Optimizing poultry audio signal classification with deep learning and burn layer fusion

This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which inje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of big data Jg. 11; H. 1; S. 135 - 29
Hauptverfasser: Hassan, Esraa, Elbedwehy, Samar, Shams, Mahmoud Y., Abd El-Hafeez, Tarek, El-Rashidy, Nora
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2024
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:2196-1115, 2196-1115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which injects controlled random noise during training to reinforce the model's resilience to input signal variations. The proposed architecture is streamlined, with convolutional blocks, densely connected layers, dropout, and an additional Burn Layer to fortify robustness. The model demonstrates efficiency by reducing trainable parameters to 191,235, compared to traditional architectures with over 1.7 million parameters. The proposed model utilizes a Burn Layer with burn intensity as a parameter and an Adamax optimizer to optimize and address the overfitting problem. Thorough evaluation using six standard classification metrics showcases the model's superior performance, achieving exceptional sensitivity (96.77%), specificity (100.00%), precision (100.00%), negative predictive value (NPV) (95.00%), accuracy (98.55%), F1 score (98.36%), and Matthew’s correlation coefficient (MCC) (95.88%). This research contributes valuable insights into the fields of audio signal processing, animal health monitoring, and robust deep-learning classification systems. The proposed model presents a systematic approach for developing and evaluating a deep learning-based poultry audio classification system. It processes raw audio data and labels to generate digital representations, utilizes a Burn Layer for training variability, and constructs a CNN model with convolutional blocks, pooling, and dense layers. The model is optimized using the Adamax algorithm and trained with data augmentation and early-stopping techniques. Rigorous assessment on a test dataset using standard metrics demonstrates the model's robustness and efficiency, with the potential to significantly advance animal health monitoring and disease detection through audio signal analysis.
AbstractList This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which injects controlled random noise during training to reinforce the model's resilience to input signal variations. The proposed architecture is streamlined, with convolutional blocks, densely connected layers, dropout, and an additional Burn Layer to fortify robustness. The model demonstrates efficiency by reducing trainable parameters to 191,235, compared to traditional architectures with over 1.7 million parameters. The proposed model utilizes a Burn Layer with burn intensity as a parameter and an Adamax optimizer to optimize and address the overfitting problem. Thorough evaluation using six standard classification metrics showcases the model's superior performance, achieving exceptional sensitivity (96.77%), specificity (100.00%), precision (100.00%), negative predictive value (NPV) (95.00%), accuracy (98.55%), F1 score (98.36%), and Matthew’s correlation coefficient (MCC) (95.88%). This research contributes valuable insights into the fields of audio signal processing, animal health monitoring, and robust deep-learning classification systems. The proposed model presents a systematic approach for developing and evaluating a deep learning-based poultry audio classification system. It processes raw audio data and labels to generate digital representations, utilizes a Burn Layer for training variability, and constructs a CNN model with convolutional blocks, pooling, and dense layers. The model is optimized using the Adamax algorithm and trained with data augmentation and early-stopping techniques. Rigorous assessment on a test dataset using standard metrics demonstrates the model's robustness and efficiency, with the potential to significantly advance animal health monitoring and disease detection through audio signal analysis.
Abstract This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which injects controlled random noise during training to reinforce the model's resilience to input signal variations. The proposed architecture is streamlined, with convolutional blocks, densely connected layers, dropout, and an additional Burn Layer to fortify robustness. The model demonstrates efficiency by reducing trainable parameters to 191,235, compared to traditional architectures with over 1.7 million parameters. The proposed model utilizes a Burn Layer with burn intensity as a parameter and an Adamax optimizer to optimize and address the overfitting problem. Thorough evaluation using six standard classification metrics showcases the model's superior performance, achieving exceptional sensitivity (96.77%), specificity (100.00%), precision (100.00%), negative predictive value (NPV) (95.00%), accuracy (98.55%), F1 score (98.36%), and Matthew’s correlation coefficient (MCC) (95.88%). This research contributes valuable insights into the fields of audio signal processing, animal health monitoring, and robust deep-learning classification systems. The proposed model presents a systematic approach for developing and evaluating a deep learning-based poultry audio classification system. It processes raw audio data and labels to generate digital representations, utilizes a Burn Layer for training variability, and constructs a CNN model with convolutional blocks, pooling, and dense layers. The model is optimized using the Adamax algorithm and trained with data augmentation and early-stopping techniques. Rigorous assessment on a test dataset using standard metrics demonstrates the model's robustness and efficiency, with the potential to significantly advance animal health monitoring and disease detection through audio signal analysis.
ArticleNumber 135
Author Hassan, Esraa
Abd El-Hafeez, Tarek
Elbedwehy, Samar
El-Rashidy, Nora
Shams, Mahmoud Y.
Author_xml – sequence: 1
  givenname: Esraa
  surname: Hassan
  fullname: Hassan, Esraa
  organization: Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University
– sequence: 2
  givenname: Samar
  surname: Elbedwehy
  fullname: Elbedwehy, Samar
  organization: Department of Data Science, Faculty of Artificial Intelligence, Kafrelsheikh University
– sequence: 3
  givenname: Mahmoud Y.
  surname: Shams
  fullname: Shams, Mahmoud Y.
  organization: Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University
– sequence: 4
  givenname: Tarek
  surname: Abd El-Hafeez
  fullname: Abd El-Hafeez, Tarek
  email: tarek@mu.edu.eg
  organization: Department of Computer Science, Faculty of Science, Minia University, Computer Science Unit, Deraya University
– sequence: 5
  givenname: Nora
  surname: El-Rashidy
  fullname: El-Rashidy, Nora
  organization: Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University
BookMark eNp9kUFv3CAQhVGUSknT_IGckHp2Oxhjw7GK2iZSpFxa9YjGBrasHHAAq9r--rLrqq16yAnEvO_NDO81OQ8xWEJuGLxjTPbvcweCDw20XQOgpGjkGblsmeobxpg4_-d-Qa5z3gMA45Xpu0vy7XEp_sn_9GFHl7jOJR0orsZHmv0u4EynGXP2zk9YfAz0hy_fqbF2obPFFI4YBkPHNQU648Em6tZchW_IK4dztte_zyvy9dPHL7d3zcPj5_vbDw_NJKAtjWUjqh77EXvXDUaAc0y5nht0KM1oOLjRKqdM11lUo5LOOgCUrZNmqEV-Re43XxNxr5fknzAddESvTw8x7TSm4qfZao5cuRaPNryzA0g1Dk5IRIFqGnpZvd5uXkuKz6vNRe9j3auOrzmDXgjOAaqq3VRTijkn6_50ZaCPeegtD13z0Kc89NFa_gdNvpx-tCT088so39Bc-4SdTX-neoH6BWtNo0E
CitedBy_id crossref_primary_10_1007_s11030_025_11290_8
crossref_primary_10_1016_j_patcog_2025_111994
crossref_primary_10_1007_s00034_025_03177_8
crossref_primary_10_3390_s25092912
crossref_primary_10_1016_j_psj_2025_105870
crossref_primary_10_1007_s00034_025_03300_9
crossref_primary_10_1186_s40537_025_01233_3
crossref_primary_10_1002_rob_70027
crossref_primary_10_1007_s13042_025_02777_9
crossref_primary_10_1007_s40815_024_01964_0
crossref_primary_10_1007_s00371_025_04031_3
crossref_primary_10_1007_s00521_025_11331_1
crossref_primary_10_1109_LSP_2025_3567028
crossref_primary_10_1016_j_compag_2025_110541
crossref_primary_10_1038_s41598_024_79191_8
crossref_primary_10_1038_s41598_025_09643_2
crossref_primary_10_1016_j_neunet_2025_107993
crossref_primary_10_1038_s41598_025_06077_8
crossref_primary_10_3390_s25134058
crossref_primary_10_1002_eng2_70268
crossref_primary_10_1038_s41598_025_13080_6
crossref_primary_10_1016_j_array_2025_100386
crossref_primary_10_1007_s00034_025_03064_2
crossref_primary_10_1007_s00034_025_03235_1
Cites_doi 10.3390/brainsci10070427
10.3390/app12030950
10.1007/s11042-023-15654-w
10.1542/peds.2023-063101
10.1016/j.eswa.2024.123608
10.1016/j.isprsjprs.2019.09.013
10.3389/frai.2022.733345
10.1007/s10344-021-01549-4
10.3390/ani13193041
10.1007/s11042-022-13820-0
10.1016/j.compag.2019.05.013
10.5772/27788
10.1155/2020/8821868
10.32604/cmc.2022.025629
10.14269/2318-1265/jabb.v2n3p66-72
10.3390/ani12223106
10.1109/JSTARS.2021.3117975
10.3389/fvets.2021.616755
10.1111/2041-210X.13101
10.1007/s40032-021-00721-8
10.1017/S1751731115001408
10.3389/fvets.2021.699081
10.1109/TNNLS.2020.3043505
10.1016/j.neucom.2016.03.020
10.1016/j.bspc.2023.104908
10.1007/978-981-16-8656-6_38
10.1080/00071668.2023.2280963
10.1109/ACCESS.2021.3113509
10.1145/3624990
10.1016/j.compag.2015.11.010
10.1007/978-3-031-24861-0_129
10.1007/s11042-024-18241-9
10.1016/j.cirp.2021.04.041
10.1079/WPS200456
10.1007/978-3-319-75420-8_43
10.1016/j.dib.2023.109528
10.1121/1.1474440
10.1016/j.compag.2022.106740
10.18576/isl/120124
10.1016/j.biosystemseng.2019.01.015
10.1109/MSP.2018.2874383
10.1093/jbcr/irz103
10.3390/electronics12143106
10.3390/app12115601
10.1109/ACCESS.2023.3298955
10.1016/j.bspc.2023.105560
10.1016/j.compag.2022.107586
10.3389/fvets.2022.936251
10.1109/ICCS45141.2019.9065537
10.1007/978-3-030-33966-1_11
10.1109/TNNLS.2024.3355393
10.1109/ICOEI.2019.8862686
10.1109/ICASI60819.2024.10547723
10.1109/ICCAE55086.2022.9762418
10.23919/EUSIPCO55093.2022.9909738
10.1109/ICASSP.2015.7178031
10.1109/GlobalSIP.2014.7032298
10.1109/TELFOR48224.2019.8971336
10.1109/SISY.2018.8524677
10.1109/ICCV.2019.00615
10.1109/NAECON.2018.8556686
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOA
DOI 10.1186/s40537-024-00985-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Health Research Premium Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2196-1115
EndPage 29
ExternalDocumentID oai_doaj_org_article_3a39f2aa9b934e7089b7f58aa5a9c768
10_1186_s40537_024_00985_8
GrantInformation_xml – fundername: Minia University
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
7XB
8AL
8FK
JQ2
L.-
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c502t-e1ba96a6ba6f47d50ff19f63dafa8dbd30fbe9f9d44ea9b98fef00a82f8d730f3
IEDL.DBID C24
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315733900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-1115
IngestDate Fri Oct 03 12:37:23 EDT 2025
Fri Nov 14 01:23:40 EST 2025
Sat Nov 29 06:20:06 EST 2025
Tue Nov 18 21:43:04 EST 2025
Fri Feb 21 02:38:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Poultry audio classification
Sensitivity
Specificity
Disease detection
Convolutional neural networks
Digital audio signal processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-e1ba96a6ba6f47d50ff19f63dafa8dbd30fbe9f9d44ea9b98fef00a82f8d730f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s40537-024-00985-8
PQID 3106553300
PQPubID 2046140
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_3a39f2aa9b934e7089b7f58aa5a9c768
proquest_journals_3106553300
crossref_primary_10_1186_s40537_024_00985_8
crossref_citationtrail_10_1186_s40537_024_00985_8
springer_journals_10_1186_s40537_024_00985_8
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Shams, Abd El-Hafeez, Hassan (CR66) 2024; 249
Tokuda, Riede, Neubauer, Owren, Herzel (CR8) 2002; 111
Huang, Wang, Zhang (CR43) 2019; 180
Liu, Chen, Niu, Plaza (CR51) 2021; 14
Antonio, Bautista, Labao, Naval, Nguyen, Hoang, Hong, Pham, Trawiński (CR57) 2018
Petso, Jamisola, Mpoeleng (CR2) 2022; 68
Yahav, Giloh (CR30) 2012
CR37
Tampuu, Matiisen, Semikin, Fishman, Muhammad (CR9) 2020; 33
CR35
Laleye, Mousse (CR7) 2024; 83
Nam, Choi, Lee, Chou, Yang (CR19) 2018; 36
Jamshidi, Budak (CR44) 2021; 70
Adebayo (CR18) 2023; 50
Hassan, Shams, Hikal, Elmougy (CR11) 2023; 82
Yuan, Savarese, Maire (CR53) 2024; 36
He (CR23) 2022; 12
Cirillo, Mirdell, Sjöberg, Pham (CR49) 2019; 40
Gourisaria, Arora, Bilgaiyan, Sahni (CR34) 2023
Aydin, Berckmans (CR36) 2016; 121
CR48
Cuan, Zhang, Li, Huang, Ding, Fang (CR39) 2022; 194
Li, Avidan, Brostow, Cissé, Farinella, Hassner (CR15) 2022
Morgan, Kim, González-Ortiz (CR21) 2024; 65
Farrell (CR5) 2005; 61
CR41
Nawaz, Amoah, Leng, Zheng, Zhang, Zhang (CR31) 2021; 8
CR40
Shams, Hassanien, Tang, Shi, Bohács, Ma, Gong, Shang (CR10) 2022
Hassan, Hossain, Saber, Elmougy, Ghoneim, Muhammad (CR56) 2024; 87
Cai, Cui, Yuan, Cheng (CR28) 2023; 205
Hassan, Shams, Hikal, Elmougy (CR67) 2022; 72
Fontana, Tullo, Scrase, Butterworth (CR6) 2016; 10
Gibb, Browning, Glover-Kapfer, Jones (CR4) 2019; 10
Nakrosis (CR22) 2023; 13
Sharan, Moir (CR59) 2016; 200
Weng (CR52) 2024; 17
Abdelhamid (CR17) 2023; 11
CR58
CR13
Thakur, Bhattacharjee, Jain, Acharya, Hu (CR54) 2024; 83
Sarhan, Nasr, Shams (CR68) 2020; 2020
CR55
Carpentier, Vranken, Berckmans, Paeshuyse, Norton (CR42) 2019; 162
Li (CR20) 2024; 153
Zhang, Nascetti, Ban, Gong (CR46) 2019; 158
Yaqub (CR64) 2020; 10
Chuang, Chiang, Chen, Lin, Tsai (CR33) 2021; 9
Li (CR38) 2022; 12
Shams, El-kenawy, Ibrahim, Elshewey (CR16) 2023; 85
Jukan, Masip-Bruin, Amla (CR1) 2017; 50
Suha, Sanam (CR45) 2022; 9
Salehin, Kang (CR50) 2023; 12
CR26
CR69
Vranken, Mounir, Norton, Zhang (CR3) 2023
Abdallah, Elmessery, Shams, Al-Sattary, Abohany, Thabet (CR12) 2023; 12
CR65
Salem, Shams, Elzeki, Abd Elfattah, Al-Amri, Elnazer (CR14) 2022; 12
Machuve, Nwankwo, Mduma, Mbelwa (CR27) 2022; 5
CR63
CR62
Mao (CR24) 2022
CR61
CR60
Machuve, Nwankwo, Mduma, Mbelwa (CR25) 2022
Caldara, Nääs, Garcia (CR29) 2014; 2
Shrivastava, Sharma, Awale, Yusufzai, Vashista (CR47) 2021; 102
Noh (CR32) 2021; 8
A Tampuu (985_CR9) 2020; 33
SE Abdallah (985_CR12) 2023; 12
C-H Chuang (985_CR33) 2021; 9
Z Li (985_CR38) 2022; 12
A Jukan (985_CR1) 2017; 50
DJ Farrell (985_CR5) 2005; 61
K Cuan (985_CR39) 2022; 194
NK Morgan (985_CR21) 2024; 65
H Jamshidi (985_CR44) 2021; 70
T Petso (985_CR2) 2022; 68
AH Nawaz (985_CR31) 2021; 8
S Adebayo (985_CR18) 2023; 50
E Hassan (985_CR56) 2024; 87
E Hassan (985_CR67) 2022; 72
Q Mao (985_CR24) 2022
J Huang (985_CR43) 2019; 180
E Vranken (985_CR3) 2023
E Hassan (985_CR11) 2023; 82
985_CR48
I Fontana (985_CR6) 2016; 10
MY Shams (985_CR16) 2023; 85
S Yahav (985_CR30) 2012
985_CR41
985_CR40
FA Laleye (985_CR7) 2024; 83
P He (985_CR23) 2022; 12
F Caldara (985_CR29) 2014; 2
T Liu (985_CR51) 2021; 14
X Li (985_CR15) 2022
A Nakrosis (985_CR22) 2023; 13
AK Shrivastava (985_CR47) 2021; 102
N Thakur (985_CR54) 2024; 83
985_CR58
985_CR13
D Machuve (985_CR25) 2022
985_CR55
J-Y Noh (985_CR32) 2021; 8
D Machuve (985_CR27) 2022; 5
RV Sharan (985_CR59) 2016; 200
A Aydin (985_CR36) 2016; 121
I Tokuda (985_CR8) 2002; 111
MY Shams (985_CR10) 2022
X Yuan (985_CR53) 2024; 36
SA Suha (985_CR45) 2022; 9
AA Abdelhamid (985_CR17) 2023; 11
G Li (985_CR20) 2024; 153
S Sarhan (985_CR68) 2020; 2020
MD Cirillo (985_CR49) 2019; 40
L Carpentier (985_CR42) 2019; 162
MY Shams (985_CR66) 2024; 249
CB Antonio (985_CR57) 2018
H Salem (985_CR14) 2022; 12
M Yaqub (985_CR64) 2020; 10
985_CR69
985_CR26
MK Gourisaria (985_CR34) 2023
I Salehin (985_CR50) 2023; 12
985_CR61
985_CR60
985_CR65
985_CR63
O Weng (985_CR52) 2024; 17
985_CR62
P Zhang (985_CR46) 2019; 158
R Gibb (985_CR4) 2019; 10
985_CR35
J Nam (985_CR19) 2018; 36
985_CR37
Z Cai (985_CR28) 2023; 205
References_xml – volume: 10
  start-page: 427
  issue: 7
  year: 2020
  ident: CR64
  article-title: State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images
  publication-title: Brain Sci
  doi: 10.3390/brainsci10070427
– volume: 12
  start-page: 950
  issue: 3
  year: 2022
  ident: CR14
  article-title: Fine-tuning fuzzy KNN classifier based on uncertainty membership for the medical diagnosis of diabetes
  publication-title: Appl Sci
  doi: 10.3390/app12030950
– volume: 83
  start-page: 1941
  issue: 1
  year: 2024
  end-page: 1964
  ident: CR54
  article-title: Deep learning-based parking occupancy detection framework using ResNet and VGG-16
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15654-w
– volume: 153
  start-page: e2023063101
  year: 2024
  ident: CR20
  article-title: Missing outcome data in recent perinatal and neonatal clinical trials
  publication-title: Pediatrics
  doi: 10.1542/peds.2023-063101
– volume: 249
  start-page: 123608
  year: 2024
  ident: CR66
  article-title: Acoustic data detection in large-scale emergency vehicle sirens and road noise datase
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.123608
– volume: 158
  start-page: 50
  year: 2019
  end-page: 62
  ident: CR46
  article-title: An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2019.09.013
– ident: CR35
– volume: 5
  start-page: 733345
  year: 2022
  ident: CR27
  article-title: Poultry diseases diagnostics models using deep learning
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2022.733345
– ident: CR61
– year: 2022
  ident: CR25
  article-title: Poultry diseases diagnostics models using deep learning
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2022.733345
– ident: CR58
– volume: 68
  start-page: 3
  issue: 1
  year: 2022
  ident: CR2
  article-title: Review on methods used for wildlife species and individual identification
  publication-title: Eur J Wildl Res
  doi: 10.1007/s10344-021-01549-4
– volume: 50
  start-page: 1
  issue: 1
  year: 2017
  end-page: 27
  ident: CR1
  article-title: Smart computing and sensing technologies for animal welfare: a systematic review
  publication-title: ACM Comput Surv CSUR
– volume: 13
  start-page: 3041
  issue: 19
  year: 2023
  ident: CR22
  article-title: Towards early poultry health prediction through non-invasive and computer vision-based dropping classification
  publication-title: Animals
  doi: 10.3390/ani13193041
– volume: 9
  start-page: 100371
  year: 2022
  ident: CR45
  article-title: A deep convolutional neural network-based approach for detecting burn severity from skin burn images
  publication-title: Mach Learn Appl
– volume: 82
  start-page: 16591
  issue: 11
  year: 2023
  end-page: 16633
  ident: CR11
  article-title: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13820-0
– volume: 162
  start-page: 573
  year: 2019
  end-page: 581
  ident: CR42
  article-title: Development of sound-based poultry health monitoring tool for automated sneeze detection
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.05.013
– year: 2012
  ident: CR30
  article-title: Infrared thermography—applications in poultry biological research
  publication-title: Infrared Thermogr
  doi: 10.5772/27788
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR68
  article-title: Multipose face recognition-based combined adaptive deep learning vector quantization
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2020/8821868
– volume: 72
  start-page: 5889
  issue: 3
  year: 2022
  end-page: 5907
  ident: CR67
  article-title: A novel convolutional neural network model for malaria cell images classification
  publication-title: Comput Mater Contin
  doi: 10.32604/cmc.2022.025629
– volume: 2
  start-page: 66
  year: 2014
  end-page: 72
  ident: CR29
  article-title: Infrared thermal image for assessing animal health and welfare
  publication-title: J Anim Behav Biometeorol
  doi: 10.14269/2318-1265/jabb.v2n3p66-72
– ident: CR60
– volume: 12
  start-page: 3106
  issue: 22
  year: 2022
  ident: CR38
  article-title: Sex detection of chicks based on audio technology and deep learning methods
  publication-title: Anim Open Access J MDPI
  doi: 10.3390/ani12223106
– ident: CR26
– volume: 14
  start-page: 11417
  year: 2021
  end-page: 11428
  ident: CR51
  article-title: Landslide detection mapping employing CNN, ResNet, and DenseNet in the Three Gorges reservoir, China
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2021.3117975
– volume: 8
  start-page: 616755
  year: 2021
  ident: CR32
  article-title: Thermal image scanning for the early detection of fever induced by highly pathogenic avian influenza virus infection in chickens and ducks and its application in farms
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2021.616755
– volume: 10
  start-page: 169
  issue: 2
  year: 2019
  end-page: 185
  ident: CR4
  article-title: Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13101
– volume: 102
  start-page: 885
  issue: 4
  year: 2021
  end-page: 896
  ident: CR47
  article-title: Assessment of grinding burn of AISI D2 tool steel using Barkhausen noise technique
  publication-title: J Inst Eng India Ser C
  doi: 10.1007/s40032-021-00721-8
– volume: 10
  start-page: 1567
  issue: 9
  year: 2016
  end-page: 1574
  ident: CR6
  article-title: Vocalisation sound pattern identification in young broiler chickens
  publication-title: Animal
  doi: 10.1017/S1751731115001408
– volume: 8
  start-page: 699081
  year: 2021
  ident: CR31
  article-title: Poultry response to heat stress: its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2021.699081
– volume: 33
  start-page: 1364
  issue: 4
  year: 2020
  end-page: 1384
  ident: CR9
  article-title: A survey of end-to-end driving: Architectures and training methods
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3043505
– volume: 200
  start-page: 22
  year: 2016
  end-page: 34
  ident: CR59
  article-title: An overview of applications and advancements in automatic sound recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.020
– volume: 85
  start-page: 104908
  year: 2023
  ident: CR16
  article-title: A hybrid dipper throated optimization algorithm and particle swarm optimization (DTPSO) model for hepatocellular carcinoma (HCC) prediction
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104908
– year: 2023
  ident: CR34
  publication-title: Chicken disease multiclass classification using deep learning, vol. 614 LNNS
– start-page: 415
  year: 2022
  end-page: 430
  ident: CR10
  article-title: Deep belief neural networks for eye localization based speeded up robust features and local binary pattern
  publication-title: LISS 2021. Lecture notes in operations research
  doi: 10.1007/978-981-16-8656-6_38
– ident: CR37
– volume: 65
  start-page: 79
  year: 2024
  end-page: 86
  ident: CR21
  article-title: Holo-analysis of the effects of xylo-oligosaccharides on broiler chicken performance
  publication-title: Br Poult Sci
  doi: 10.1080/00071668.2023.2280963
– volume: 9
  start-page: 131203
  year: 2021
  end-page: 131213
  ident: CR33
  article-title: Goose surface temperature monitoring system based on deep learning using visible and infrared thermal image integration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3113509
– volume: 17
  start-page: 1
  issue: 1
  year: 2024
  end-page: 23
  ident: CR52
  article-title: Tailor: altering skip connections for resource-efficient inference
  publication-title: ACM Trans Reconfig Technol Syst
  doi: 10.1145/3624990
– volume: 121
  start-page: 25
  year: 2016
  end-page: 31
  ident: CR36
  article-title: Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.11.010
– start-page: 1358
  year: 2023
  end-page: 1369
  ident: CR3
  article-title: Sound-based monitoring of livestock
  publication-title: Encyclopedia of digital agricultural technologies
  doi: 10.1007/978-3-031-24861-0_129
– volume: 83
  start-page: 62443
  year: 2024
  end-page: 62458
  ident: CR7
  article-title: Attention-based recurrent neural network for automatic behavior laying hen recognition
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-024-18241-9
– ident: CR40
– ident: CR63
– start-page: 308
  year: 2022
  end-page: 324
  ident: CR15
  article-title: Efficient meta-tuning for content-aware neural video delivery
  publication-title: Computer vision—ECCV 2022. Lecture notes in computer science
– volume: 70
  start-page: 285
  issue: 1
  year: 2021
  end-page: 288
  ident: CR44
  article-title: On the prediction of surface burn and its thickness in grinding processes
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2021.04.041
– volume: 61
  start-page: 298
  issue: 2
  year: 2005
  end-page: 307
  ident: CR5
  article-title: Matching poultry production with available feed resources: issues and constraints
  publication-title: Worlds Poult Sci J
  doi: 10.1079/WPS200456
– ident: CR69
– start-page: 449
  year: 2018
  end-page: 458
  ident: CR57
  article-title: Vertebra fracture classification from 3D CT lumbar spine segmentation masks using a convolutional neural network
  publication-title: Intelligent information and database systems Lecture notes in computer science
  doi: 10.1007/978-3-319-75420-8_43
– volume: 50
  start-page: 109528
  year: 2023
  ident: CR18
  article-title: Enhancing poultry health management through machine learning-based analysis of vocalization signals dataset
  publication-title: Data Brief
  doi: 10.1016/j.dib.2023.109528
– volume: 111
  start-page: 2908
  issue: 6
  year: 2002
  end-page: 2919
  ident: CR8
  article-title: Nonlinear analysis of irregular animal vocalizations
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1474440
– volume: 194
  start-page: 106740
  issue: January
  year: 2022
  ident: CR39
  article-title: Automatic Newcastle disease detection using sound technology and deep learning method
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.106740
– ident: CR48
– volume: 12
  start-page: 289
  issue: 1
  year: 2023
  end-page: 297
  ident: CR12
  article-title: Deep learning model based on ResNet-50 for beef quality classification
  publication-title: Inf Sci Lett
  doi: 10.18576/isl/120124
– ident: CR65
– volume: 180
  start-page: 16
  year: 2019
  end-page: 24
  ident: CR43
  article-title: Method for detecting avian influenza disease of chickens based on sound analysis
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2019.01.015
– ident: CR13
– volume: 36
  start-page: 41
  issue: 1
  year: 2018
  end-page: 51
  ident: CR19
  article-title: Deep learning for audio-based music classification and tagging: teaching computers to distinguish rock from bach
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2018.2874383
– volume: 40
  start-page: 857
  issue: 6
  year: 2019
  end-page: 863
  ident: CR49
  article-title: Time-independent prediction of burn depth using deep convolutional neural networks
  publication-title: J Burn Care Res
  doi: 10.1093/jbcr/irz103
– volume: 12
  start-page: 3106
  issue: 14
  year: 2023
  ident: CR50
  article-title: A review on dropout regularization approaches for deep neural networks within the scholarly domain
  publication-title: Electronics
  doi: 10.3390/electronics12143106
– volume: 12
  start-page: 5601
  issue: 11
  year: 2022
  ident: CR23
  article-title: Research progress in the early warning of chicken diseases by monitoring clinical symptoms
  publication-title: Appl Sci
  doi: 10.3390/app12115601
– volume: 11
  start-page: 79750
  year: 2023
  end-page: 79776
  ident: CR17
  article-title: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3298955
– volume: 87
  start-page: 105560
  year: 2024
  ident: CR56
  article-title: A quantum convolutional network and ResNet (50)-based classification architecture for the MNIST medical dataset
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105560
– volume: 36
  start-page: 16673
  year: 2024
  end-page: 23
  ident: CR53
  article-title: Accelerated training via incrementally growing neural networks using variance transfer and learning rate adaptation
  publication-title: Adv Neural Info Process Syst
– ident: CR55
– volume: 205
  start-page: 107586
  year: 2023
  ident: CR28
  article-title: Application and research progress of infrared thermography in temperature measurement of livestock and poultry animals: a review
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107586
– ident: CR41
– ident: CR62
– year: 2022
  ident: CR24
  article-title: Review detection of Newcastle disease virus
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2022.936251
– volume: 13
  start-page: 3041
  issue: 19
  year: 2023
  ident: 985_CR22
  publication-title: Animals
  doi: 10.3390/ani13193041
– volume: 85
  start-page: 104908
  year: 2023
  ident: 985_CR16
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104908
– volume: 65
  start-page: 79
  year: 2024
  ident: 985_CR21
  publication-title: Br Poult Sci
  doi: 10.1080/00071668.2023.2280963
– volume: 12
  start-page: 3106
  issue: 22
  year: 2022
  ident: 985_CR38
  publication-title: Anim Open Access J MDPI
  doi: 10.3390/ani12223106
– ident: 985_CR62
  doi: 10.1109/ICCS45141.2019.9065537
– volume: 12
  start-page: 950
  issue: 3
  year: 2022
  ident: 985_CR14
  publication-title: Appl Sci
  doi: 10.3390/app12030950
– volume: 72
  start-page: 5889
  issue: 3
  year: 2022
  ident: 985_CR67
  publication-title: Comput Mater Contin
  doi: 10.32604/cmc.2022.025629
– volume: 162
  start-page: 573
  year: 2019
  ident: 985_CR42
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.05.013
– volume: 87
  start-page: 105560
  year: 2024
  ident: 985_CR56
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105560
– volume: 205
  start-page: 107586
  year: 2023
  ident: 985_CR28
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107586
– ident: 985_CR65
  doi: 10.1007/978-3-030-33966-1_11
– volume: 61
  start-page: 298
  issue: 2
  year: 2005
  ident: 985_CR5
  publication-title: Worlds Poult Sci J
  doi: 10.1079/WPS200456
– volume: 12
  start-page: 289
  issue: 1
  year: 2023
  ident: 985_CR12
  publication-title: Inf Sci Lett
  doi: 10.18576/isl/120124
– ident: 985_CR26
– volume: 40
  start-page: 857
  issue: 6
  year: 2019
  ident: 985_CR49
  publication-title: J Burn Care Res
  doi: 10.1093/jbcr/irz103
– volume: 17
  start-page: 1
  issue: 1
  year: 2024
  ident: 985_CR52
  publication-title: ACM Trans Reconfig Technol Syst
  doi: 10.1145/3624990
– volume: 68
  start-page: 3
  issue: 1
  year: 2022
  ident: 985_CR2
  publication-title: Eur J Wildl Res
  doi: 10.1007/s10344-021-01549-4
– volume: 8
  start-page: 616755
  year: 2021
  ident: 985_CR32
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2021.616755
– ident: 985_CR55
  doi: 10.1109/TNNLS.2024.3355393
– start-page: 308
  volume-title: Computer vision—ECCV 2022. Lecture notes in computer science
  year: 2022
  ident: 985_CR15
– volume: 12
  start-page: 5601
  issue: 11
  year: 2022
  ident: 985_CR23
  publication-title: Appl Sci
  doi: 10.3390/app12115601
– volume: 9
  start-page: 100371
  year: 2022
  ident: 985_CR45
  publication-title: Mach Learn Appl
– volume: 153
  start-page: e2023063101
  year: 2024
  ident: 985_CR20
  publication-title: Pediatrics
  doi: 10.1542/peds.2023-063101
– year: 2022
  ident: 985_CR25
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2022.733345
– volume: 36
  start-page: 16673
  year: 2024
  ident: 985_CR53
  publication-title: Adv Neural Info Process Syst
– volume: 50
  start-page: 109528
  year: 2023
  ident: 985_CR18
  publication-title: Data Brief
  doi: 10.1016/j.dib.2023.109528
– ident: 985_CR63
  doi: 10.1109/ICOEI.2019.8862686
– volume: 158
  start-page: 50
  year: 2019
  ident: 985_CR46
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2019.09.013
– ident: 985_CR69
  doi: 10.1109/ICASI60819.2024.10547723
– start-page: 1358
  volume-title: Encyclopedia of digital agricultural technologies
  year: 2023
  ident: 985_CR3
  doi: 10.1007/978-3-031-24861-0_129
– ident: 985_CR37
  doi: 10.1109/ICCAE55086.2022.9762418
– ident: 985_CR41
  doi: 10.23919/EUSIPCO55093.2022.9909738
– ident: 985_CR61
  doi: 10.1109/ICASSP.2015.7178031
– ident: 985_CR35
  doi: 10.1109/GlobalSIP.2014.7032298
– volume: 102
  start-page: 885
  issue: 4
  year: 2021
  ident: 985_CR47
  publication-title: J Inst Eng India Ser C
  doi: 10.1007/s40032-021-00721-8
– volume: 10
  start-page: 1567
  issue: 9
  year: 2016
  ident: 985_CR6
  publication-title: Animal
  doi: 10.1017/S1751731115001408
– volume: 249
  start-page: 123608
  year: 2024
  ident: 985_CR66
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.123608
– volume: 2
  start-page: 66
  year: 2014
  ident: 985_CR29
  publication-title: J Anim Behav Biometeorol
  doi: 10.14269/2318-1265/jabb.v2n3p66-72
– ident: 985_CR40
  doi: 10.1109/TELFOR48224.2019.8971336
– volume: 70
  start-page: 285
  issue: 1
  year: 2021
  ident: 985_CR44
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2021.04.041
– volume: 194
  start-page: 106740
  issue: January
  year: 2022
  ident: 985_CR39
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.106740
– ident: 985_CR60
  doi: 10.1109/SISY.2018.8524677
– start-page: 415
  volume-title: LISS 2021. Lecture notes in operations research
  year: 2022
  ident: 985_CR10
  doi: 10.1007/978-981-16-8656-6_38
– volume: 82
  start-page: 16591
  issue: 11
  year: 2023
  ident: 985_CR11
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13820-0
– volume: 8
  start-page: 699081
  year: 2021
  ident: 985_CR31
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2021.699081
– volume: 14
  start-page: 11417
  year: 2021
  ident: 985_CR51
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2021.3117975
– volume: 50
  start-page: 1
  issue: 1
  year: 2017
  ident: 985_CR1
  publication-title: ACM Comput Surv CSUR
– volume: 5
  start-page: 733345
  year: 2022
  ident: 985_CR27
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2022.733345
– volume: 83
  start-page: 1941
  issue: 1
  year: 2024
  ident: 985_CR54
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15654-w
– ident: 985_CR13
  doi: 10.1109/ICCV.2019.00615
– ident: 985_CR58
  doi: 10.1109/NAECON.2018.8556686
– year: 2012
  ident: 985_CR30
  publication-title: Infrared Thermogr
  doi: 10.5772/27788
– volume: 36
  start-page: 41
  issue: 1
  year: 2018
  ident: 985_CR19
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2018.2874383
– volume-title: Chicken disease multiclass classification using deep learning, vol. 614 LNNS
  year: 2023
  ident: 985_CR34
– start-page: 449
  volume-title: Intelligent information and database systems Lecture notes in computer science
  year: 2018
  ident: 985_CR57
  doi: 10.1007/978-3-319-75420-8_43
– volume: 10
  start-page: 427
  issue: 7
  year: 2020
  ident: 985_CR64
  publication-title: Brain Sci
  doi: 10.3390/brainsci10070427
– volume: 83
  start-page: 62443
  year: 2024
  ident: 985_CR7
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-024-18241-9
– volume: 12
  start-page: 3106
  issue: 14
  year: 2023
  ident: 985_CR50
  publication-title: Electronics
  doi: 10.3390/electronics12143106
– volume: 11
  start-page: 79750
  year: 2023
  ident: 985_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3298955
– volume: 180
  start-page: 16
  year: 2019
  ident: 985_CR43
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2019.01.015
– ident: 985_CR48
– volume: 200
  start-page: 22
  year: 2016
  ident: 985_CR59
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.020
– volume: 9
  start-page: 131203
  year: 2021
  ident: 985_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3113509
– volume: 121
  start-page: 25
  year: 2016
  ident: 985_CR36
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.11.010
– year: 2022
  ident: 985_CR24
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2022.936251
– volume: 111
  start-page: 2908
  issue: 6
  year: 2002
  ident: 985_CR8
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1474440
– volume: 10
  start-page: 169
  issue: 2
  year: 2019
  ident: 985_CR4
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13101
– volume: 33
  start-page: 1364
  issue: 4
  year: 2020
  ident: 985_CR9
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3043505
– volume: 2020
  start-page: 1
  year: 2020
  ident: 985_CR68
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2020/8821868
SSID ssj0001340564
Score 2.4481406
Snippet This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model...
Abstract This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms Algorithms
Animal health
Animal husbandry
Animals
Artificial neural networks
Audio data
Audio signals
Big Data
Classification
