (CR9) 2020; 59 Fisher, Jerome (CR25) 1975; 13 Kimeldorf, Wahba (CR31) 1971; 33 Zhang, Zhang (CR58) 2013; 29 Candès, Fernandez-Granda (CR13) 2014; 67 A Argyriou (9472_CR2) 2009; 10 A Beurling (9472_CR4) 1962; 4 M Riesz (9472_CR38) 1927; 27 T Poggio (9472_CR36) 1990; 247 F Dodu (9472_CR18) 2004; 98 9472_CR45 9472_CR41 M Unser (9472_CR52) 2016; 62 9472_CR43 B Schölkopf (9472_CR42) 2001 C de Boor (9472_CR7) 1966; 15 MA Alvarez (9472_CR1) 2012; 4 K Bredies (9472_CR9) 2020; 59 SD Fisher (9472_CR25) 1975; 13 C Boyer (9472_CR8) 2019; 29 H Zhang (9472_CR58) 2013; 29 Q Denoyelle (9472_CR17) 2017; 23 DL Donoho (9472_CR19) 2006; 52 G Kimeldorf (9472_CR31) 1971; 33 9472_CR15 G Wahba (9472_CR54) 1990 9472_CR55 AM Bruckstein (9472_CR11) 2009; 51 EJ Candès (9472_CR14) 2007; 23 J Duchon (9472_CR20) 1977 C Poon (9472_CR37) 2019; 51 EJ Candès (9472_CR13) 2014; 67 AN Tikhonov (9472_CR50) 1963; 4 T Hofmann (9472_CR29) 2008; 36 H Gupta (9472_CR28) 2018; 66 C de Boor (9472_CR6) 1976; 16 H Zhang (9472_CR57) 2012; 54 9472_CR26 I Singer (9472_CR47) 1970 9472_CR22 B Schölkopf (9472_CR44) 1997; 45 R Tibshirani (9472_CR49) 1996; 58 B Bohn (9472_CR5) 2019; 20 H Zhang (9472_CR56) 2009; 10 N Aronszajn (9472_CR3) 1950; 68 F Steinke (9472_CR48) 2008; 41 K Bredies (9472_CR10) 2013; 19 C Fernandez-Granda (9472_CR24) 2016; 5 V Roth (9472_CR39) 2004; 15 V Duval (9472_CR21) 2015; 15 9472_CR32 W Rudin (9472_CR40) 1987 M Unser (9472_CR53) 2017; 59 NB Karayiannis (9472_CR30) 1990; 38 T Evgeniou (9472_CR23) 2000; 13 L Schwartz (9472_CR46) 1966 PL Combettes (9472_CR16) 2018; 16 M Unser (9472_CR51) 2019; 20 IM Gelfand (9472_CR27) 1964 T Poggio (9472_CR35) 1990; 78 EJ Candès (9472_CR12) 2013; 19 CA Micchelli (9472_CR33) 2005; 17 A Mosamam (9472_CR34) 2010; 22 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 23 start-page: 1153 issue: 5 year: 2017 end-page: 1194 ident: CR17 article-title: Support recovery for sparse super-resolution of positive measures publication-title: Journal of Fourier Analysis and Applications – volume: 10 start-page: 2741 year: 2009 end-page: 2775 ident: CR56 article-title: Reproducing kernel Banach spaces for machine learning publication-title: Journal of Machine Learning Research – volume: 51 start-page: 34 issue: 1 year: 2009 end-page: 81 ident: CR11 article-title: From sparse solutions of systems of equations to sparse modeling of signals and images publication-title: SIAM Review – volume: 29 start-page: 195 issue: 2 year: 2013 end-page: 215 ident: CR58 article-title: Vector-valued reproducing kernel Banach spaces with applications to multi-task learning publication-title: Journal of Complexity – volume: 66 start-page: 4670 issue: 17 year: 2018 end-page: 4684 ident: CR28 article-title: Continuous-domain solutions of linear inverse problems with Tikhonov generalized TV regularization publication-title: IEEE Transactions on Signal Processing – year: 1987 ident: CR40 publication-title: Real and Complex Analysis – volume: 13 start-page: 1 issue: 1 year: 2000 end-page: 50 ident: CR23 article-title: Regularization networks and support vector machines publication-title: Advances in Computational Mathematics – volume: 247 start-page: 978 issue: 4945 year: 1990 end-page: 982 ident: CR36 article-title: Regularization algorithms for learning that are equivalent to multilayer networks publication-title: Science – volume: 19 start-page: 1229 issue: 6 year: 2013 end-page: 1254 ident: CR12 article-title: Super-resolution from noisy data publication-title: Journal of Fourier Analysis and Applications – start-page: 416 year: 2001 end-page: 426 ident: CR42 article-title: A generalized representer theorem publication-title: Computational Learning Theory – volume: 58 start-page: 265 issue: 1 year: 1996 end-page: 288 ident: CR49 article-title: Regression shrinkage and selection via the Lasso publication-title: Journal of the Royal Statistical Society. Series B – volume: 45 start-page: 2758 issue: 11 year: 1997 end-page: 2765 ident: CR44 article-title: Comparing support vector machines with Gaussian kernels to radial basis function classifiers publication-title: IEEE Transactions on Signal Processing – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 ident: CR19 article-title: Compressed sensing publication-title: IEEE Transactions on Information Theory – volume: 15 start-page: 16 issue: 1 year: 2004 end-page: 28 ident: CR39 article-title: The generalized LASSO publication-title: IEEE Transactions on Neural Networks – volume: 33 start-page: 82 issue: 1 year: 1971 end-page: 95 ident: CR31 article-title: Some results on Tchebycheffian spline functions publication-title: Journal of Mathematical Analysis and Applications – volume: 62 start-page: 5167 issue: 9 year: 2016 end-page: 5180 ident: CR52 article-title: Representer theorems for sparsity-promoting regularization publication-title: IEEE Transactions on Information Theory – volume: 68 start-page: 337 issue: 3 year: 1950 end-page: 404 ident: CR3 article-title: Theory of reproducing kernels publication-title: Transactions of the American Mathematical Society – volume: 29 start-page: 1260 issue: 2 year: 2019 end-page: 1281 ident: CR8 article-title: On representer theorems and convex regularization publication-title: SIAM Journal of Optimization – volume: 36 start-page: 1171 issue: 3 year: 2008 end-page: 1220 ident: CR29 article-title: Kernel methods in machine learning publication-title: Annals of Statistics – volume: 51 start-page: 1 issue: 1 year: 2019 end-page: 44 ident: CR37 article-title: Multidimensional sparse super-resolution publication-title: SIAM Journal on Mathematical Analysis – volume: 41 start-page: 3271 issue: 11 year: 2008 end-page: 32286 ident: CR48 article-title: Kernels, regularization and differential equations publication-title: Pattern Recognition – volume: 59 start-page: 769 issue: 4 year: 2017 end-page: 793 ident: CR53 article-title: Splines are universal solutions of linear inverse problems with generalized-TV regularization publication-title: SIAM Review – volume: 38 start-page: 1155 issue: 7 year: 1990 end-page: 1179 ident: CR30 article-title: Regularization theory in image restoration—The stabilizing functional approach publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing – volume: 4 start-page: 195 issue: 3 year: 2012 end-page: 266 ident: CR1 article-title: Kernels for vector-valued functions: A review publication-title: Foundations and Trends in Machine Learning – ident: CR15 – volume: 22 start-page: 711 issue: 6 year: 2010 end-page: 722 ident: CR34 article-title: Semi-reproducing kernel Hilbert spaces, splines and increment kriging publication-title: Journal of Nonparametric Statistics – year: 1964 ident: CR27 publication-title: Generalized Functions – volume: 54 start-page: 235 issue: 2 year: 2012 end-page: 250 ident: CR57 article-title: Regularized learning in Banach spaces as an optimization problem: representer theorems publication-title: Journal of Global Optimization – start-page: 85 year: 1977 end-page: 100 ident: CR20 article-title: Splines minimizing rotation-invariant semi-norms in Sobolev spaces publication-title: Constructive Theory of Functions of Several Variables – volume: 16 start-page: 1 issue: 01 year: 2018 end-page: 54 ident: CR16 article-title: Regularized learning schemes in feature Banach spaces publication-title: Analysis and Applications – ident: CR32 – volume: 15 start-page: 953 issue: 6 year: 1966 end-page: 969 ident: CR7 article-title: On splines and their minimum properties publication-title: Journal of Mathematics and Mechanics – ident: CR26 – year: 1990 ident: CR54 publication-title: Spline Models for Observational Data – year: 1966 ident: CR46 publication-title: Théorie des Distributions – ident: CR43 – volume: 15 start-page: 1315 issue: 5 year: 2015 end-page: 1355 ident: CR21 article-title: Exact support recovery for sparse spikes deconvolution publication-title: Foundations of Computational Mathematics – volume: 10 start-page: 2507 issue: Nov year: 2009 end-page: 2529 ident: CR2 article-title: When is there a representer theorem? Vector versus matrix regularizers publication-title: Journal of Machine Learning Research – year: 1970 ident: CR47 publication-title: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces – volume: 27 start-page: 218 year: 1927 end-page: 244 ident: CR38 article-title: Sur les fonctions conjuguées publication-title: Mathematische Zeitschrift – volume: 23 start-page: 969 issue: 3 year: 2007 end-page: 985 ident: CR14 article-title: Sparsity and incoherence in compressive sampling publication-title: Inverse Problems – volume: 67 start-page: 906 issue: 6 year: 2014 end-page: 956 ident: CR13 article-title: Towards a mathematical theory of super-resolution publication-title: Communications on Pure and Applied Mathematics – volume: 5 start-page: 251 year: 2016 end-page: 303 ident: CR24 article-title: Super-resolution of point sources via convex programming publication-title: Information and Inference – volume: 78 start-page: 1481 issue: 9 year: 1990 end-page: 1497 ident: CR35 article-title: Networks for approximation and learning publication-title: Proceedings of the IEEE – volume: 4 start-page: 1035 year: 1963 end-page: 1038 ident: CR50 article-title: Solution of incorrectly formulated problems and the regularization method publication-title: Soviet Mathematics – volume: 16 start-page: 28 issue: 1 year: 1976 end-page: 42 ident: CR6 article-title: On “best” interpolation publication-title: Journal of Approximation Theory – volume: 4 start-page: 405 issue: 5 year: 1962 end-page: 411 ident: CR4 article-title: A theorem on duality mappings in Banach spaces publication-title: Arkiv för Matematik – volume: 20 start-page: 1 issue: 64 year: 2019 end-page: 32 ident: CR5 article-title: A representer theorem for deep kernel learning publication-title: Journal of Machine Learning Research – volume: 19 start-page: 190 issue: 1 year: 2013 end-page: 218 ident: CR10 article-title: Inverse problems in spaces of measures publication-title: ESAIM: Control, Optimisation and Calculus of Variations – volume: 98 start-page: 477 year: 2004 end-page: 498 ident: CR18 article-title: Irrotational or divergence-free interpolation publication-title: Numerische Mathematik – volume: 59 start-page: 26 issue: 14 year: 2020 ident: CR9 article-title: Sparsity of solutions for variational inverse problems with finite-dimensional data publication-title: Calculus of Variations and Partial Differential Equations – volume: 20 start-page: 1 issue: 110 year: 2019 end-page: 30 ident: CR51 article-title: A representer theorem for deep neural networks publication-title: Journal of Machine Learning Research – ident: CR55 – volume: 17 start-page: 177 issue: 1 year: 2005 end-page: 204 ident: CR33 article-title: On learning vector-valued functions publication-title: Neural Computation – ident: CR41 – volume: 13 start-page: 73 issue: 1 year: 1975 end-page: 83 ident: CR25 article-title: Spline solutions to extremal problems in one and several variables publication-title: Journal of Approximation Theory – volume: 17 start-page: 177 issue: 1 year: 2005 ident: 9472_CR33 publication-title: Neural Computation doi: 10.1162/0899766052530802 – volume: 27 start-page: 218 year: 1927 ident: 9472_CR38 publication-title: Mathematische Zeitschrift doi: 10.1007/BF01171098 – ident: 9472_CR15 – volume: 54 start-page: 235 issue: 2 year: 2012 ident: 9472_CR57 publication-title: Journal of Global Optimization doi: 10.1007/s10898-010-9575-z – volume: 4 start-page: 1035 year: 1963 ident: 9472_CR50 publication-title: Soviet Mathematics – volume-title: Théorie des Distributions year: 1966 ident: 9472_CR46 – volume: 66 start-page: 4670 issue: 17 year: 2018 ident: 9472_CR28 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2018.2860549 – volume: 68 start-page: 337 issue: 3 year: 1950 ident: 9472_CR3 publication-title: Transactions of the American Mathematical Society doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 58 start-page: 265 issue: 1 year: 1996 ident: 9472_CR49 publication-title: Journal of the Royal Statistical Society. Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 22 start-page: 711 issue: 6 year: 2010 ident: 9472_CR34 publication-title: Journal of Nonparametric Statistics doi: 10.1080/10485250903388886 – ident: 9472_CR41 – ident: 9472_CR55 doi: 10.1090/memo/1243 – volume-title: Real and Complex Analysis year: 1987 ident: 9472_CR40 – start-page: 416 volume-title: Computational Learning Theory year: 2001 ident: 9472_CR42 doi: 10.1007/3-540-44581-1_27 – volume: 16 start-page: 28 issue: 1 year: 1976 ident: 9472_CR6 publication-title: Journal of Approximation Theory doi: 10.1016/0021-9045(76)90093-9 – volume: 15 start-page: 953 issue: 6 year: 1966 ident: 9472_CR7 publication-title: Journal of Mathematics and Mechanics – volume: 62 start-page: 5167 issue: 9 year: 2016 ident: 9472_CR52 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2016.2590421 – volume: 41 start-page: 3271 issue: 11 year: 2008 ident: 9472_CR48 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.06.011 – ident: 9472_CR32 doi: 10.1007/978-1-4612-0603-3 – volume: 59 start-page: 26 issue: 14 year: 2020 ident: 9472_CR9 publication-title: Calculus of Variations and Partial Differential Equations – volume: 51 start-page: 34 issue: 1 year: 2009 ident: 9472_CR11 publication-title: SIAM Review doi: 10.1137/060657704 – volume: 98 start-page: 477 year: 2004 ident: 9472_CR18 publication-title: Numerische Mathematik doi: 10.1007/s00211-004-0541-x – volume: 4 start-page: 405 issue: 5 year: 1962 ident: 9472_CR4 publication-title: Arkiv för Matematik doi: 10.1007/BF02591622 – volume: 23 start-page: 1153 issue: 5 year: 2017 ident: 9472_CR17 publication-title: Journal of Fourier Analysis and Applications doi: 10.1007/s00041-016-9502-x – volume: 59 start-page: 769 issue: 4 year: 2017 ident: 9472_CR53 publication-title: SIAM Review doi: 10.1137/16M1061199 – volume: 10 start-page: 2507 issue: Nov year: 2009 ident: 9472_CR2 publication-title: Journal of Machine Learning Research – volume: 13 start-page: 1 issue: 1 year: 2000 ident: 9472_CR23 publication-title: Advances in Computational Mathematics doi: 10.1023/A:1018946025316 – volume: 23 start-page: 969 issue: 3 year: 2007 ident: 9472_CR14 publication-title: Inverse Problems doi: 10.1088/0266-5611/23/3/008 – volume: 67 start-page: 906 issue: 6 year: 2014 ident: 9472_CR13 publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.21455 – volume-title: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces year: 1970 ident: 9472_CR47 doi: 10.1007/978-3-662-41583-2 – volume: 15 start-page: 1315 issue: 5 year: 2015 ident: 9472_CR21 publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-014-9228-6 – volume: 13 start-page: 73 issue: 1 year: 1975 ident: 9472_CR25 publication-title: Journal of Approximation Theory doi: 10.1016/0021-9045(75)90016-7 – ident: 9472_CR43 doi: 10.7551/mitpress/4175.001.0001 – ident: 9472_CR22 doi: 10.1137/1.9781611971088 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 9472_CR19 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2006.871582 – volume: 36 start-page: 1171 issue: 3 year: 2008 ident: 9472_CR29 publication-title: Annals of Statistics doi: 10.1214/009053607000000677 – volume: 29 start-page: 195 issue: 2 year: 2013 ident: 9472_CR58 publication-title: Journal of Complexity doi: 10.1016/j.jco.2012.09.002 – volume: 4 start-page: 195 issue: 3 year: 2012 ident: 9472_CR1 publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000036 – volume: 33 start-page: 82 issue: 1 year: 1971 ident: 9472_CR31 publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/0022-247X(71)90184-3 – volume: 10 start-page: 2741 year: 2009 ident: 9472_CR56 publication-title: Journal of Machine Learning Research – volume: 45 start-page: 2758 issue: 11 year: 1997 ident: 9472_CR44 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650102 – volume: 16 start-page: 1 issue: 01 year: 2018 ident: 9472_CR16 publication-title: Analysis and Applications doi: 10.1142/S0219530516500202 – volume: 38 start-page: 1155 issue: 7 year: 1990 ident: 9472_CR30 publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing doi: 10.1109/29.57544 – volume: 20 start-page: 1 issue: 110 year: 2019 ident: 9472_CR51 publication-title: Journal of Machine Learning Research – volume: 19 start-page: 190 issue: 1 year: 2013 ident: 9472_CR10 publication-title: ESAIM: Control, Optimisation and Calculus of Variations – volume: 15 start-page: 16 issue: 1 year: 2004 ident: 9472_CR39 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2003.809398 – ident: 9472_CR26 doi: 10.1007/978-0-8176-4948-7 – volume: 19 start-page: 1229 issue: 6 year: 2013 ident: 9472_CR12 publication-title: Journal of Fourier Analysis and Applications doi: 10.1007/s00041-013-9292-3 – start-page: 85 volume-title: Constructive Theory of Functions of Several Variables year: 1977 ident: 9472_CR20 doi: 10.1007/BFb0086566 – volume: 78 start-page: 1481 issue: 9 year: 1990 ident: 9472_CR35 publication-title: Proceedings of the IEEE doi: 10.1109/5.58326 – volume: 29 start-page: 1260 issue: 2 year: 2019 ident: 9472_CR8 publication-title: SIAM Journal of Optimization doi: 10.1137/18M1200750 – ident: 9472_CR45 doi: 10.1515/9783110255720 – volume-title: Generalized Functions year: 1964 ident: 9472_CR27 – volume: 20 start-page: 1 issue: 64 year: 2019 ident: 9472_CR5 publication-title: Journal of Machine Learning Research – volume-title: Spline Models for Observational Data year: 1990 ident: 9472_CR54 doi: 10.1137/1.9781611970128 – volume: 5 start-page: 251 year: 2016 ident: 9472_CR24 publication-title: Information and Inference doi: 10.1093/imaiai/iaw005 – volume: 247 start-page: 978 issue: 4945 year: 1990 ident: 9472_CR36 publication-title: Science doi: 10.1126/science.247.4945.978 – volume: 51 start-page: 1 issue: 1 year: 2019 ident: 9472_CR37 publication-title: SIAM Journal on Mathematical Analysis doi: 10.1137/17M1147822 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.5272353 |
| Snippet | Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 941 |
| SubjectTerms | Applications of Mathematics Banach spaces Computer Science Economics Inverse problems Linear and Multilinear Algebras Machine learning Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Optimization Regularization Theorems |
| Title | A Unifying Representer Theorem for Inverse Problems and Machine Learning |
| URI | https://link.springer.com/article/10.1007/s10208-020-09472-x https://www.proquest.com/docview/2560075991 |
| Volume | 21 |
| WOSCitedRecordID | wos000572724200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yBfXB6VScTsmDbxpYm7RZH4c49rIx5g_2VpI0FUGrtFP8872kyaaigr4UmqSh5JLLd9zddwidxioXmVAxEYLGhNGeJDLTjAQylzrQcOGKutgEH497s1kycUlhlY929y5Jq6k_JLuFxlUP5g6YJDwkgBxX4brrmYIN06vbhe8gSiyjt4EyhFIeuVSZ7-f4fB0tMeYXt6i9bQbN__3nNtpy6BL36-2wg1Z00UJNhzSxO8cVNPliDr6thdZ9ijJ0b44WZK7VLhr2MSBTmw-FpzZw1vB4ltim9etHDLAXG7qOstJ4UtenqbAoMjyygZoaOw7Xuz10M7i8vhgSV4CBqKgbzkmeM8G7UkVCiSCnGcAXAeaSkSDgCs2UVJwHoQLFEEqqYhGFCgzeHBRoBFuA0X3UKJ4KfYAwE0rGKktEIBIWKyZ0YnQLvOiYZly0UeDlkCrHTm6KZDykS15ls64pPFK7rulbG50tvnmuuTl-Hd3x4k3dOa1SC_h4BCC5jc69OJfdP892-LfhR2gjNMEwNnKwgxrz8kUfozX1Or-vyhO7f98BG2LqJg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5kCtMHp1Nx_syDbxpYm7RdH4c4Jm5jzCl7K2maiqBV1in--V7SdFNRQV8KTdJQcsnlO-7uO4ATX6YiEdKnQjCfctaKaZwoTp04jZWj8MIVRbGJYDBoTSbh0CaF5WW0e-mSNJr6Q7Kbq131aO6gSRK4FJHjMscbSzPmj65v574DLzSM3hrKUMYCz6bKfD_H5-togTG_uEXNbdOp_e8_N2DdokvSLrbDJiyprA41izSJPcc5NpXFHMq2OlTLFGXsXuvPyVzzLei2CSJTkw9FRiZwVvN4TolJ61ePBGEv0XQd01yRYVGfJiciS0jfBGoqYjlc77bhpnMxPu9SW4CBSq_pzmiachE0Y-kJKZyUJQhfBJpLWoKIKxSXsQwCx5WoGNyYSV94rkSDN0UF6uEW4GwHKtlTpnaBcCFjXyahcETIfcmFCrVuwRflsyQQDXBKOUTSspPrIhkP0YJXWa9rhI_IrGv01oDT-TfPBTfHr6MPSvFG9pzmkQF8gYcguQFnpTgX3T_Ptve34cdQ7Y77vah3Objah1VXB8aYKMIDqMymL-oQVuTr7D6fHpm9_A4dHO0K |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9ExY8Hp1NxOjUPvmnY2qbt-jjUMdGN4Rd7K2maiqB1tFP8872k6TZFBfGl0CQNJXdJfsfd_Q7gyBMJj7nwKOeOR5nTimgUS0atKImkJfHC5UWxCb_fbw2HwWAmi19Hu5cuySKnQbE0pePGKE4aM4lvtnLbo-mD5olvU0SRC0wF0it7_eZ-4kdwA83urWANdRzfNWkz38_x-Wqa4s0vLlJ983Qq___ndVgzqJO0CzXZgDmZVqFiECgx-zvHprLIQ9lWheUydRm7V3sTktd8E7ptgohV50mRax1Qq_g9M6LT_eUzQThMFI1HlksyKOrW5ISnMenpAE5JDLfrwxbcdc5vT7vUFGagwm3aY5okjPvNSLhccCtxYoQ1HM0oJVnEG5KJSPi-ZQs8MOzIER53bYGGcIIHq4uqwZxtmE9fUrkDhHEReSIOuMUD5gnGZaDOHHyRnhP7vAZWKZNQGNZyVTzjKZzyLat1DfER6nUN32twPPlmVHB2_Dq6Xoo6NPs3DzUQ9F0EzzU4KUU77f55tt2_DT-EpcFZJ7y66F_uwYqt4mV0cGEd5sfZq9yHRfE2fsyzA63WH-9-9e4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unifying+Representer+Theorem+for+Inverse+Problems+and+Machine+Learning&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Unser%2C+Michael&rft.date=2021-08-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=21&rft.issue=4&rft.spage=941&rft.epage=960&rft_id=info:doi/10.1007%2Fs10208-020-09472-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_020_09472_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |