Optimizing poultry audio signal classification with deep learning and burn layer fusion

This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which inje...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of big data Ročník 11; číslo 1; s. 135 - 29
Hlavní autoři: Hassan, Esraa, Elbedwehy, Samar, Shams, Mahmoud Y., Abd El-Hafeez, Tarek, El-Rashidy, Nora
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2024
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2196-1115, 2196-1115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which injects controlled random noise during training to reinforce the model's resilience to input signal variations. The proposed architecture is streamlined, with convolutional blocks, densely connected layers, dropout, and an additional Burn Layer to fortify robustness. The model demonstrates efficiency by reducing trainable parameters to 191,235, compared to traditional architectures with over 1.7 million parameters. The proposed model utilizes a Burn Layer with burn intensity as a parameter and an Adamax optimizer to optimize and address the overfitting problem. Thorough evaluation using six standard classification metrics showcases the model's superior performance, achieving exceptional sensitivity (96.77%), specificity (100.00%), precision (100.00%), negative predictive value (NPV) (95.00%), accuracy (98.55%), F1 score (98.36%), and Matthew’s correlation coefficient (MCC) (95.88%). This research contributes valuable insights into the fields of audio signal processing, animal health monitoring, and robust deep-learning classification systems. The proposed model presents a systematic approach for developing and evaluating a deep learning-based poultry audio classification system. It processes raw audio data and labels to generate digital representations, utilizes a Burn Layer for training variability, and constructs a CNN model with convolutional blocks, pooling, and dense layers. The model is optimized using the Adamax algorithm and trained with data augmentation and early-stopping techniques. Rigorous assessment on a test dataset using standard metrics demonstrates the model's robustness and efficiency, with the potential to significantly advance animal health monitoring and disease detection through audio signal analysis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2196-1115
2196-1115
DOI:10.1186/s40537-024-00985-8