Communications Engineering
Computational Science and Engineering
Computer Science
Convolutional neural networks
Correlation coefficients
Data augmentation
Data Mining and Knowledge Discovery
Database Management
Deep learning
Digital audio signal processing
Disease detection
Dropping out
Information Storage and Retrieval
Learning
Machine learning
Mathematical Applications in Computer Science
Networks
Neural networks
Optimization
Parameter robustness
Parameter sensitivity
Performance evaluation
Poultry
Poultry audio classification
Random noise
Resilience
Robustness
Sensitivity
Signal analysis
Signal classification
Signal processing
Training
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELaqigMXKJt4bUE-9FasJt5iHwFRcUBtDwV6s8bLoCeV9OktSPDrsZ2kCxJw6TVxLOebmfizPfmGkAPNY0otRNaEkJgEAwyMDUxhx5UHpWLVKfjyqTs5MRcX9uxWqa-SEzbIAw_AHQkQFjmA9VbI1DXG-g6VAVBgQ-bK5eubWc-txVTdXRGZiGg5_SVj9NFKFuUSlqckVjQ0FTN3ZqIq2H-HZf5xMFrnm-Md8mgkivTtMMAnZCv1T8njqQgDHWPyGfl6moP--_xX7oQuSpHo5U8Kmzi_oiU1I_cQCj8uCUHVBrRsvNKM3IKOBSO-Uegjzdj29BIyAae4KTtoz8nn4w_n7z-ysVoCC6rha5ZaD1aD9qBRdlE1iK1FLSIgmOijaNAnizZKmQqaBhM2DRiOJuYwR_GCbPdXfXpJaKdC66WIPKKVRisbAockOHZexQ6bGWkn5FwYpcRLRYtLV5cURrsBbZfRdhVtZ2bk8PqZxSCk8c_W74pBrlsWEex6IbuGG13D_c81ZmR_MqcbI3PlMp3VqqTU5rd4M5n45vbfh7R7H0PaIw95ccGaD7NPttfLTXpFHoQf6_lq-br68G8zE_Xm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCy0sstMgHbmDV8Sv2qQJEhQQqHHj0Zo1f1UptdtkHEvz62l6nqyLRC9fEsZx84_F4PPk-hF4qFmLsIBDqfSQCNBDQxhOZeiYdSBkqT8H3T_3JiT49NV9awm3ZyipHn1gddZj5kiM_zGGIkqUUkh7Nf5KiGlVOV5uExm10p2OsK3b-sSfbHAvP4YgS478yWh0uReEvIXlhIoVJUxJ9bT2qtP3XYs2_jkfrqnO8-7_j3UP3W7yJ32wM5AG6FYeHaHfUcsBtaj9CPz5n33Ex_ZNHgedFa3rxG8M6TGe4VHjkHnwJs0tdUYUSl_wtzgDMcdOdOMMwBJwhGvA55Dgep3VJxD1G347ff333gTTRBeIlZSsSOwdGgXKgkuiDpCl1JikeIIEOLnCaXDTJBCEiGGd0iolS0CzpkL1F4k_QzjAb4lOEe-k7J3hgIRmhlTTeM4icpd7J0Cc6Qd346a1vjORFGOPc1p2JVnYDl81w2QqX1RP06uqZ-YaP48bWbwuiVy0Ll3a9MFuc2TY1LQduEoPyMlzEnmrj-iQ1gATj825sgvZHhG2b4Eu7hXeCXo82sr397yE9u7m35-geK9ZZC2b20c5qsY4H6K7_tZouFy-qeV8CMl4DTw
  priority: 102
  providerName: ProQuest
Title Optimizing poultry audio signal classification with deep learning and burn layer fusion
URI https://link.springer.com/article/10.1186/s40537-024-00985-8
https://www.proquest.com/docview/3106553300
https://doaj.org/article/3a39f2aa9b934e7089b7f58aa5a9c768
Volume 11
WOSCitedRecordID wos001315733900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0KItBy6UpwiUyAduYLFrr19HGqUCQcIKAW25WLN-VJHKJsqjUjnw7djOblERIMFlDrtjy56HPR6PZxB6JqjzvgRHCms9qUABAaUt4UFS3gDnLucp-PxOTqfq5ETX3aOwVR_t3l9J5pU6q7USL1dVSj1C4p5CUhJMTtQO2uOl0kmuR90bh-xZYRFTVP0Lmd82vbYL5WT91yzMXy5F815ztP9_o7yDbne2JX61FYa76IZv76H9vm4D7tT4Pjp-H9eJr7NvsV-8SHWll5cYNm42xymaI_Zgk0mdYogy23Dy1eJI7AXuakycYWgdjuxo8TlEmx2HTXK6PUCfjsYfR69JV2CBWF7QNfFlA1qAaECESjpehFDqIJiDAMo1jhWh8TpoV1UedKNV8KEoQNGgXFwZAnuIdtt56x8hLLktm4o56oKulODaWgqe0SAb7mQoBqjsCW5sl308FcE4N_kUooTZUs5EyplMOaMG6PlVm8U298ZfsQ8TH68wU97s_GG-PDOdGhoGTAcKaTKs8rJQupGBKwAO2saT1wAd9FJgOmVemWgBC56icOMsXvRc__n7z0N6_G_oT9AtmgQnB8scoN31cuOfopv2Yj1bLYdoRx6fDtHe4XhafxhmkR9mD0KEbyWJcFKMEqTp7-T7OMKaf4kt6jeT-vQHLRUDfw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFPABTmA1cWzHPiDEq2rV7YJQgd7MxI9qpbK77ANUfhS_EdubdFUkeuuBa-JYsf3NeGY8ng_giWTO-xIdLaz1lKNCikpbKkLNRINCuFyn4HO_HgzU4aH-sAa_u7swKa2y04lZUbuxTTHyrWiGSJFSIYuXk-80sUal09WOQmMJiz1_8jO6bLMXu2_j-j5lbPvdwZsd2rIKUCsKNqe-bFBLlA3KwGsnihBKHWTlMKByjauK0HgdtOPco260Cj4UBSoWlIviEKrY7yW4zKMnlGr177OPq5hOFc0fybu7OUpuzXiql0LjRkhT5U5B1Zn9L9MEnLFt_zqOzbvc9sb_Nj834HprT5NXSwG4CWt-dAs2Oq4K0qqu2_DlfdSN34a_4qjJJHFpT08ILtxwTFIGS-zBJjci5U1lqJIUnyYRYBPS8mocERw5EiE4IscY_RQSFinQeAc-Xcjw7sL6aDzy94DUwpYNrxxzQXMlhbaWoa9YqBvh6lD0oOyW2ti24noi_jg22fNS0izhYSI8TIaHUT14dvrNZFlv5NzWrxOCTlumWuH5wXh6ZFrVYyqsdGCYBlNxXxdKN3UQClGgttHb7MFmhyjTKrCZWcGpB887TK5e__uX7p_f22O4unOw3zf93cHeA7jGkmTk5KBNWJ9PF_4hXLE_5sPZ9FEWLQJfLxqrfwDcLWVz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSF8qpYKOADN7Ca-BX7CIUViGrpgUdv1sT2VCuV7GofSPDrsZ2kUARIiGsyTux52GN75htCnmgeYqwhsMr7yCQYYGCsZwobrlpQKhScgo9HzWxmTk7s8U9Z_CXafbyS7HMaMkpTtzlYBuxN3OiDtcwwJCytLywDYipmLpMr-UYqb78Oh3yHcsoiEqWWY7bMb5teWJEKcP8Fb_OXC9Ky7kx3_7_HN8mNweekz3sluUUuxe422R3rOdDBvO-QT-_S_PF5_i39gy5zvenVVwrbMF_QHOWRvuCzq51ji4o4aT7DpUkISzrUnjil0AWaxNTRM0i-PMVtPoy7Sz5MX70_fM2GwgvMq4pvWKxbsBp0CxplE1SFWFvUIgCCCW0QFbbRog1SRrCtNRixqsBwNCHNGCj2yE636OI9Qhvl61aKwANaabSy3nOIgmPTqtBgNSH1yHznB1TyXBzjzJXdidGu55xLnHOFc85MyNPzNssek-Ov1C-yTM8pM552ebBYnbrBPJ0AYZFDHoyQsamMbRtUBkCB9WlHNiH7o0a4wcjXLnnGWuXo3DSKZ6MG_Hj95y7d_zfyx-Ta8cupO3oze_uAXOdZh0o8zT7Z2ay28SG56r9s5uvVo6L73wFmNwUr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+poultry+audio+signal+classification+with+deep+learning+and+burn+layer+fusion&rft.jtitle=Journal+of+big+data&rft.au=Hassan%2C+Esraa&rft.au=Elbedwehy%2C+Samar&rft.au=Shams%2C+Mahmoud+Y.&rft.au=Abd+El-Hafeez%2C+Tarek&rft.date=2024-12-01&rft.pub=Springer+International+Publishing&rft.eissn=2196-1115&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-024-00985-8&rft.externalDocID=10_1186_s40537_024_00985_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon