Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100
This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head...
Gespeichert in:
| Veröffentlicht in: | International journal of computer vision Jg. 130; H. 1; S. 33 - 55 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2022
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0920-5691, 1573-1405 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics. |
|---|---|
| AbstractList | This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics. This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the "test of time"-i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics. |
| Audience | Academic |
| Author | Doughty, Hazel Furnari, Antonino Damen, Dima Ma, Jian Price, Will Farinella, Giovanni Maria Munro, Jonathan Kazakos, Evangelos Perrett, Toby Moltisanti, Davide Wray, Michael |
| Author_xml | – sequence: 1 givenname: Dima surname: Damen fullname: Damen, Dima email: Dima.Damen@bristol.ac.uk organization: University of Bristol – sequence: 2 givenname: Hazel surname: Doughty fullname: Doughty, Hazel organization: University of Bristol, Present Address: University of Amsterdam – sequence: 3 givenname: Giovanni Maria surname: Farinella fullname: Farinella, Giovanni Maria organization: University of Catania – sequence: 4 givenname: Antonino surname: Furnari fullname: Furnari, Antonino organization: University of Catania – sequence: 5 givenname: Evangelos surname: Kazakos fullname: Kazakos, Evangelos organization: University of Bristol – sequence: 6 givenname: Jian surname: Ma fullname: Ma, Jian organization: University of Bristol – sequence: 7 givenname: Davide surname: Moltisanti fullname: Moltisanti, Davide organization: University of Bristol, NTU – sequence: 8 givenname: Jonathan surname: Munro fullname: Munro, Jonathan organization: University of Bristol – sequence: 9 givenname: Toby surname: Perrett fullname: Perrett, Toby organization: University of Bristol – sequence: 10 givenname: Will surname: Price fullname: Price, Will organization: University of Bristol – sequence: 11 givenname: Michael surname: Wray fullname: Wray, Michael organization: University of Bristol |
| BookMark | eNp9kU1r3DAQhkVJoJukf6AnQ0-FKtWHZdm9BbNtloY0JG2uQiuPXAVH2kpeaP99JnWhJIcggYTmfWY08x6Rg5giEPKWs1POmP5YOBeNpExwyriSnIpXZMWVlpTXTB2QFesEo6rp-GtyVModY0y0Qq7I7TUUZ6cQx2o9JgdxzsFVt6GEFD9VfZomcDPeP1RXYQeog8rGoep_WozEEUrlU67WV5ueft1878_XlzcUf3RCDr2dCrz5dx6TH5_XGKYX375s-rML6hQTM_XboQbotl5tW48NNG2ra-k0DKID23YC9ABcSidlXXulW6aUg1p32g1W4j4m75a8u5x-7aHM5i7tc8SSRjRcc5xFo1F1uqhGO4EJ0ac5W4drgPvgcJI-4PsZVu9EyzqFwPsnAGpm-D2Pdl-K2dxcP9W2i9blVEoGb1yY7ePMsEiYDGfm0SKzWGTQIvPXIiMQFc_QXQ73Nv95GZILVFCMDuT_Lb9APQBv4qIJ |
| CitedBy_id | crossref_primary_10_1007_s11831_025_10314_8 crossref_primary_10_1109_TCSVT_2024_3406546 crossref_primary_10_1109_TMM_2023_3338082 crossref_primary_10_1109_TPAMI_2022_3183112 crossref_primary_10_1007_s00221_023_06597_7 crossref_primary_10_1007_s11263_025_02478_4 crossref_primary_10_1007_s11263_022_01694_6 crossref_primary_10_1109_TIP_2024_3413599 crossref_primary_10_1145_3664815 crossref_primary_10_1007_s11042_023_17529_6 crossref_primary_10_1007_s11263_024_02095_7 crossref_primary_10_1109_TPAMI_2023_3327284 crossref_primary_10_1007_s11227_024_06138_1 crossref_primary_10_1109_TPAMI_2024_3393730 crossref_primary_10_1145_3672079 crossref_primary_10_1080_01691864_2024_2408593 crossref_primary_10_3390_s23052780 crossref_primary_10_1109_JSEN_2023_3349191 crossref_primary_10_1049_cvi2_12342 crossref_primary_10_1109_TMM_2024_3367599 crossref_primary_10_1007_s11263_024_01998_9 crossref_primary_10_1016_j_cviu_2023_103763 crossref_primary_10_1109_ACCESS_2024_3413578 crossref_primary_10_1109_JBHI_2024_3430810 crossref_primary_10_1109_TC_2025_3569173 crossref_primary_10_3390_math13091365 crossref_primary_10_1109_TPAMI_2022_3169976 crossref_primary_10_1016_j_cviu_2024_104035 crossref_primary_10_1109_RBME_2023_3296938 crossref_primary_10_1109_ACCESS_2024_3391817 crossref_primary_10_3233_WEB_220084 crossref_primary_10_1089_neu_2022_0156 crossref_primary_10_1109_ACCESS_2025_3526757 crossref_primary_10_3390_jimaging11030091 crossref_primary_10_1109_TCSVT_2025_3548515 crossref_primary_10_1109_TPAMI_2025_3552779 crossref_primary_10_1145_3587931 crossref_primary_10_1109_LRA_2023_3251843 crossref_primary_10_3390_s23156986 crossref_primary_10_3390_mti9070066 crossref_primary_10_1109_TPAMI_2024_3367412 crossref_primary_10_1109_ACCESS_2025_3583623 crossref_primary_10_1109_TMM_2024_3521658 crossref_primary_10_1109_TPAMI_2023_3330794 crossref_primary_10_1007_s11042_024_20576_2 crossref_primary_10_1016_j_patcog_2025_111846 crossref_primary_10_1145_3633333 crossref_primary_10_1016_j_cviu_2025_104371 crossref_primary_10_3390_technologies13020061 crossref_primary_10_1145_3699776 crossref_primary_10_1109_TPAMI_2023_3287208 crossref_primary_10_1109_TCSVT_2023_3281671 crossref_primary_10_1145_3699770 crossref_primary_10_1016_j_cag_2023_09_013 crossref_primary_10_1007_s00530_024_01511_9 crossref_primary_10_1007_s11263_022_01702_9 crossref_primary_10_1016_j_eswa_2023_121330 crossref_primary_10_1007_s11263_025_02523_2 crossref_primary_10_1007_s42524_025_4109_z crossref_primary_10_1016_j_cviu_2023_103741 crossref_primary_10_1109_LSP_2024_3483009 crossref_primary_10_1109_TMM_2023_3295899 crossref_primary_10_1016_j_patcog_2024_110927 crossref_primary_10_1109_ACCESS_2025_3593474 crossref_primary_10_1007_s11263_024_02273_7 crossref_primary_10_1007_s11831_023_09986_x crossref_primary_10_1109_JSEN_2024_3371975 crossref_primary_10_1109_JSEN_2024_3390794 crossref_primary_10_1109_MCG_2025_3549696 crossref_primary_10_1016_j_cviu_2023_103818 crossref_primary_10_1109_ACCESS_2025_3534621 crossref_primary_10_1145_3769091 crossref_primary_10_1145_3643500 |
| Cites_doi | 10.1007/s11263-017-1013-y 10.1007/978-3-319-46448-0_31 10.1109/ICCV.2019.00630 10.1109/CVPR42600.2020.01242 10.1109/CVPR.2015.7298940 10.1177/0278364915614638 10.1109/ICCV.2011.6126543 10.1007/978-3-030-01252-6_13 10.1007/978-3-030-11021-5_24 10.1109/CVPR.2012.6248074 10.1109/ICCV.2017.83 10.1109/CVPR.2011.5995347 10.1007/978-3-319-46484-8_2 10.2307/1912352 10.1109/CVPR.2018.00706 10.1109/CVPR.2018.00771 10.1109/ICCV.2017.622 10.1109/ICCV.2017.322 10.1109/CVPR.2019.01015 10.1109/WACV45572.2020.9093358 10.1109/ICCV.2017.314 10.1109/CVPR.2015.7298625 10.1109/CVPR.2017.544 10.1007/978-3-030-01225-0_44 10.1109/CVPR.2015.7298932 10.1109/CVPR42600.2020.01164 10.1145/582415.582418 10.1109/TPAMI.2020.2992889 10.1007/978-3-319-11382-1_18 10.1007/978-3-642-15561-1_16 10.1109/CVPR42600.2020.00989 10.1145/2493432.2493482 10.1007/978-3-030-01246-5_49 10.1109/CVPR.2017.113 10.1109/CVPR.2019.00139 10.1007/978-3-319-46454-1_27 10.1007/978-3-319-10602-1_41 10.1007/978-3-319-46454-1_17 10.1007/978-3-319-46466-4_5 10.1109/CVPR.2012.6247801 10.1109/ICCV.2017.381 10.1109/ICCV.2019.00560 10.1109/ICCV.2019.00559 10.1109/CVPR.2012.6248010 10.1145/2911996.2912036 10.1109/CVPR.2007.383196 10.24963/ijcai.2019/871 10.1109/ICCV.2019.00054 10.5244/C.31.128 10.1126/scirobotics.aaw6661 10.1609/aaai.v32i1.12342 10.1109/CVPRW.2018.00141 10.5244/C.28.30 10.1109/TPAMI.2019.2901464 10.5244/C.24.50 10.1007/978-3-030-01261-8_24 10.1109/ICCVW.2019.00460 10.1109/CVPRW50498.2020.00172 10.1109/CVPR.2019.00366 10.1007/s11263-019-01255-4 10.21105/joss.00861 10.1109/CVPR.2016.571 10.1109/ICCV.2019.00272 10.1145/3240508.3240633 10.1109/ICCV.2019.00718 10.1109/ICCV.2017.534 10.1007/978-3-642-33718-5_23 10.1177/0278364916679498 10.1007/978-3-642-33715-4_54 10.1109/CVPR.2014.105 10.1109/CVPR.2017.440 10.1109/CVPR.2016.85 10.1109/CVPR.2015.7298698 10.1109/ICCV.2019.00642 10.1007/978-3-319-58347-1_10 10.1007/978-3-319-10602-1_48 10.1109/ICCV.2019.00877 10.1109/CVPR.2019.00674 10.1016/j.imavis.2016.01.001 10.1007/978-3-319-46478-7_34 10.1109/TMM.2015.2390499 10.1109/CVPR.2009.5206557 10.1109/CVPR.2018.00633 10.1007/978-3-319-46493-0_9 10.1109/TPAMI.2015.2430335 10.1109/CVPR.2017.502 10.1109/CVPR.2017.572 10.1109/ICCV.2019.00149 10.1109/CVPR.2017.233 10.1109/ICCV.2019.00399 10.1109/ICCV.2019.00876 10.1109/ICCV.2019.00502 10.1109/CVPR.2016.350 10.1109/CVPR.2017.678 10.1109/ICCV.2019.00940 10.1609/aaai.v34i07.6854 10.1109/ICCV.2019.00634 10.1109/CVPR42600.2020.00020 10.1109/CVPR.2009.5206848 10.1109/ICRA.2018.8460982 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2022 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1007/s11263-021-01531-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 55 |
| ExternalDocumentID | A688928095 10_1007_s11263_021_01531_2 |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/N033779/1 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Engineering and Physical Sciences Research Council funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Engineering and Physical Sciences Research Council grantid: EP/T004991/1 funderid: http://dx.doi.org/10.13039/501100000266 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c502t-fbd4ee9bf5b8f263688743c7ed29ea892e7de133c3344f578055ce4797cda3da3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 269 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709268800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5691 |
| IngestDate | Wed Nov 05 00:58:27 EST 2025 Sat Nov 29 10:07:04 EST 2025 Wed Nov 26 10:14:11 EST 2025 Sat Nov 29 06:42:28 EST 2025 Tue Nov 18 19:39:50 EST 2025 Fri Feb 21 02:46:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Annotation quality Egocentric vision Multi-benchmark large-scale dataset First-person vision Video dataset Action understanding |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-fbd4ee9bf5b8f263688743c7ed29ea892e7de133c3344f578055ce4797cda3da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s11263-021-01531-2 |
| PQID | 2617115367 |
| PQPubID | 1456341 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2617115367 gale_infotracacademiconefile_A688928095 gale_incontextgauss_ISR_A688928095 crossref_citationtrail_10_1007_s11263_021_01531_2 crossref_primary_10_1007_s11263_021_01531_2 springer_journals_10_1007_s11263_021_01531_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Carreira J, & Zisserman A (2017) Quo Vadis, action recognition? A new model and the Kinetics dataset. In CVPR Ding L, & Xu C (2018) Weakly-supervised action segmentation with iterative soft boundary assignment. In CVPR Torralba A, & Efros AA (2011) Unbiased look at dataset bias. In CVPR 2011 Bojanowski P, Lajugie R, Bach F, Laptev I, Ponce J, Schmid C, & Sivic J (2014) Weakly supervised action labeling in videos under ordering constraints. In ECCV Ioffe S, & Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In ICML Munro J, & Damen D (2020) Multi-modal domain adaptation for fine-grained action recognition. In CVPR Pan B, Cao Z, Adeli E, & Niebles JC (2020) Adversarial cross-domain action recognition with co-attention. In AAAI Plizzari C, Planamente M, Alberti E, & Caputo B (2021). Polito-iit submission to the epic-kitchens-100 unsupervised domain adaptation challenge for action recognition. arXiv preprint arXiv:2107.00337 MaddernWPascoeGLinegarCNewmanP1 year, 1000 km: the Oxford RobotCar datasetInt J Robot Res201736131510.1177/0278364916679498 Rasiwasia N, Mahajan D, Mahadevan V, & Aggarwal G (2014) Cluster canonical correlation analysis. In AISTATS Chang C, Huang DA, Sui Y, Fei-Fei L, & Niebles JC (2019) D3TW: Discriminative differentiable dynamic time warping for weakly supervised action alignment and segmentation. In CVPR Järvelin K, & Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. TOIS Honnibal M, & Montani I (2017) spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing Lea C, Flynn MD, Vidal R, Reiter A, & Hager GM (2017) Temporal convolutional networks for action segmentation and detection. In CVPR Singh KK, & Lee YJ (2017). Hide-and-Seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In ICCV Bhattacharyya A, Fritz M, & Schiele B (2019) Bayesian prediction of future street scenes using synthetic likelihoods. In ICLR Li J, Lei P, & Todorovic S (2019) Weakly supervised energy-based learning for action segmentation. In ICCV Zhou L, Xu C, & Corso JJ (2017) Towards automatic learning of procedures from web instructional videos. In AAAI Carlevaris-BiancoNUshaniAKEusticeRMUniversity of Michigan North Campus long-term vision and lidar datasetInt J Robotics Res20163591023103510.1177/0278364915614638 Weinzaepfel P, Martin X, & Schmid C (2016) Human action localization with sparse spatial supervision. arXiv Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, & Darrell T (2018) BDD100K: A diverse driving video database with scalable annotation tooling. arXiv Zach C, Pock T, & Bischof H (2007) A duality based approach for realtime TV-L1 optical flow. In Pattern Recognition Kazakos E, Nagrani A, Zisserman A, & Damen D (2019) EPIC-Fusion: Audio-visual temporal binding for egocentric action recognition. In ICCV Stein S, & McKenna SJ (2013). Combining Embedded Accelerometers with Computer Vision for Recognizing Food Preparation Activities. In International Joint Conference on Pervasive and Ubiquitous Computing Stein S, & McKenna S (2013) Combining embedded accelerometers with computer vision for recognizing food preparation activities. In UbiComp Goyal R, Kahou SE, Michalski V, Materzynska J, Westphal S, Kim H, Haenel V, Fründ I, Yianilos P, Mueller-Freitag M, Hoppe F, Thurau C, Bax I, Memisevic R (2017) The “Something Something” video database for learning and evaluating visual common sense. In ICCV Gorban A, Idrees H, Jiang YG, Zamir AR, Laptev I, Shah M, & Sukthankar R (2015). THUMOS challenge: Action recognition with a large number of classes. http://www.thumos.info Nguyen P, Ramanan D, & Fowlkes C (2019) Weakly-supervised action localization with background modeling. In ICCV Chéron G, Alayrac J, Laptev I, & Schmid C (2018) A flexible model for training action localization with varying levels of supervision. In NeurIPS Lee N, Choi W, Vernaza P, Choy C, Torr PHS, & Chandraker M (2017) DESIRE: Distant future prediction in dynamic scenes with interacting agents. In CVPR Lin J, Gan C, & Han S (2019) TSM: Temporal shift module for efficient video understanding. In ICCV Zhou B, Krähenbühl P, & Koltun V (2019) Does computer vision matter for action? Science Robotics Zhai M, Bessinger Z, Workman S, & Jacobs N (2017) Predicting Ground-Level Scene Layout from Aerial Imagery. In Computer Vision and Pattern Recognition Chen D, & Dolan, W (2011) Collecting highly parallel data for paraphrase evaluation. In NAACL-HLT Heilbron FC, Lee JY, Jin H, & Ghanem B (2018) What do i annotate next?, An empirical study of active learning for action localization. In ECCV Rohrbach, M., Amin, S., Andriluka, M., & Schiele, B. (2012). A database for fine grained activity detection of cooking activities. In CVPR Xu J, Mei T, Yao T, & Rui Y (2016) MSR-VTT: A large video description dataset for bridging video and language. In CVPR Heilbron FC, Escorcia V, Ghanem B, & Niebles JC (2015) ActivityNet: A large-scale video benchmark for human activity understanding. In CVPR Cao Y, Long M, Wang J, & Yu P (2017) Correlation hashing network for efficient cross-modal retrieval. In BMVC Narayan S, Cholakkal H, Khan F, & Shao L (2019) 3C-Net: Category count and center loss for weakly-supervised action localization. In ICCV Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting Visual Category Models to New Domains. In European Conference on Computer Vision Mettes P, Van Gemert JC, & Snoek CG (2016) Spot on: Action localization from pointly-supervised proposals. In ECCV Perazzi F, Pont-Tuset J, McWilliams B, Gool LV, Gross M, & Sorkine-Hornung A (2016) A benchmark dataset and evaluation methodology for video object segmentation. In CVPR Li Y, Ye Z, & Rehg JM (2015) Delving into egocentric actions. In CVPR He K, Girshick R, & Dollár P (2019) Rethinking ImageNet pre-training. In ICCV Wulfmeier M, Bewley A, & Posner I (2018) Incremental Adversarial Domain Adaptation for Continually Changing Environments. In International Conference on Robotics and Automation. 4489–4495 Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, & Beijbom O (2019) nuScenes: A multimodal dataset for autonomous driving. arXiv Shan D, Geng J, Shu M, & Fouhey DF (2020) Understanding human hands in contact at internet scale. In CVPR Damen D, Leelasawassuk T, Haines O, Calway A, & Mayol-Cuevas W (2014). You-do, I-learn: Discovering task relevant objects and their modes of interaction from multi-user egocentric video. In BMVC Vondrick C, Shrivastava A, Fathi A, Guadarrama S, & Murphy K (2018) Tracking emerges by colorizing videos. In ECCV Yogamani S, Hughes C, Horgan J, Sistu G, Varley P, O‘Dea D, Uricár M, Milz S, Simon M, Amende K et al. (2019) Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving. In ICCV Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting visual category models to new domains. In ECCV Zhao H, Yan Z, Torresani L, & Torralba A (2019) HACS: Human action clips and segments dataset for recognition and temporal localization. In ICCV Moltisanti D, Wray M, Mayol-Cuevas W, & Damen D (2017) Trespassing the boundaries: Labeling temporal bounds for object interactions in egocentric video. In ICCV Gupta S, & Malik J (2016) Visual semantic role labeling. In CVPR Gygli M, & Ferrari V (2019) Efficient object annotation via speaking and pointing. IJCV Richard A, Kuehne H, Iqbal A, & Gall J (2018) NeuralNetwork-Viterbi: A framework for weakly supervised video learning. In CVPR Damen D, Doughty H, Farinella GM, Fidler S, Furnari A, Kazakos E, Moltisanti D, Munro J, Perrett T, Price W, & Wray M (2018) Scaling egocentric vision: The EPIC-KITCHENS dataset. In ECCV Deng J, Dong W, Socher R, Li LJ, Li K, & Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In CVPR Oberdiek P, Rottmann M, & Fink GA (2020) Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation. In Computer Vision and Pattern Recognition Workshops Gu C, Sun C, Ross DA, Vondrick C, Pantofaru C, Li Y, Vijayanarasimhan S, Toderici G, Ricco S, Sukthankar R, Schmid C, & Malik J (2018) AVA: A video dataset of spatio-temporally localized atomic visual actions. In CVPR Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, & Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In CVPR Xu T, Zhu F, Wong EK, & Fang Y (2016) Dual many-to-one-encoder-based transfer learning for cross-dataset human action recognition. IMAVIS Karpathy A, & Fei-Fei L (2015) Deep Visual-Semantic Alignments for Generating Image Descriptions. In CVPR Gong B, Shi Y, Sha F, & Grauman K (2012) Geodesic Flow Kernel for Unsupervised Domain Adaptation. In Computer Vision and Pattern Recognition Krishna R, Hata K, Ren F, Fei-Fei L, & Niebles JC (2017) Dense-captioning events in videos. In ICCV Geiger A, Lenz P, & Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR HeckmanJJSample Selection Bias as a Specification ErrorEconometrica197947115316151883210.2307/1912352 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, & Chintala S (2019). Pytorch: An imperative style, high-performance deep learning library. In Wallach H, Larochelle H, Beygelzimer A, dÁlché-Buc F, Fox E, & Garnett R, eds. Advances in Neural Information Processing Systems 32. Curran Associates, Inc. 8024–8035 Monfort M, Vondrick C, Oliva A, Andonian A, Zhou B, Ramakrishnan K, Bargal SA, Yan T, Brown L, Fan Q, & Gutfreund D (2020) Moments in Time dataset: One million videos for event understanding. TPAMI Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, & Zisserman A (2017) The Kinetics human action video dataset. arXiv Planamente M, Plizzari C, Alberti E, & Caputo B (2021) Cross-domain first 1531_CR23 1531_CR22 1531_CR25 1531_CR24 1531_CR21 1531_CR20 1531_CR27 1531_CR26 1531_CR29 1531_CR28 1531_CR34 1531_CR33 1531_CR36 1531_CR30 1531_CR32 1531_CR31 N Carlevaris-Bianco (1531_CR7) 2016; 35 1531_CR104 1531_CR103 1531_CR106 1531_CR105 1531_CR108 1531_CR107 1531_CR109 1531_CR38 W Maddern (1531_CR64) 2017; 36 1531_CR100 1531_CR37 1531_CR102 1531_CR39 1531_CR101 1531_CR45 1531_CR44 1531_CR47 1531_CR46 1531_CR41 1531_CR40 1531_CR43 1531_CR42 1531_CR115 1531_CR114 1531_CR117 1531_CR116 1531_CR119 1531_CR118 1531_CR49 1531_CR111 1531_CR48 1531_CR110 1531_CR113 1531_CR112 1531_CR56 1531_CR55 1531_CR58 1531_CR57 1531_CR52 1531_CR51 1531_CR54 1531_CR53 1531_CR50 1531_CR126 1531_CR125 1531_CR128 1531_CR127 1531_CR129 1531_CR120 1531_CR122 1531_CR59 1531_CR121 1531_CR124 1531_CR123 1531_CR67 1531_CR66 1531_CR69 1531_CR68 1531_CR63 1531_CR62 1531_CR65 1531_CR61 1531_CR60 1531_CR131 1531_CR130 1531_CR78 1531_CR77 1531_CR79 1531_CR74 1531_CR73 1531_CR76 1531_CR75 1531_CR70 1531_CR72 1531_CR71 1531_CR5 1531_CR89 1531_CR4 1531_CR88 1531_CR6 1531_CR9 1531_CR85 1531_CR8 1531_CR84 1531_CR87 1531_CR86 1531_CR81 1531_CR80 1531_CR83 1531_CR82 1531_CR1 1531_CR3 1531_CR2 JJ Heckman (1531_CR35) 1979; 47 1531_CR12 1531_CR11 1531_CR99 1531_CR14 1531_CR13 1531_CR96 1531_CR95 1531_CR10 1531_CR98 1531_CR97 1531_CR92 1531_CR91 1531_CR94 1531_CR93 1531_CR90 1531_CR19 1531_CR16 1531_CR15 1531_CR18 1531_CR17 |
| References_xml | – reference: Yogamani S, Hughes C, Horgan J, Sistu G, Varley P, O‘Dea D, Uricár M, Milz S, Simon M, Amende K et al. (2019) Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving. In ICCV – reference: Zamir AR, Sax A, Shen W, Guibas L, Malik J, & Savarese S (2018) Taskonomy: Disentangling task transfer learning. In CVPR – reference: Mettes P, Van Gemert JC, & Snoek CG (2016) Spot on: Action localization from pointly-supervised proposals. In ECCV – reference: Krishna R, Hata K, Ren F, Fei-Fei L, & Niebles JC (2017) Dense-captioning events in videos. In ICCV – reference: Honnibal M, & Montani I (2017) spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing – reference: Kuehne H, Jhuang H, Garrote E, Poggio T, & Serre T (2011) HMDB: a large video database for human motion recognition. In ICCV – reference: Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, & Zisserman A (2017) The Kinetics human action video dataset. arXiv – reference: Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting Visual Category Models to New Domains. In European Conference on Computer Vision – reference: Mettes P, Koelma DC, & Snoek CGM (2016) The ImageNet shuffle: Reorganized pre-training for video event detection. In ICMR – reference: Qi F, Yang X, & Xu C (2018) A unified framework for multimodal domain adaptation. In ACM-MM – reference: Rasiwasia N, Mahajan D, Mahadevan V, & Aggarwal G (2014) Cluster canonical correlation analysis. In AISTATS – reference: Furnari A, Battiato S, & Farinella GM (2018) Leveraging uncertainty to rethink loss functions and evaluation measures for egocentric action anticipation. In ECCVW – reference: Ding L, & Xu C (2018) Weakly-supervised action segmentation with iterative soft boundary assignment. In CVPR – reference: Perazzi F, Pont-Tuset J, McWilliams B, Gool LV, Gross M, & Sorkine-Hornung A (2016) A benchmark dataset and evaluation methodology for video object segmentation. In CVPR – reference: Heilbron FC, Lee JY, Jin H, & Ghanem B (2018) What do i annotate next?, An empirical study of active learning for action localization. In ECCV – reference: Jiang YG, Liu J, Zamir AR, Toderici G, Laptev I, Shah M, & Sukthankar R (2014) THUMOS challenge: Action recognition with a large number of classes. http://crcv.ucf.edu/THUMOS14/ – reference: Damen D, Leelasawassuk T, Haines O, Calway A, & Mayol-Cuevas W (2014). You-do, I-learn: Discovering task relevant objects and their modes of interaction from multi-user egocentric video. In BMVC – reference: Zhou B, Krähenbühl P, & Koltun V (2019) Does computer vision matter for action? Science Robotics – reference: Zhou L, Kalantidis Y, Chen X, Corso JJ, & Rohrbach M (2019) Grounded video description. In CVPR – reference: Mahdisoltani F, Berger G, Gharbieh W, Fleet D, & Memisevic R (2018) On the effectiveness of task granularity for transfer learning. arXiv – reference: Jamal A, Namboodiri VP, Deodhare D, & Venkatesh K (2018) Deep domain adaptation in action space. In BMVC – reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, & Zitnick CL (2014) Microsoft COCO: Common objects in context. In ECCV – reference: Sigurdsson GA, Varol G, Wang X, Farhadi A, Laptev I, & Gupta A (2016) Hollywood in Homes: Crowdsourcing data collection for activity understanding. In ECCV – reference: Xu T, Zhu F, Wong EK, & Fang Y (2016) Dual many-to-one-encoder-based transfer learning for cross-dataset human action recognition. IMAVIS – reference: De La Torre F, Hodgins J, Bargteil A, Martin X, Macey J, Collado A, & Beltran P (2008) Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) database. In Robotics Institute – reference: Rohrbach A, Rohrbach M, Tandon N, & Schiele B (2015) A dataset for movie description. In CVPR – reference: Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, & Chintala S (2019). Pytorch: An imperative style, high-performance deep learning library. In Wallach H, Larochelle H, Beygelzimer A, dÁlché-Buc F, Fox E, & Garnett R, eds. Advances in Neural Information Processing Systems 32. Curran Associates, Inc. 8024–8035 – reference: Li J, Lei P, & Todorovic S (2019) Weakly supervised energy-based learning for action segmentation. In ICCV – reference: Rohrbach, M., Amin, S., Andriluka, M., & Schiele, B. (2012). A database for fine grained activity detection of cooking activities. In CVPR – reference: Karpathy A, & Fei-Fei L (2015) Deep Visual-Semantic Alignments for Generating Image Descriptions. In CVPR – reference: Neuhold G, Ollmann T, Bulo SR, & Kontschieder P (2017) The mapillary vistas dataset for semantic understanding of street scenes. In ICCV – reference: Richard A, Kuehne H, Iqbal A, & Gall J (2018) NeuralNetwork-Viterbi: A framework for weakly supervised video learning. In CVPR – reference: Soomro K, Zamir AR, & Shah M (2012) UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv – reference: Stein S, & McKenna S (2013) Combining embedded accelerometers with computer vision for recognizing food preparation activities. In UbiComp – reference: Liu D, Jiang T, & Wang Y (2019) Completeness modeling and context separation for weakly supervised temporal action localization. In CVPR – reference: Monfort M, Vondrick C, Oliva A, Andonian A, Zhou B, Ramakrishnan K, Bargal SA, Yan T, Brown L, Fan Q, & Gutfreund D (2020) Moments in Time dataset: One million videos for event understanding. TPAMI – reference: Pan B, Cao Z, Adeli E, & Niebles JC (2020) Adversarial cross-domain action recognition with co-attention. In AAAI – reference: Sigurdsson GA, Gupta A, Schmid C, Farhadi A, & Alahari K (2018) Charades-ego: A large-scale dataset of paired third and first person videos. In ArXiv – reference: Huang DA, Fei-Fei L, & Niebles JC (2016) Connectionist temporal modeling for weakly supervised action labeling. In ECCV – reference: De Geest R, Gavves E, Ghodrati A, Li Z, Snoek C, & Tuytelaars T (2016) Online action detection. In ECCV – reference: Plizzari C, Planamente M, Alberti E, & Caputo B (2021). Polito-iit submission to the epic-kitchens-100 unsupervised domain adaptation challenge for action recognition. arXiv preprint arXiv:2107.00337 – reference: Roth J, Chaudhuri S, Klejch O, Marvin R, Gallagher A, Kaver L, Ramaswamy S, Stopczynski A, Schmid C, Xi Z, et al. (2019). AVA-ActiveSpeaker: An audio-visual dataset for active speaker detection. arXiv – reference: Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, & Darrell T (2018) BDD100K: A diverse driving video database with scalable annotation tooling. arXiv – reference: Deng J, Dong W, Socher R, Li LJ, Li K, & Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In CVPR – reference: Bhattacharyya A, Fritz M, & Schiele B (2019) Bayesian prediction of future street scenes using synthetic likelihoods. In ICLR – reference: Singh KK, & Lee YJ (2017). Hide-and-Seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In ICCV – reference: Geiger A, Lenz P, & Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR – reference: Gong B, Shi Y, Sha F, & Grauman K (2012) Geodesic Flow Kernel for Unsupervised Domain Adaptation. In Computer Vision and Pattern Recognition – reference: Munro J, & Damen D (2020) Multi-modal domain adaptation for fine-grained action recognition. In CVPR – reference: Pirsiavash H, & Ramanan D (2012) Detecting activities of daily living in first-person camera views. In CVPR – reference: Bearman A, Russakovsky O, Ferrari V, & Fei-Fei L (2016) What’s the point: semantic segmentation with point supervision. In ECCV – reference: Planamente M, Plizzari C, Alberti E, & Caputo B (2021) Cross-domain first person audio-visual action recognition through relative norm alignment. arXiv preprint arXiv:2106.01689 – reference: Hsu HK, Yao CH, Tsai YH, Hung WC, Tseng HY, Singh M, & Yang MH (2020) Progressive domain adaptation for object detection. In Winter Conference on Applications of Computer Vision – reference: Feichtenhofer C, Fan H, Malik J, & He K (2019) SlowFast networks for video recognition. In ICCV – reference: Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, & Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In CVPR – reference: Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting visual category models to new domains. In ECCV – reference: Xu J, Mei T, Yao T, & Rui Y (2016) MSR-VTT: A large video description dataset for bridging video and language. In CVPR – reference: Cao Y, Long M, Wang J, & Yu P (2017) Correlation hashing network for efficient cross-modal retrieval. In BMVC – reference: HeckmanJJSample Selection Bias as a Specification ErrorEconometrica197947115316151883210.2307/1912352 – reference: Kazakos E, Nagrani A, Zisserman A, & Damen D (2019) EPIC-Fusion: Audio-visual temporal binding for egocentric action recognition. In ICCV – reference: Wray M, Larlus D, Csurka G, & Damen D (2019) Fine-grained action retrieval through multiple parts-of-speech embeddings. In ICCV – reference: Moltisanti D, Wray M, Mayol-Cuevas W, & Damen D (2017) Trespassing the boundaries: Labeling temporal bounds for object interactions in egocentric video. In ICCV – reference: He K, Girshick R, & Dollár P (2019) Rethinking ImageNet pre-training. In ICCV – reference: Vondrick C, Shrivastava A, Fathi A, Guadarrama S, & Murphy K (2018) Tracking emerges by colorizing videos. In ECCV – reference: Koppula HS, & Saxena A (2016) Anticipating human activities using object affordances for reactive robotic response. TPAMI – reference: Zhou L, Xu C, & Corso JJ (2017) Towards automatic learning of procedures from web instructional videos. In AAAI – reference: Torralba A, & Efros AA (2011) Unbiased look at dataset bias. In CVPR 2011 – reference: Huang X, Cheng X, Geng Q, Cao B, Zhou D, Wang P, Lin Y, & Yang R (2018) The apolloscape dataset for autonomous driving. In CVPRW – reference: Bojanowski P, Lajugie R, Bach F, Laptev I, Ponce J, Schmid C, & Sivic J (2014) Weakly supervised action labeling in videos under ordering constraints. In ECCV – reference: Narayan S, Cholakkal H, Khan F, & Shao L (2019) 3C-Net: Category count and center loss for weakly-supervised action localization. In ICCV – reference: Nguyen P, Ramanan D, & Fowlkes C (2019) Weakly-supervised action localization with background modeling. In ICCV – reference: Chen MH, Kira Z, AlRegib G, Yoo J, Chen R, & Zheng J (2019) Temporal attentive alignment for large-scale video domain adaptation. In ICCV – reference: Ganin Y, Ustinova E, Ajakan, H, Germain P, Larochelle H, Laviolette F, Marchand M, & Lempitsky V (2016) Domain-adversarial training of neural networks. JMLR – reference: Fathi A, Li Y, & Rehg J (2012) Learning to recognize daily actions using gaze. In ECCV – reference: Chéron G, Alayrac J, Laptev I, & Schmid C (2018) A flexible model for training action localization with varying levels of supervision. In NeurIPS – reference: Lin J, Gan C, & Han S (2019) TSM: Temporal shift module for efficient video understanding. In ICCV – reference: Yeung S, Russakovsky O, Jin N, Andriluka M, Mori G, & Fei-Fei L (2017) Every Moment Counts: Dense detailed labeling of actions in complex videos. IJCV – reference: Miech A, Zhukov D, Alayrac JB, Tapaswi M, Laptev I, & Sivic J (2019) HowTo100M: Learning a text-video embedding by watching hundred million narrated video clips. In ICCV – reference: Damen D, Doughty H, Farinella GM, Fidler S, Furnari A, Kazakos E, Moltisanti D, Munro J, Perrett T, Price W, & Wray M (2018) Scaling egocentric vision: The EPIC-KITCHENS dataset. In ECCV – reference: Caputo B, Müller H, Martinez-Gomez J, Villegas M, Acar B, Patricia N, Marvasti N, Üsküdarlı S, Paredes R, Cazorla M, et al. (2014) Imageclef 2014: Overview and analysis of the results. In: International Conference of the Cross-Language Evaluation Forum for European Languages, Springer 192–211 – reference: Lee N, Choi W, Vernaza P, Choy C, Torr PHS, & Chandraker M (2017) DESIRE: Distant future prediction in dynamic scenes with interacting agents. In CVPR – reference: Zach C, Pock T, & Bischof H (2007) A duality based approach for realtime TV-L1 optical flow. In Pattern Recognition – reference: Chen D, & Dolan, W (2011) Collecting highly parallel data for paraphrase evaluation. In NAACL-HLT – reference: Liu Z, Miao Z, Zhan X, Lin D, Yu SX, & Icsi, UCB (2020) Open Compound Domain Adaptation. In Computer Vision and Pattern Recognition – reference: Moltisanti D, Fidler S, & Damen D (2019). Action recognition from single timestamp supervision in untrimmed videos. In CVPR – reference: Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, & Beijbom O (2019) nuScenes: A multimodal dataset for autonomous driving. arXiv – reference: Marszalek M, Laptev I, & Schmid C (2009) Actions in context. In CVPR – reference: Heilbron FC, Escorcia V, Ghanem B, & Niebles JC (2015) ActivityNet: A large-scale video benchmark for human activity understanding. In CVPR – reference: Carreira J, & Zisserman A (2017) Quo Vadis, action recognition? A new model and the Kinetics dataset. In CVPR – reference: Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, & Torralba A (2017) Scene parsing through ADE20K dataset. In CVPR – reference: Zhao H, Yan Z, Torresani L, & Torralba A (2019) HACS: Human action clips and segments dataset for recognition and temporal localization. In ICCV – reference: Gygli M, & Ferrari V (2019) Efficient object annotation via speaking and pointing. IJCV – reference: Silberman N, Hoiem D, Kohli P, & Fergus R (2012) Indoor segmentation and support inference from RGBD images. In ECCV – reference: Li Y, Ye Z, & Rehg JM (2015) Delving into egocentric actions. In CVPR – reference: Järvelin K, & Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. TOIS – reference: Wang L, Xiong Y, Lin D, & Van Gool L (2017) Untrimmednets for weakly supervised action recognition and detection. In CVPR – reference: Lin T, Liu X, Li X, Ding E, & Wen S (2019) BMN: Boundary-matching network for temporal action proposal generation. In ICCV – reference: Yang L, Huang Y, Sugano Y, & Sato Y (2021) Epic-kitchens-100 unsupervised domain adaptation challenge for action recognition 2021: Team m3em technical report. arXiv preprint arXiv:2106.10026 – reference: Furnari A, & Farinella GM (2020) Rolling-unrolling LSTMs for action anticipation from first-person video. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) – reference: Wulfmeier M, Bewley A, & Posner I (2018) Incremental Adversarial Domain Adaptation for Continually Changing Environments. In International Conference on Robotics and Automation. 4489–4495 – reference: Chang C, Huang DA, Sui Y, Fei-Fei L, & Niebles JC (2019) D3TW: Discriminative differentiable dynamic time warping for weakly supervised action alignment and segmentation. In CVPR – reference: Venkateswara H, Eusebio J, Chakraborty S, & Panchanathan S (2017) Deep hashing network for unsupervised domain adaptation. In CVPR – reference: Gorban A, Idrees H, Jiang YG, Zamir AR, Laptev I, Shah M, & Sukthankar R (2015). THUMOS challenge: Action recognition with a large number of classes. http://www.thumos.info/ – reference: Gupta S, & Malik J (2016) Visual semantic role labeling. In CVPR – reference: Carlevaris-BiancoNUshaniAKEusticeRMUniversity of Michigan North Campus long-term vision and lidar datasetInt J Robotics Res20163591023103510.1177/0278364915614638 – reference: Zhai M, Bessinger Z, Workman S, & Jacobs N (2017) Predicting Ground-Level Scene Layout from Aerial Imagery. In Computer Vision and Pattern Recognition – reference: Ioffe S, & Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In ICML – reference: Kang C, Xiang S, Liao S, Xu C, & Pan C (2015) Learning consistent feature representation for cross-modal multimedia retrieval. TMM – reference: Stein S, & McKenna SJ (2013). Combining Embedded Accelerometers with Computer Vision for Recognizing Food Preparation Activities. In International Joint Conference on Pervasive and Ubiquitous Computing – reference: Kingma DP, & Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 – reference: McInnes L, Healy J, & Melville J (2018) UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv – reference: Shan D, Geng J, Shu M, & Fouhey DF (2020) Understanding human hands in contact at internet scale. In CVPR – reference: Mikolov T, Chen K, Corrado G, & Dean J (2013) Efficient estimation of word representations in vector space. In ICLR – reference: Zhou B, Andonian A, Oliva A, & Torralba A (2018) Temporal relational reasoning in videos. ECCV – reference: MaddernWPascoeGLinegarCNewmanP1 year, 1000 km: the Oxford RobotCar datasetInt J Robot Res201736131510.1177/0278364916679498 – reference: Gu C, Sun C, Ross DA, Vondrick C, Pantofaru C, Li Y, Vijayanarasimhan S, Toderici G, Ricco S, Sukthankar R, Schmid C, & Malik J (2018) AVA: A video dataset of spatio-temporally localized atomic visual actions. In CVPR – reference: Zhai X, Puigcerver J, Kolesnikov A, Ruyssen P, Riquelme C, Lucic M, Djolonga J, Pinto AS, Neumann M, Dosovitskiy A, Beyer L, Bachem O, Tschannen M, Michalski M, Bousquet O, Gelly S, & Houlsby N (2019) A large-scale study of representation learning with the visual task adaptation benchmark. arXiv – reference: Nguyen P, Liu T, Prasad G, & Han B (2018). Weakly supervised action localization by sparse temporal pooling network. In CVPR – reference: Noroozi M, & Favaro P (2016) Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV – reference: Lea C, Flynn MD, Vidal R, Reiter A, & Hager GM (2017) Temporal convolutional networks for action segmentation and detection. In CVPR – reference: Kuehne H, Arslan A, & Serre T (2014) The language of actions: Recovering the syntax and semantics of goal-directed human activities. In CVPR – reference: Oberdiek P, Rottmann M, & Fink GA (2020) Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation. In Computer Vision and Pattern Recognition Workshops – reference: Ueberla JP (1997) Domain adaptation with clustered language models. In International Conference on Acoustics, Speech and Signal Processing – reference: Peng X, Bai Q, Xia X, Huang Z, Saenko K, & Wang B (2019) Moment matching for multi-source domain adaptation. In ICCV – reference: Weinzaepfel P, Martin X, & Schmid C (2016) Human action localization with sparse spatial supervision. arXiv – reference: Goyal R, Kahou SE, Michalski V, Materzynska J, Westphal S, Kim H, Haenel V, Fründ I, Yianilos P, Mueller-Freitag M, Hoppe F, Thurau C, Bax I, Memisevic R (2017) The “Something Something” video database for learning and evaluating visual common sense. In ICCV – reference: Patron-Perez A, Marszalek M, Zisserman A, & Reid I (2010) High Five: Recognising human interactions in TV shows. In BMVC – reference: He K, Gkioxari G, Dollár P, & Girshick R (2017) Mask R-CNN. In ICCV – reference: Carreira J, Noland E, Hillier C, & Zisserman A (2019) A short note on the Kinetics-700 human action dataset. arXiv – reference: Peng X, Usman B, Kaushik N, Hoffman J, Wang D, & Saenko K (2017) VisDA: The visual domain adaptation challenge. arXiv – reference: Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, & Gool LV (2016) Temporal Segment Networks: Towards good practices for deep action recognition. In ECCV – ident: 1531_CR119 doi: 10.1007/s11263-017-1013-y – ident: 1531_CR101 doi: 10.1007/978-3-319-46448-0_31 – ident: 1531_CR18 – ident: 1531_CR22 doi: 10.1109/ICCV.2019.00630 – ident: 1531_CR63 doi: 10.1109/CVPR42600.2020.01242 – ident: 1531_CR95 doi: 10.1109/CVPR.2015.7298940 – volume: 35 start-page: 1023 issue: 9 year: 2016 ident: 1531_CR7 publication-title: Int J Robotics Res doi: 10.1177/0278364915614638 – ident: 1531_CR54 doi: 10.1109/ICCV.2011.6126543 – ident: 1531_CR37 doi: 10.1007/978-3-030-01252-6_13 – ident: 1531_CR24 doi: 10.1007/978-3-030-11021-5_24 – ident: 1531_CR26 doi: 10.1109/CVPR.2012.6248074 – ident: 1531_CR52 doi: 10.1109/ICCV.2017.83 – ident: 1531_CR107 doi: 10.1109/CVPR.2011.5995347 – ident: 1531_CR112 doi: 10.1007/978-3-319-46484-8_2 – ident: 1531_CR42 – volume: 47 start-page: 153 issue: 1 year: 1979 ident: 1531_CR35 publication-title: Econometrica doi: 10.2307/1912352 – ident: 1531_CR78 doi: 10.1109/CVPR.2018.00706 – ident: 1531_CR93 doi: 10.1109/CVPR.2018.00771 – ident: 1531_CR29 doi: 10.1109/ICCV.2017.622 – ident: 1531_CR34 doi: 10.1109/ICCV.2017.322 – ident: 1531_CR72 doi: 10.1109/CVPR.2019.01015 – ident: 1531_CR39 doi: 10.1109/WACV45572.2020.9093358 – ident: 1531_CR73 doi: 10.1109/ICCV.2017.314 – ident: 1531_CR58 doi: 10.1109/CVPR.2015.7298625 – ident: 1531_CR131 doi: 10.1109/CVPR.2017.544 – ident: 1531_CR9 – ident: 1531_CR15 doi: 10.1007/978-3-030-01225-0_44 – ident: 1531_CR47 doi: 10.1109/CVPR.2015.7298932 – ident: 1531_CR83 – ident: 1531_CR4 doi: 10.1109/CVPR42600.2020.01164 – ident: 1531_CR44 doi: 10.1145/582415.582418 – ident: 1531_CR23 doi: 10.1109/TPAMI.2020.2992889 – ident: 1531_CR6 doi: 10.1007/978-3-319-11382-1_18 – ident: 1531_CR97 doi: 10.1007/978-3-642-15561-1_16 – ident: 1531_CR99 doi: 10.1109/CVPR42600.2020.00989 – ident: 1531_CR105 doi: 10.1145/2493432.2493482 – ident: 1531_CR121 – ident: 1531_CR104 – ident: 1531_CR92 – ident: 1531_CR127 doi: 10.1007/978-3-030-01246-5_49 – ident: 1531_CR38 – ident: 1531_CR13 – ident: 1531_CR55 doi: 10.1109/CVPR.2017.113 – ident: 1531_CR62 doi: 10.1109/CVPR.2019.00139 – ident: 1531_CR69 doi: 10.1007/978-3-319-46454-1_27 – ident: 1531_CR86 – ident: 1531_CR3 doi: 10.1007/978-3-319-10602-1_41 – ident: 1531_CR17 doi: 10.1007/978-3-319-46454-1_17 – ident: 1531_CR80 doi: 10.1007/978-3-319-46466-4_5 – ident: 1531_CR94 doi: 10.1109/CVPR.2012.6247801 – ident: 1531_CR103 doi: 10.1109/ICCV.2017.381 – ident: 1531_CR118 – ident: 1531_CR27 – ident: 1531_CR79 doi: 10.1109/ICCV.2019.00560 – ident: 1531_CR49 doi: 10.1109/ICCV.2019.00559 – ident: 1531_CR50 – ident: 1531_CR88 doi: 10.1109/CVPR.2012.6248010 – ident: 1531_CR68 doi: 10.1145/2911996.2912036 – ident: 1531_CR122 doi: 10.1109/CVPR.2007.383196 – ident: 1531_CR123 doi: 10.24963/ijcai.2019/871 – ident: 1531_CR114 doi: 10.1109/ICCV.2019.00054 – ident: 1531_CR5 doi: 10.5244/C.31.128 – ident: 1531_CR20 – ident: 1531_CR43 – ident: 1531_CR129 doi: 10.1126/scirobotics.aaw6661 – ident: 1531_CR130 doi: 10.1609/aaai.v32i1.12342 – ident: 1531_CR40 doi: 10.1109/CVPRW.2018.00141 – ident: 1531_CR89 – ident: 1531_CR16 doi: 10.5244/C.28.30 – ident: 1531_CR28 – ident: 1531_CR74 doi: 10.1109/TPAMI.2019.2901464 – ident: 1531_CR84 doi: 10.5244/C.24.50 – ident: 1531_CR113 – ident: 1531_CR98 doi: 10.1007/978-3-642-15561-1_16 – ident: 1531_CR110 doi: 10.1007/978-3-030-01261-8_24 – ident: 1531_CR96 doi: 10.1109/ICCVW.2019.00460 – ident: 1531_CR81 doi: 10.1109/CVPRW50498.2020.00172 – ident: 1531_CR10 doi: 10.1109/CVPR.2019.00366 – ident: 1531_CR32 doi: 10.1007/s11263-019-01255-4 – ident: 1531_CR67 doi: 10.21105/joss.00861 – ident: 1531_CR116 doi: 10.1109/CVPR.2016.571 – ident: 1531_CR90 – ident: 1531_CR70 doi: 10.1109/ICCV.2019.00272 – ident: 1531_CR91 doi: 10.1145/3240508.3240633 – ident: 1531_CR11 – ident: 1531_CR59 doi: 10.1109/ICCV.2019.00718 – ident: 1531_CR77 doi: 10.1109/ICCV.2017.534 – ident: 1531_CR21 doi: 10.1007/978-3-642-33718-5_23 – volume: 36 start-page: 3 issue: 1 year: 2017 ident: 1531_CR64 publication-title: Int J Robot Res doi: 10.1177/0278364916679498 – ident: 1531_CR102 doi: 10.1007/978-3-642-33715-4_54 – ident: 1531_CR53 doi: 10.1109/CVPR.2014.105 – ident: 1531_CR31 – ident: 1531_CR124 doi: 10.1109/CVPR.2017.440 – ident: 1531_CR87 doi: 10.1109/CVPR.2016.85 – ident: 1531_CR36 doi: 10.1109/CVPR.2015.7298698 – ident: 1531_CR12 doi: 10.1109/ICCV.2019.00642 – ident: 1531_CR45 – ident: 1531_CR25 doi: 10.1007/978-3-319-58347-1_10 – ident: 1531_CR61 doi: 10.1007/978-3-319-10602-1_48 – ident: 1531_CR76 doi: 10.1109/ICCV.2019.00877 – ident: 1531_CR128 doi: 10.1109/CVPR.2019.00674 – ident: 1531_CR106 doi: 10.1145/2493432.2493482 – ident: 1531_CR117 doi: 10.1016/j.imavis.2016.01.001 – ident: 1531_CR1 doi: 10.1007/978-3-319-46478-7_34 – ident: 1531_CR46 doi: 10.1109/TMM.2015.2390499 – ident: 1531_CR66 doi: 10.1109/CVPR.2009.5206557 – ident: 1531_CR30 doi: 10.1109/CVPR.2018.00633 – ident: 1531_CR41 doi: 10.1007/978-3-319-46493-0_9 – ident: 1531_CR51 doi: 10.1109/TPAMI.2015.2430335 – ident: 1531_CR8 doi: 10.1109/CVPR.2017.502 – ident: 1531_CR109 doi: 10.1109/CVPR.2017.572 – ident: 1531_CR85 doi: 10.1109/ICCV.2019.00149 – ident: 1531_CR65 – ident: 1531_CR56 doi: 10.1109/CVPR.2017.233 – ident: 1531_CR60 doi: 10.1109/ICCV.2019.00399 – ident: 1531_CR125 – ident: 1531_CR108 – ident: 1531_CR2 – ident: 1531_CR126 doi: 10.1109/ICCV.2019.00876 – ident: 1531_CR100 – ident: 1531_CR48 – ident: 1531_CR33 doi: 10.1109/ICCV.2019.00502 – ident: 1531_CR14 doi: 10.1109/CVPR.2016.350 – ident: 1531_CR111 doi: 10.1109/CVPR.2017.678 – ident: 1531_CR120 doi: 10.1109/ICCV.2019.00940 – ident: 1531_CR82 doi: 10.1609/aaai.v34i07.6854 – ident: 1531_CR57 doi: 10.1109/ICCV.2019.00634 – ident: 1531_CR71 – ident: 1531_CR75 doi: 10.1109/CVPR42600.2020.00020 – ident: 1531_CR19 doi: 10.1109/CVPR.2009.5206848 – ident: 1531_CR115 doi: 10.1109/ICRA.2018.8460982 |
| SSID | ssj0002823 |
| Score | 2.740413 |
| Snippet | This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 33 |
| SubjectTerms | Activity recognition Annotations Artificial Intelligence Computer Imaging Computer Science Datasets Image Processing and Computer Vision Kitchens Pattern Recognition Pattern Recognition and Graphics Pipelines Rescaling Vision |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iPvjit1idEkTwQQttmqypb2NUHMoYmw7fQpOmMpBu2M2_30uWOuYXKPSl6aX5ulzuktz9EDovKNgYUktfRjzzKQ-kDzKQ-IVkhWYJi7XFWBrex90uf3pKes4prKpvu9dHklZSL5zdQmLPHI35C5zjg-Bdg-WOG8CG_mD4IX_BiJgDyINhxJpJ6Fxlvv_H0nL0WSh_OR21i87N1v-qu402nZKJW3Ou2EErutxFW07hxG46V5BUYzrUaXto2NcVDBuUhNPnsb26OVJ4aD3Qr7HdZrCeEFe4N5oYX3aNszLH7RqTpcKgBeO012n7d52H9m3aHYAMDvbR400Kr77DXvAVC8gUxiqnWieyYJIX0JAmCCMaqVjnJNEZT4iOcw32rYoiSgtmkBGY0jROYpVnETwHaLUcl_oQYS5DGUAeAjxAleKchoGUoc5lEOWMZh4K6yEQygUmN_gYL2IRUtn0pYC-FLYvBfHQ5UeeyTwsx6_UZ2ZkhYl3UZoLNc_ZrKpEZ9AXLWhYQjgomh66cETFGIpXmfNPgEaYEFlLlI2aQ4Sb8ZUwke1Bu46asYeuao5YfP65ckd_Iz9GG8R4YNhdoAZanb7O9AlaV2_TUfV6amfCOwls_bc priority: 102 providerName: Springer Nature |
| Title | Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100 |
| URI | https://link.springer.com/article/10.1007/s11263-021-01531-2 https://www.proquest.com/docview/2617115367 |
| Volume | 130 |
| WOSCitedRecordID | wos000709268800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQde2PgS3UdlISQemEXi2HXCCxpVJqpBFbVQBi9W7DhTpSntlo6_n7PrrBqIvSBFkZw4iZOffbk7--4H8LrmaGNoq6lO0pLyNNIUZSCjtRa1FZmQ1nMszT7L8Tg9P8-K4HBrw7LKTiZ6QV0tjPORv3OZw1F7SQbyw_KKOtYoN7saKDS2YMdpNm5J35doeCuJ0ZxYU8mjiSQGWRyCZtahczHzM5jOmMZ-SNmdH9Of4vmveVL_-znd_d-G78HjoHiSk3VPeQIPbPMUdoMSSsIQb_FQx_PQHXsGs4ltEUpsF8kvFn4559yQmY9Kf0-868FHRxyTYr508e2WlE1Fhh1PS0tQMyZ5MRrSs9HX4ad8PEW5HD2Hb6c5FmngY6BGRGyF-FXc2kzXQqc1fr0BCiieGGkrltkyzZiVlUWb1yQJ57VwbAnCWC4zaaoywe0FbDeLxr4EkupYR3gNw37BjUlTHkdax7bSUVIJXvYg7sBQJiQrd5wZl2qTZtkBqBBA5QFUrAdvb69ZrlN13Fv7lcNYuRwYjVtkc1HetK0aTSfqBF8sYykqnz14EyrVC3y8KUPMAr6ES5t1p-Zhh74KUqBVG-h7cNz1n83pfzdu__67HcAj5qIwvCfoELZX1zf2CB6aX6t5e92HLfn9Rx92PubjYoKlM0n7flzgvhA_cT-Zzn4D8zUNWQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwleGFdRGGAhEA_MInGcxkFCaCqdFrVU1TaqvZnYcaZKKC1LB-JP8Rs5duxVA7G3PSDlybETX75zs33OAXhZc7QxlFFUJaKkXESKIg9ktFZpbdI8zYzLsTQbZ5OJOD7OpxvwK_jC2GuVgSc6Rl0ttN0jf2sjh6P2kvSzD8tv1GaNsqerIYVGB4uR-fkDTbb2ffER1_cVY3vDo8E-9VkFqE4jtsJeVNyYXNWpEjXrJ30kM57ozFQsN6XImckqg5abThLO69TG_E-14Vme6apM8MHvXoPrPBGZpatRRs85P5ovXep6NMnSfh57J53OVS9m7sTUGu-Ie8ouCMI_xcFf57JO3O1t_W8TdQdue8Wa7HaUcBc2THMPtrySTTwLa7Eo5LEIZfdhdmBahCrOAxmeLNx11bkmM-d1_464rRXn_bFDpvOl9d83pGwqMgh5aFqCmj8ZTosBHRU4wuHkEOVO9AA-X8mAH8Jms2jMIyBCxSrCNgxxz7UWgseRUrGpVJRUKS97EIfFl9oHY7c5Qb7KdRhpCxiJgJEOMJL14M15m2UXiuTS2i8spqSN8dHYS0Qn5VnbyuLwQO7iwHImULnuwWtfqV7g73XpfTJwEDYs2IWa2wFt0nO5Vq6h1oOdgNf163937vHlX3sON_ePPo3luJiMnsAtZj1O3K7XNmyuTs_MU7ihv6_m7ekzR38Evlw1jn8DHE9lzw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAyEuG5-ibICFQBxYtMSxGwcJoalrRdSpijaoJi4mdpypEkrL0m3iX-Ov49lxVg3Ebjsg5eTYju383pft9x7A64qhjaGMClQsioCJUAXIA2lQKV4ZnvLEuBxL04NkMhHHx2m-Br86Xxh7rbLjiY5Rl3Nt98h3beRw1F7ifrJb-WsR-f7o4-JHYDNI2ZPWLp1GC5Gx-XmB5lvzIdvHf_2G0tHw8-BT4DMMBJqHdIkjKpkxqaq4EhXtx30kORbrxJQ0NYVIqUlKg1acjmPGKm7j_3NtWJImuixifLDfW3A7QRvTXifM-ddLKYCmTJvGHs0z3k8j77DTuu1F1J2eWkMeaSCgV4Tin6LhrzNaJ_pGm__zot2HDa9wk72WQh7AmqkfwqZXvolnbQ0WdfkturJHMD00DUIY14QMT-buGutMk6nzxn9P3JaL8wrZIflsYf36DSnqkgy6_DQNQYuADPNsEIwznOFwcoTyKHwMX25kwk9gvZ7X5ikQoSIVYhuK9MC0FoJFoVKRKVUYl5wVPYg6IEjtg7TbXCHf5Sq8tAWPRPBIBx5Je_Duss2iDVFybe1XFl_Sxv6oLSBOirOmkdnRodzDiaVUoNLdg7e-UjXHz-vC-2rgJGy4sCs1tzvkSc_9GrmCXQ92OuyuXv97cM-u7-0l3EX4yoNsMt6Ce9Q6orjNsG1YX56emedwR58vZ83pC0eKBL7dNIx_A5tgbvM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rescaling+Egocentric+Vision%3A+Collection%2C+Pipeline+and+Challenges+for+EPIC-KITCHENS-100&rft.jtitle=International+journal+of+computer+vision&rft.au=Damen%2C+Dima&rft.au=Doughty%2C+Hazel&rft.au=Farinella%2C+Giovanni+Maria&rft.au=Furnari%2C+Antonino&rft.date=2022-01-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=130&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1007%2Fs11263-021-01531-2&rft.externalDBID=ISR&rft.externalDocID=A688928095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |