Optimizing poultry audio signal classification with deep learning and burn layer fusion
This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which inje...
Gespeichert in:
| Veröffentlicht in: | Journal of big data Jg. 11; H. 1; S. 135 - 29 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 2196-1115, 2196-1115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which injects controlled random noise during training to reinforce the model's resilience to input signal variations. The proposed architecture is streamlined, with convolutional blocks, densely connected layers, dropout, and an additional Burn Layer to fortify robustness. The model demonstrates efficiency by reducing trainable parameters to 191,235, compared to traditional architectures with over 1.7 million parameters. The proposed model utilizes a Burn Layer with burn intensity as a parameter and an Adamax optimizer to optimize and address the overfitting problem. Thorough evaluation using six standard classification metrics showcases the model's superior performance, achieving exceptional sensitivity (96.77%), specificity (100.00%), precision (100.00%), negative predictive value (NPV) (95.00%), accuracy (98.55%), F1 score (98.36%), and Matthew’s correlation coefficient (MCC) (95.88%). This research contributes valuable insights into the fields of audio signal processing, animal health monitoring, and robust deep-learning classification systems. The proposed model presents a systematic approach for developing and evaluating a deep learning-based poultry audio classification system. It processes raw audio data and labels to generate digital representations, utilizes a Burn Layer for training variability, and constructs a CNN model with convolutional blocks, pooling, and dense layers. The model is optimized using the Adamax algorithm and trained with data augmentation and early-stopping techniques. Rigorous assessment on a test dataset using standard metrics demonstrates the model's robustness and efficiency, with the potential to significantly advance animal health monitoring and disease detection through audio signal analysis. |
|---|---|
| AbstractList | This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which injects controlled random noise during training to reinforce the model's resilience to input signal variations. The proposed architecture is streamlined, with convolutional blocks, densely connected layers, dropout, and an additional Burn Layer to fortify robustness. The model demonstrates efficiency by reducing trainable parameters to 191,235, compared to traditional architectures with over 1.7 million parameters. The proposed model utilizes a Burn Layer with burn intensity as a parameter and an Adamax optimizer to optimize and address the overfitting problem. Thorough evaluation using six standard classification metrics showcases the model's superior performance, achieving exceptional sensitivity (96.77%), specificity (100.00%), precision (100.00%), negative predictive value (NPV) (95.00%), accuracy (98.55%), F1 score (98.36%), and Matthew’s correlation coefficient (MCC) (95.88%). This research contributes valuable insights into the fields of audio signal processing, animal health monitoring, and robust deep-learning classification systems. The proposed model presents a systematic approach for developing and evaluating a deep learning-based poultry audio classification system. It processes raw audio data and labels to generate digital representations, utilizes a Burn Layer for training variability, and constructs a CNN model with convolutional blocks, pooling, and dense layers. The model is optimized using the Adamax algorithm and trained with data augmentation and early-stopping techniques. Rigorous assessment on a test dataset using standard metrics demonstrates the model's robustness and efficiency, with the potential to significantly advance animal health monitoring and disease detection through audio signal analysis. Abstract This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model robustness. The methodology integrates digital audio signal processing, convolutional neural networks (CNNs), and the innovative Burn Layer, which injects controlled random noise during training to reinforce the model's resilience to input signal variations. The proposed architecture is streamlined, with convolutional blocks, densely connected layers, dropout, and an additional Burn Layer to fortify robustness. The model demonstrates efficiency by reducing trainable parameters to 191,235, compared to traditional architectures with over 1.7 million parameters. The proposed model utilizes a Burn Layer with burn intensity as a parameter and an Adamax optimizer to optimize and address the overfitting problem. Thorough evaluation using six standard classification metrics showcases the model's superior performance, achieving exceptional sensitivity (96.77%), specificity (100.00%), precision (100.00%), negative predictive value (NPV) (95.00%), accuracy (98.55%), F1 score (98.36%), and Matthew’s correlation coefficient (MCC) (95.88%). This research contributes valuable insights into the fields of audio signal processing, animal health monitoring, and robust deep-learning classification systems. The proposed model presents a systematic approach for developing and evaluating a deep learning-based poultry audio classification system. It processes raw audio data and labels to generate digital representations, utilizes a Burn Layer for training variability, and constructs a CNN model with convolutional blocks, pooling, and dense layers. The model is optimized using the Adamax algorithm and trained with data augmentation and early-stopping techniques. Rigorous assessment on a test dataset using standard metrics demonstrates the model's robustness and efficiency, with the potential to significantly advance animal health monitoring and disease detection through audio signal analysis. |
| ArticleNumber | 135 |
| Author | Hassan, Esraa Abd El-Hafeez, Tarek Elbedwehy, Samar El-Rashidy, Nora Shams, Mahmoud Y. |
| Author_xml | – sequence: 1 givenname: Esraa surname: Hassan fullname: Hassan, Esraa organization: Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University – sequence: 2 givenname: Samar surname: Elbedwehy fullname: Elbedwehy, Samar organization: Department of Data Science, Faculty of Artificial Intelligence, Kafrelsheikh University – sequence: 3 givenname: Mahmoud Y. surname: Shams fullname: Shams, Mahmoud Y. organization: Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University – sequence: 4 givenname: Tarek surname: Abd El-Hafeez fullname: Abd El-Hafeez, Tarek email: tarek@mu.edu.eg organization: Department of Computer Science, Faculty of Science, Minia University, Computer Science Unit, Deraya University – sequence: 5 givenname: Nora surname: El-Rashidy fullname: El-Rashidy, Nora organization: Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University |
| BookMark | eNp9kUFv3CAQhVGUSknT_IGckHp2Oxhjw7GK2iZSpFxa9YjGBrasHHAAq9r--rLrqq16yAnEvO_NDO81OQ8xWEJuGLxjTPbvcweCDw20XQOgpGjkGblsmeobxpg4_-d-Qa5z3gMA45Xpu0vy7XEp_sn_9GFHl7jOJR0orsZHmv0u4EynGXP2zk9YfAz0hy_fqbF2obPFFI4YBkPHNQU648Em6tZchW_IK4dztte_zyvy9dPHL7d3zcPj5_vbDw_NJKAtjWUjqh77EXvXDUaAc0y5nht0KM1oOLjRKqdM11lUo5LOOgCUrZNmqEV-Re43XxNxr5fknzAddESvTw8x7TSm4qfZao5cuRaPNryzA0g1Dk5IRIFqGnpZvd5uXkuKz6vNRe9j3auOrzmDXgjOAaqq3VRTijkn6_50ZaCPeegtD13z0Kc89NFa_gdNvpx-tCT088so39Bc-4SdTX-neoH6BWtNo0E |
| CitedBy_id | crossref_primary_10_1007_s11030_025_11290_8 crossref_primary_10_1016_j_patcog_2025_111994 crossref_primary_10_1007_s00034_025_03177_8 crossref_primary_10_3390_s25092912 crossref_primary_10_1016_j_psj_2025_105870 crossref_primary_10_1007_s00034_025_03300_9 crossref_primary_10_1186_s40537_025_01233_3 crossref_primary_10_1002_rob_70027 crossref_primary_10_1007_s13042_025_02777_9 crossref_primary_10_1007_s40815_024_01964_0 crossref_primary_10_1007_s00371_025_04031_3 crossref_primary_10_1007_s00521_025_11331_1 crossref_primary_10_1109_LSP_2025_3567028 crossref_primary_10_1016_j_compag_2025_110541 crossref_primary_10_1038_s41598_024_79191_8 crossref_primary_10_1038_s41598_025_09643_2 crossref_primary_10_1016_j_neunet_2025_107993 crossref_primary_10_1038_s41598_025_06077_8 crossref_primary_10_3390_s25134058 crossref_primary_10_1002_eng2_70268 crossref_primary_10_1038_s41598_025_13080_6 crossref_primary_10_1016_j_array_2025_100386 crossref_primary_10_1007_s00034_025_03064_2 crossref_primary_10_1007_s00034_025_03235_1 |
| Cites_doi | 10.3390/brainsci10070427 10.3390/app12030950 10.1007/s11042-023-15654-w 10.1542/peds.2023-063101 10.1016/j.eswa.2024.123608 10.1016/j.isprsjprs.2019.09.013 10.3389/frai.2022.733345 10.1007/s10344-021-01549-4 10.3390/ani13193041 10.1007/s11042-022-13820-0 10.1016/j.compag.2019.05.013 10.5772/27788 10.1155/2020/8821868 10.32604/cmc.2022.025629 10.14269/2318-1265/jabb.v2n3p66-72 10.3390/ani12223106 10.1109/JSTARS.2021.3117975 10.3389/fvets.2021.616755 10.1111/2041-210X.13101 10.1007/s40032-021-00721-8 10.1017/S1751731115001408 10.3389/fvets.2021.699081 10.1109/TNNLS.2020.3043505 10.1016/j.neucom.2016.03.020 10.1016/j.bspc.2023.104908 10.1007/978-981-16-8656-6_38 10.1080/00071668.2023.2280963 10.1109/ACCESS.2021.3113509 10.1145/3624990 10.1016/j.compag.2015.11.010 10.1007/978-3-031-24861-0_129 10.1007/s11042-024-18241-9 10.1016/j.cirp.2021.04.041 10.1079/WPS200456 10.1007/978-3-319-75420-8_43 10.1016/j.dib.2023.109528 10.1121/1.1474440 10.1016/j.compag.2022.106740 10.18576/isl/120124 10.1016/j.biosystemseng.2019.01.015 10.1109/MSP.2018.2874383 10.1093/jbcr/irz103 10.3390/electronics12143106 10.3390/app12115601 10.1109/ACCESS.2023.3298955 10.1016/j.bspc.2023.105560 10.1016/j.compag.2022.107586 10.3389/fvets.2022.936251 10.1109/ICCS45141.2019.9065537 10.1007/978-3-030-33966-1_11 10.1109/TNNLS.2024.3355393 10.1109/ICOEI.2019.8862686 10.1109/ICASI60819.2024.10547723 10.1109/ICCAE55086.2022.9762418 10.23919/EUSIPCO55093.2022.9909738 10.1109/ICASSP.2015.7178031 10.1109/GlobalSIP.2014.7032298 10.1109/TELFOR48224.2019.8971336 10.1109/SISY.2018.8524677 10.1109/ICCV.2019.00615 10.1109/NAECON.2018.8556686 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-024-00985-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Health Research Premium Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 29 |
| ExternalDocumentID | oai_doaj_org_article_3a39f2aa9b934e7089b7f58aa5a9c768 10_1186_s40537_024_00985_8 |
| GrantInformation_xml | – fundername: Minia University |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM 7XB 8AL 8FK JQ2 L.- PHGZT PKEHL POGQB PQEST PQGLB PQUKI PRINS PRQQA Q9U |
| ID | FETCH-LOGICAL-c502t-e1ba96a6ba6f47d50ff19f63dafa8dbd30fbe9f9d44ea9b98fef00a82f8d730f3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315733900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Fri Oct 03 12:37:23 EDT 2025 Fri Nov 14 01:23:40 EST 2025 Sat Nov 29 06:20:06 EST 2025 Tue Nov 18 21:43:04 EST 2025 Fri Feb 21 02:38:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Poultry audio classification Sensitivity Specificity Disease detection Convolutional neural networks Digital audio signal processing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-e1ba96a6ba6f47d50ff19f63dafa8dbd30fbe9f9d44ea9b98fef00a82f8d730f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1186/s40537-024-00985-8 |
| PQID | 3106553300 |
| PQPubID | 2046140 |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3a39f2aa9b934e7089b7f58aa5a9c768 proquest_journals_3106553300 crossref_primary_10_1186_s40537_024_00985_8 crossref_citationtrail_10_1186_s40537_024_00985_8 springer_journals_10_1186_s40537_024_00985_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Shams, Abd El-Hafeez, Hassan (CR66) 2024; 249 Tokuda, Riede, Neubauer, Owren, Herzel (CR8) 2002; 111 Huang, Wang, Zhang (CR43) 2019; 180 Liu, Chen, Niu, Plaza (CR51) 2021; 14 Antonio, Bautista, Labao, Naval, Nguyen, Hoang, Hong, Pham, Trawiński (CR57) 2018 Petso, Jamisola, Mpoeleng (CR2) 2022; 68 Yahav, Giloh (CR30) 2012 CR37 Tampuu, Matiisen, Semikin, Fishman, Muhammad (CR9) 2020; 33 CR35 Laleye, Mousse (CR7) 2024; 83 Nam, Choi, Lee, Chou, Yang (CR19) 2018; 36 Jamshidi, Budak (CR44) 2021; 70 Adebayo (CR18) 2023; 50 Hassan, Shams, Hikal, Elmougy (CR11) 2023; 82 Yuan, Savarese, Maire (CR53) 2024; 36 He (CR23) 2022; 12 Cirillo, Mirdell, Sjöberg, Pham (CR49) 2019; 40 Gourisaria, Arora, Bilgaiyan, Sahni (CR34) 2023 Aydin, Berckmans (CR36) 2016; 121 CR48 Cuan, Zhang, Li, Huang, Ding, Fang (CR39) 2022; 194 Li, Avidan, Brostow, Cissé, Farinella, Hassner (CR15) 2022 Morgan, Kim, González-Ortiz (CR21) 2024; 65 Farrell (CR5) 2005; 61 CR41 Nawaz, Amoah, Leng, Zheng, Zhang, Zhang (CR31) 2021; 8 CR40 Shams, Hassanien, Tang, Shi, Bohács, Ma, Gong, Shang (CR10) 2022 Hassan, Hossain, Saber, Elmougy, Ghoneim, Muhammad (CR56) 2024; 87 Cai, Cui, Yuan, Cheng (CR28) 2023; 205 Hassan, Shams, Hikal, Elmougy (CR67) 2022; 72 Fontana, Tullo, Scrase, Butterworth (CR6) 2016; 10 Gibb, Browning, Glover-Kapfer, Jones (CR4) 2019; 10 Nakrosis (CR22) 2023; 13 Sharan, Moir (CR59) 2016; 200 Weng (CR52) 2024; 17 Abdelhamid (CR17) 2023; 11 CR58 CR13 Thakur, Bhattacharjee, Jain, Acharya, Hu (CR54) 2024; 83 Sarhan, Nasr, Shams (CR68) 2020; 2020 CR55 Carpentier, Vranken, Berckmans, Paeshuyse, Norton (CR42) 2019; 162 Li (CR20) 2024; 153 Zhang, Nascetti, Ban, Gong (CR46) 2019; 158 Yaqub (CR64) 2020; 10 Chuang, Chiang, Chen, Lin, Tsai (CR33) 2021; 9 Li (CR38) 2022; 12 Shams, El-kenawy, Ibrahim, Elshewey (CR16) 2023; 85 Jukan, Masip-Bruin, Amla (CR1) 2017; 50 Suha, Sanam (CR45) 2022; 9 Salehin, Kang (CR50) 2023; 12 CR26 CR69 Vranken, Mounir, Norton, Zhang (CR3) 2023 Abdallah, Elmessery, Shams, Al-Sattary, Abohany, Thabet (CR12) 2023; 12 CR65 Salem, Shams, Elzeki, Abd Elfattah, Al-Amri, Elnazer (CR14) 2022; 12 Machuve, Nwankwo, Mduma, Mbelwa (CR27) 2022; 5 CR63 CR62 Mao (CR24) 2022 CR61 CR60 Machuve, Nwankwo, Mduma, Mbelwa (CR25) 2022 Caldara, Nääs, Garcia (CR29) 2014; 2 Shrivastava, Sharma, Awale, Yusufzai, Vashista (CR47) 2021; 102 Noh (CR32) 2021; 8 A Tampuu (985_CR9) 2020; 33 SE Abdallah (985_CR12) 2023; 12 C-H Chuang (985_CR33) 2021; 9 Z Li (985_CR38) 2022; 12 A Jukan (985_CR1) 2017; 50 DJ Farrell (985_CR5) 2005; 61 K Cuan (985_CR39) 2022; 194 NK Morgan (985_CR21) 2024; 65 H Jamshidi (985_CR44) 2021; 70 T Petso (985_CR2) 2022; 68 AH Nawaz (985_CR31) 2021; 8 S Adebayo (985_CR18) 2023; 50 E Hassan (985_CR56) 2024; 87 E Hassan (985_CR67) 2022; 72 Q Mao (985_CR24) 2022 J Huang (985_CR43) 2019; 180 E Vranken (985_CR3) 2023 E Hassan (985_CR11) 2023; 82 985_CR48 I Fontana (985_CR6) 2016; 10 MY Shams (985_CR16) 2023; 85 S Yahav (985_CR30) 2012 985_CR41 985_CR40 FA Laleye (985_CR7) 2024; 83 P He (985_CR23) 2022; 12 F Caldara (985_CR29) 2014; 2 T Liu (985_CR51) 2021; 14 X Li (985_CR15) 2022 A Nakrosis (985_CR22) 2023; 13 AK Shrivastava (985_CR47) 2021; 102 N Thakur (985_CR54) 2024; 83 985_CR58 985_CR13 D Machuve (985_CR25) 2022 985_CR55 J-Y Noh (985_CR32) 2021; 8 D Machuve (985_CR27) 2022; 5 RV Sharan (985_CR59) 2016; 200 A Aydin (985_CR36) 2016; 121 I Tokuda (985_CR8) 2002; 111 MY Shams (985_CR10) 2022 X Yuan (985_CR53) 2024; 36 SA Suha (985_CR45) 2022; 9 AA Abdelhamid (985_CR17) 2023; 11 G Li (985_CR20) 2024; 153 S Sarhan (985_CR68) 2020; 2020 MD Cirillo (985_CR49) 2019; 40 L Carpentier (985_CR42) 2019; 162 MY Shams (985_CR66) 2024; 249 CB Antonio (985_CR57) 2018 H Salem (985_CR14) 2022; 12 M Yaqub (985_CR64) 2020; 10 985_CR69 985_CR26 MK Gourisaria (985_CR34) 2023 I Salehin (985_CR50) 2023; 12 985_CR61 985_CR60 985_CR65 985_CR63 O Weng (985_CR52) 2024; 17 985_CR62 P Zhang (985_CR46) 2019; 158 R Gibb (985_CR4) 2019; 10 985_CR35 J Nam (985_CR19) 2018; 36 985_CR37 Z Cai (985_CR28) 2023; 205 |
| References_xml | – volume: 10 start-page: 427 issue: 7 year: 2020 ident: CR64 article-title: State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images publication-title: Brain Sci doi: 10.3390/brainsci10070427 – volume: 12 start-page: 950 issue: 3 year: 2022 ident: CR14 article-title: Fine-tuning fuzzy KNN classifier based on uncertainty membership for the medical diagnosis of diabetes publication-title: Appl Sci doi: 10.3390/app12030950 – volume: 83 start-page: 1941 issue: 1 year: 2024 end-page: 1964 ident: CR54 article-title: Deep learning-based parking occupancy detection framework using ResNet and VGG-16 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-15654-w – volume: 153 start-page: e2023063101 year: 2024 ident: CR20 article-title: Missing outcome data in recent perinatal and neonatal clinical trials publication-title: Pediatrics doi: 10.1542/peds.2023-063101 – volume: 249 start-page: 123608 year: 2024 ident: CR66 article-title: Acoustic data detection in large-scale emergency vehicle sirens and road noise datase publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.123608 – volume: 158 start-page: 50 year: 2019 end-page: 62 ident: CR46 article-title: An implicit radar convolutional burn index for burnt area mapping with Sentinel-1 C-band SAR data publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.09.013 – ident: CR35 – volume: 5 start-page: 733345 year: 2022 ident: CR27 article-title: Poultry diseases diagnostics models using deep learning publication-title: Front Artif Intell doi: 10.3389/frai.2022.733345 – ident: CR61 – year: 2022 ident: CR25 article-title: Poultry diseases diagnostics models using deep learning publication-title: Front Artif Intell doi: 10.3389/frai.2022.733345 – ident: CR58 – volume: 68 start-page: 3 issue: 1 year: 2022 ident: CR2 article-title: Review on methods used for wildlife species and individual identification publication-title: Eur J Wildl Res doi: 10.1007/s10344-021-01549-4 – volume: 50 start-page: 1 issue: 1 year: 2017 end-page: 27 ident: CR1 article-title: Smart computing and sensing technologies for animal welfare: a systematic review publication-title: ACM Comput Surv CSUR – volume: 13 start-page: 3041 issue: 19 year: 2023 ident: CR22 article-title: Towards early poultry health prediction through non-invasive and computer vision-based dropping classification publication-title: Animals doi: 10.3390/ani13193041 – volume: 9 start-page: 100371 year: 2022 ident: CR45 article-title: A deep convolutional neural network-based approach for detecting burn severity from skin burn images publication-title: Mach Learn Appl – volume: 82 start-page: 16591 issue: 11 year: 2023 end-page: 16633 ident: CR11 article-title: The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13820-0 – volume: 162 start-page: 573 year: 2019 end-page: 581 ident: CR42 article-title: Development of sound-based poultry health monitoring tool for automated sneeze detection publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.05.013 – year: 2012 ident: CR30 article-title: Infrared thermography—applications in poultry biological research publication-title: Infrared Thermogr doi: 10.5772/27788 – volume: 2020 start-page: 1 year: 2020 end-page: 11 ident: CR68 article-title: Multipose face recognition-based combined adaptive deep learning vector quantization publication-title: Comput Intell Neurosci doi: 10.1155/2020/8821868 – volume: 72 start-page: 5889 issue: 3 year: 2022 end-page: 5907 ident: CR67 article-title: A novel convolutional neural network model for malaria cell images classification publication-title: Comput Mater Contin doi: 10.32604/cmc.2022.025629 – volume: 2 start-page: 66 year: 2014 end-page: 72 ident: CR29 article-title: Infrared thermal image for assessing animal health and welfare publication-title: J Anim Behav Biometeorol doi: 10.14269/2318-1265/jabb.v2n3p66-72 – ident: CR60 – volume: 12 start-page: 3106 issue: 22 year: 2022 ident: CR38 article-title: Sex detection of chicks based on audio technology and deep learning methods publication-title: Anim Open Access J MDPI doi: 10.3390/ani12223106 – ident: CR26 – volume: 14 start-page: 11417 year: 2021 end-page: 11428 ident: CR51 article-title: Landslide detection mapping employing CNN, ResNet, and DenseNet in the Three Gorges reservoir, China publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2021.3117975 – volume: 8 start-page: 616755 year: 2021 ident: CR32 article-title: Thermal image scanning for the early detection of fever induced by highly pathogenic avian influenza virus infection in chickens and ducks and its application in farms publication-title: Front Vet Sci doi: 10.3389/fvets.2021.616755 – volume: 10 start-page: 169 issue: 2 year: 2019 end-page: 185 ident: CR4 article-title: Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13101 – volume: 102 start-page: 885 issue: 4 year: 2021 end-page: 896 ident: CR47 article-title: Assessment of grinding burn of AISI D2 tool steel using Barkhausen noise technique publication-title: J Inst Eng India Ser C doi: 10.1007/s40032-021-00721-8 – volume: 10 start-page: 1567 issue: 9 year: 2016 end-page: 1574 ident: CR6 article-title: Vocalisation sound pattern identification in young broiler chickens publication-title: Animal doi: 10.1017/S1751731115001408 – volume: 8 start-page: 699081 year: 2021 ident: CR31 article-title: Poultry response to heat stress: its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world publication-title: Front Vet Sci doi: 10.3389/fvets.2021.699081 – volume: 33 start-page: 1364 issue: 4 year: 2020 end-page: 1384 ident: CR9 article-title: A survey of end-to-end driving: Architectures and training methods publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3043505 – volume: 200 start-page: 22 year: 2016 end-page: 34 ident: CR59 article-title: An overview of applications and advancements in automatic sound recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.020 – volume: 85 start-page: 104908 year: 2023 ident: CR16 article-title: A hybrid dipper throated optimization algorithm and particle swarm optimization (DTPSO) model for hepatocellular carcinoma (HCC) prediction publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104908 – year: 2023 ident: CR34 publication-title: Chicken disease multiclass classification using deep learning, vol. 614 LNNS – start-page: 415 year: 2022 end-page: 430 ident: CR10 article-title: Deep belief neural networks for eye localization based speeded up robust features and local binary pattern publication-title: LISS 2021. Lecture notes in operations research doi: 10.1007/978-981-16-8656-6_38 – ident: CR37 – volume: 65 start-page: 79 year: 2024 end-page: 86 ident: CR21 article-title: Holo-analysis of the effects of xylo-oligosaccharides on broiler chicken performance publication-title: Br Poult Sci doi: 10.1080/00071668.2023.2280963 – volume: 9 start-page: 131203 year: 2021 end-page: 131213 ident: CR33 article-title: Goose surface temperature monitoring system based on deep learning using visible and infrared thermal image integration publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3113509 – volume: 17 start-page: 1 issue: 1 year: 2024 end-page: 23 ident: CR52 article-title: Tailor: altering skip connections for resource-efficient inference publication-title: ACM Trans Reconfig Technol Syst doi: 10.1145/3624990 – volume: 121 start-page: 25 year: 2016 end-page: 31 ident: CR36 article-title: Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens publication-title: Comput Electron Agric doi: 10.1016/j.compag.2015.11.010 – start-page: 1358 year: 2023 end-page: 1369 ident: CR3 article-title: Sound-based monitoring of livestock publication-title: Encyclopedia of digital agricultural technologies doi: 10.1007/978-3-031-24861-0_129 – volume: 83 start-page: 62443 year: 2024 end-page: 62458 ident: CR7 article-title: Attention-based recurrent neural network for automatic behavior laying hen recognition publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-18241-9 – ident: CR40 – ident: CR63 – start-page: 308 year: 2022 end-page: 324 ident: CR15 article-title: Efficient meta-tuning for content-aware neural video delivery publication-title: Computer vision—ECCV 2022. Lecture notes in computer science – volume: 70 start-page: 285 issue: 1 year: 2021 end-page: 288 ident: CR44 article-title: On the prediction of surface burn and its thickness in grinding processes publication-title: CIRP Ann doi: 10.1016/j.cirp.2021.04.041 – volume: 61 start-page: 298 issue: 2 year: 2005 end-page: 307 ident: CR5 article-title: Matching poultry production with available feed resources: issues and constraints publication-title: Worlds Poult Sci J doi: 10.1079/WPS200456 – ident: CR69 – start-page: 449 year: 2018 end-page: 458 ident: CR57 article-title: Vertebra fracture classification from 3D CT lumbar spine segmentation masks using a convolutional neural network publication-title: Intelligent information and database systems Lecture notes in computer science doi: 10.1007/978-3-319-75420-8_43 – volume: 50 start-page: 109528 year: 2023 ident: CR18 article-title: Enhancing poultry health management through machine learning-based analysis of vocalization signals dataset publication-title: Data Brief doi: 10.1016/j.dib.2023.109528 – volume: 111 start-page: 2908 issue: 6 year: 2002 end-page: 2919 ident: CR8 article-title: Nonlinear analysis of irregular animal vocalizations publication-title: J Acoust Soc Am doi: 10.1121/1.1474440 – volume: 194 start-page: 106740 issue: January year: 2022 ident: CR39 article-title: Automatic Newcastle disease detection using sound technology and deep learning method publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.106740 – ident: CR48 – volume: 12 start-page: 289 issue: 1 year: 2023 end-page: 297 ident: CR12 article-title: Deep learning model based on ResNet-50 for beef quality classification publication-title: Inf Sci Lett doi: 10.18576/isl/120124 – ident: CR65 – volume: 180 start-page: 16 year: 2019 end-page: 24 ident: CR43 article-title: Method for detecting avian influenza disease of chickens based on sound analysis publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2019.01.015 – ident: CR13 – volume: 36 start-page: 41 issue: 1 year: 2018 end-page: 51 ident: CR19 article-title: Deep learning for audio-based music classification and tagging: teaching computers to distinguish rock from bach publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2018.2874383 – volume: 40 start-page: 857 issue: 6 year: 2019 end-page: 863 ident: CR49 article-title: Time-independent prediction of burn depth using deep convolutional neural networks publication-title: J Burn Care Res doi: 10.1093/jbcr/irz103 – volume: 12 start-page: 3106 issue: 14 year: 2023 ident: CR50 article-title: A review on dropout regularization approaches for deep neural networks within the scholarly domain publication-title: Electronics doi: 10.3390/electronics12143106 – volume: 12 start-page: 5601 issue: 11 year: 2022 ident: CR23 article-title: Research progress in the early warning of chicken diseases by monitoring clinical symptoms publication-title: Appl Sci doi: 10.3390/app12115601 – volume: 11 start-page: 79750 year: 2023 end-page: 79776 ident: CR17 article-title: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3298955 – volume: 87 start-page: 105560 year: 2024 ident: CR56 article-title: A quantum convolutional network and ResNet (50)-based classification architecture for the MNIST medical dataset publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105560 – volume: 36 start-page: 16673 year: 2024 end-page: 23 ident: CR53 article-title: Accelerated training via incrementally growing neural networks using variance transfer and learning rate adaptation publication-title: Adv Neural Info Process Syst – ident: CR55 – volume: 205 start-page: 107586 year: 2023 ident: CR28 article-title: Application and research progress of infrared thermography in temperature measurement of livestock and poultry animals: a review publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107586 – ident: CR41 – ident: CR62 – year: 2022 ident: CR24 article-title: Review detection of Newcastle disease virus publication-title: Front Vet Sci doi: 10.3389/fvets.2022.936251 – volume: 13 start-page: 3041 issue: 19 year: 2023 ident: 985_CR22 publication-title: Animals doi: 10.3390/ani13193041 – volume: 85 start-page: 104908 year: 2023 ident: 985_CR16 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104908 – volume: 65 start-page: 79 year: 2024 ident: 985_CR21 publication-title: Br Poult Sci doi: 10.1080/00071668.2023.2280963 – volume: 12 start-page: 3106 issue: 22 year: 2022 ident: 985_CR38 publication-title: Anim Open Access J MDPI doi: 10.3390/ani12223106 – ident: 985_CR62 doi: 10.1109/ICCS45141.2019.9065537 – volume: 12 start-page: 950 issue: 3 year: 2022 ident: 985_CR14 publication-title: Appl Sci doi: 10.3390/app12030950 – volume: 72 start-page: 5889 issue: 3 year: 2022 ident: 985_CR67 publication-title: Comput Mater Contin doi: 10.32604/cmc.2022.025629 – volume: 162 start-page: 573 year: 2019 ident: 985_CR42 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.05.013 – volume: 87 start-page: 105560 year: 2024 ident: 985_CR56 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105560 – volume: 205 start-page: 107586 year: 2023 ident: 985_CR28 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107586 – ident: 985_CR65 doi: 10.1007/978-3-030-33966-1_11 – volume: 61 start-page: 298 issue: 2 year: 2005 ident: 985_CR5 publication-title: Worlds Poult Sci J doi: 10.1079/WPS200456 – volume: 12 start-page: 289 issue: 1 year: 2023 ident: 985_CR12 publication-title: Inf Sci Lett doi: 10.18576/isl/120124 – ident: 985_CR26 – volume: 40 start-page: 857 issue: 6 year: 2019 ident: 985_CR49 publication-title: J Burn Care Res doi: 10.1093/jbcr/irz103 – volume: 17 start-page: 1 issue: 1 year: 2024 ident: 985_CR52 publication-title: ACM Trans Reconfig Technol Syst doi: 10.1145/3624990 – volume: 68 start-page: 3 issue: 1 year: 2022 ident: 985_CR2 publication-title: Eur J Wildl Res doi: 10.1007/s10344-021-01549-4 – volume: 8 start-page: 616755 year: 2021 ident: 985_CR32 publication-title: Front Vet Sci doi: 10.3389/fvets.2021.616755 – ident: 985_CR55 doi: 10.1109/TNNLS.2024.3355393 – start-page: 308 volume-title: Computer vision—ECCV 2022. Lecture notes in computer science year: 2022 ident: 985_CR15 – volume: 12 start-page: 5601 issue: 11 year: 2022 ident: 985_CR23 publication-title: Appl Sci doi: 10.3390/app12115601 – volume: 9 start-page: 100371 year: 2022 ident: 985_CR45 publication-title: Mach Learn Appl – volume: 153 start-page: e2023063101 year: 2024 ident: 985_CR20 publication-title: Pediatrics doi: 10.1542/peds.2023-063101 – year: 2022 ident: 985_CR25 publication-title: Front Artif Intell doi: 10.3389/frai.2022.733345 – volume: 36 start-page: 16673 year: 2024 ident: 985_CR53 publication-title: Adv Neural Info Process Syst – volume: 50 start-page: 109528 year: 2023 ident: 985_CR18 publication-title: Data Brief doi: 10.1016/j.dib.2023.109528 – ident: 985_CR63 doi: 10.1109/ICOEI.2019.8862686 – volume: 158 start-page: 50 year: 2019 ident: 985_CR46 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.09.013 – ident: 985_CR69 doi: 10.1109/ICASI60819.2024.10547723 – start-page: 1358 volume-title: Encyclopedia of digital agricultural technologies year: 2023 ident: 985_CR3 doi: 10.1007/978-3-031-24861-0_129 – ident: 985_CR37 doi: 10.1109/ICCAE55086.2022.9762418 – ident: 985_CR41 doi: 10.23919/EUSIPCO55093.2022.9909738 – ident: 985_CR61 doi: 10.1109/ICASSP.2015.7178031 – ident: 985_CR35 doi: 10.1109/GlobalSIP.2014.7032298 – volume: 102 start-page: 885 issue: 4 year: 2021 ident: 985_CR47 publication-title: J Inst Eng India Ser C doi: 10.1007/s40032-021-00721-8 – volume: 10 start-page: 1567 issue: 9 year: 2016 ident: 985_CR6 publication-title: Animal doi: 10.1017/S1751731115001408 – volume: 249 start-page: 123608 year: 2024 ident: 985_CR66 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.123608 – volume: 2 start-page: 66 year: 2014 ident: 985_CR29 publication-title: J Anim Behav Biometeorol doi: 10.14269/2318-1265/jabb.v2n3p66-72 – ident: 985_CR40 doi: 10.1109/TELFOR48224.2019.8971336 – volume: 70 start-page: 285 issue: 1 year: 2021 ident: 985_CR44 publication-title: CIRP Ann doi: 10.1016/j.cirp.2021.04.041 – volume: 194 start-page: 106740 issue: January year: 2022 ident: 985_CR39 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.106740 – ident: 985_CR60 doi: 10.1109/SISY.2018.8524677 – start-page: 415 volume-title: LISS 2021. Lecture notes in operations research year: 2022 ident: 985_CR10 doi: 10.1007/978-981-16-8656-6_38 – volume: 82 start-page: 16591 issue: 11 year: 2023 ident: 985_CR11 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13820-0 – volume: 8 start-page: 699081 year: 2021 ident: 985_CR31 publication-title: Front Vet Sci doi: 10.3389/fvets.2021.699081 – volume: 14 start-page: 11417 year: 2021 ident: 985_CR51 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2021.3117975 – volume: 50 start-page: 1 issue: 1 year: 2017 ident: 985_CR1 publication-title: ACM Comput Surv CSUR – volume: 5 start-page: 733345 year: 2022 ident: 985_CR27 publication-title: Front Artif Intell doi: 10.3389/frai.2022.733345 – volume: 83 start-page: 1941 issue: 1 year: 2024 ident: 985_CR54 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-15654-w – ident: 985_CR13 doi: 10.1109/ICCV.2019.00615 – ident: 985_CR58 doi: 10.1109/NAECON.2018.8556686 – year: 2012 ident: 985_CR30 publication-title: Infrared Thermogr doi: 10.5772/27788 – volume: 36 start-page: 41 issue: 1 year: 2018 ident: 985_CR19 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2018.2874383 – volume-title: Chicken disease multiclass classification using deep learning, vol. 614 LNNS year: 2023 ident: 985_CR34 – start-page: 449 volume-title: Intelligent information and database systems Lecture notes in computer science year: 2018 ident: 985_CR57 doi: 10.1007/978-3-319-75420-8_43 – volume: 10 start-page: 427 issue: 7 year: 2020 ident: 985_CR64 publication-title: Brain Sci doi: 10.3390/brainsci10070427 – volume: 83 start-page: 62443 year: 2024 ident: 985_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-18241-9 – volume: 12 start-page: 3106 issue: 14 year: 2023 ident: 985_CR50 publication-title: Electronics doi: 10.3390/electronics12143106 – volume: 11 start-page: 79750 year: 2023 ident: 985_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3298955 – volume: 180 start-page: 16 year: 2019 ident: 985_CR43 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2019.01.015 – ident: 985_CR48 – volume: 200 start-page: 22 year: 2016 ident: 985_CR59 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.020 – volume: 9 start-page: 131203 year: 2021 ident: 985_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3113509 – volume: 121 start-page: 25 year: 2016 ident: 985_CR36 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2015.11.010 – year: 2022 ident: 985_CR24 publication-title: Front Vet Sci doi: 10.3389/fvets.2022.936251 – volume: 111 start-page: 2908 issue: 6 year: 2002 ident: 985_CR8 publication-title: J Acoust Soc Am doi: 10.1121/1.1474440 – volume: 10 start-page: 169 issue: 2 year: 2019 ident: 985_CR4 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13101 – volume: 33 start-page: 1364 issue: 4 year: 2020 ident: 985_CR9 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3043505 – volume: 2020 start-page: 1 year: 2020 ident: 985_CR68 publication-title: Comput Intell Neurosci doi: 10.1155/2020/8821868 |
| SSID | ssj0001340564 |
| Score | 2.4481406 |
| Snippet | This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model... Abstract This study introduces a novel deep learning-based approach for classifying poultry audio signals, incorporating a custom Burn Layer to enhance model... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 135 |
| SubjectTerms | Algorithms Animal health Animal husbandry Animals Artificial neural networks Audio data Audio signals Big Data Classification Communications Engineering Computational Science and Engineering Computer Science Convolutional neural networks Correlation coefficients Data augmentation Data Mining and Knowledge Discovery Database Management Deep learning Digital audio signal processing Disease detection Dropping out Information Storage and Retrieval Learning Machine learning Mathematical Applications in Computer Science Networks Neural networks Optimization Parameter robustness Parameter sensitivity Performance evaluation Poultry Poultry audio classification Random noise Resilience Robustness Sensitivity Signal analysis Signal classification Signal processing Training |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELaqigMXKJt4bUE-9FasJt5iHwFRcUBtDwV6s8bLoCeV9OktSPDrsZ2kCxJw6TVxLOebmfizPfmGkAPNY0otRNaEkJgEAwyMDUxhx5UHpWLVKfjyqTs5MRcX9uxWqa-SEzbIAw_AHQkQFjmA9VbI1DXG-g6VAVBgQ-bK5eubWc-txVTdXRGZiGg5_SVj9NFKFuUSlqckVjQ0FTN3ZqIq2H-HZf5xMFrnm-Md8mgkivTtMMAnZCv1T8njqQgDHWPyGfl6moP--_xX7oQuSpHo5U8Kmzi_oiU1I_cQCj8uCUHVBrRsvNKM3IKOBSO-Uegjzdj29BIyAae4KTtoz8nn4w_n7z-ysVoCC6rha5ZaD1aD9qBRdlE1iK1FLSIgmOijaNAnizZKmQqaBhM2DRiOJuYwR_GCbPdXfXpJaKdC66WIPKKVRisbAockOHZexQ6bGWkn5FwYpcRLRYtLV5cURrsBbZfRdhVtZ2bk8PqZxSCk8c_W74pBrlsWEex6IbuGG13D_c81ZmR_MqcbI3PlMp3VqqTU5rd4M5n45vbfh7R7H0PaIw95ccGaD7NPttfLTXpFHoQf6_lq-br68G8zE_Xm priority: 102 providerName: Directory of Open Access Journals – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCy0sstMgHbmDV8Sv2qQJEhQQqHHj0Zo1f1UptdtkHEvz62l6nqyLRC9fEsZx84_F4PPk-hF4qFmLsIBDqfSQCNBDQxhOZeiYdSBkqT8H3T_3JiT49NV9awm3ZyipHn1gddZj5kiM_zGGIkqUUkh7Nf5KiGlVOV5uExm10p2OsK3b-sSfbHAvP4YgS478yWh0uReEvIXlhIoVJUxJ9bT2qtP3XYs2_jkfrqnO8-7_j3UP3W7yJ32wM5AG6FYeHaHfUcsBtaj9CPz5n33Ex_ZNHgedFa3rxG8M6TGe4VHjkHnwJs0tdUYUSl_wtzgDMcdOdOMMwBJwhGvA55Dgep3VJxD1G347ff333gTTRBeIlZSsSOwdGgXKgkuiDpCl1JikeIIEOLnCaXDTJBCEiGGd0iolS0CzpkL1F4k_QzjAb4lOEe-k7J3hgIRmhlTTeM4icpd7J0Cc6Qd346a1vjORFGOPc1p2JVnYDl81w2QqX1RP06uqZ-YaP48bWbwuiVy0Ll3a9MFuc2TY1LQduEoPyMlzEnmrj-iQ1gATj825sgvZHhG2b4Eu7hXeCXo82sr397yE9u7m35-geK9ZZC2b20c5qsY4H6K7_tZouFy-qeV8CMl4DTw priority: 102 providerName: ProQuest |
| Title | Optimizing poultry audio signal classification with deep learning and burn layer fusion |
| URI | https://link.springer.com/article/10.1186/s40537-024-00985-8 https://www.proquest.com/docview/3106553300 https://doaj.org/article/3a39f2aa9b934e7089b7f58aa5a9c768 |
| Volume | 11 |
| WOSCitedRecordID | wos001315733900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0KItBy6UpwiUyAduYLFrr19HGqUCQcIKAW25WLN-VJHKJsqjUjnw7djOblERIMFlDrtjy56HPR6PZxB6JqjzvgRHCms9qUABAaUt4UFS3gDnLucp-PxOTqfq5ETX3aOwVR_t3l9J5pU6q7USL1dVSj1C4p5CUhJMTtQO2uOl0kmuR90bh-xZYRFTVP0Lmd82vbYL5WT91yzMXy5F815ztP9_o7yDbne2JX61FYa76IZv76H9vm4D7tT4Pjp-H9eJr7NvsV-8SHWll5cYNm42xymaI_Zgk0mdYogy23Dy1eJI7AXuakycYWgdjuxo8TlEmx2HTXK6PUCfjsYfR69JV2CBWF7QNfFlA1qAaECESjpehFDqIJiDAMo1jhWh8TpoV1UedKNV8KEoQNGgXFwZAnuIdtt56x8hLLktm4o56oKulODaWgqe0SAb7mQoBqjsCW5sl308FcE4N_kUooTZUs5EyplMOaMG6PlVm8U298ZfsQ8TH68wU97s_GG-PDOdGhoGTAcKaTKs8rJQupGBKwAO2saT1wAd9FJgOmVemWgBC56icOMsXvRc__n7z0N6_G_oT9AtmgQnB8scoN31cuOfopv2Yj1bLYdoRx6fDtHe4XhafxhmkR9mD0KEbyWJcFKMEqTp7-T7OMKaf4kt6jeT-vQHLRUDfw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFPABTmA1cWzHPiDEq2rV7YJQgd7MxI9qpbK77ANUfhS_EdubdFUkeuuBa-JYsf3NeGY8ng_giWTO-xIdLaz1lKNCikpbKkLNRINCuFyn4HO_HgzU4aH-sAa_u7swKa2y04lZUbuxTTHyrWiGSJFSIYuXk-80sUal09WOQmMJiz1_8jO6bLMXu2_j-j5lbPvdwZsd2rIKUCsKNqe-bFBLlA3KwGsnihBKHWTlMKByjauK0HgdtOPco260Cj4UBSoWlIviEKrY7yW4zKMnlGr177OPq5hOFc0fybu7OUpuzXiql0LjRkhT5U5B1Zn9L9MEnLFt_zqOzbvc9sb_Nj834HprT5NXSwG4CWt-dAs2Oq4K0qqu2_DlfdSN34a_4qjJJHFpT08ILtxwTFIGS-zBJjci5U1lqJIUnyYRYBPS8mocERw5EiE4IscY_RQSFinQeAc-Xcjw7sL6aDzy94DUwpYNrxxzQXMlhbaWoa9YqBvh6lD0oOyW2ti24noi_jg22fNS0izhYSI8TIaHUT14dvrNZFlv5NzWrxOCTlumWuH5wXh6ZFrVYyqsdGCYBlNxXxdKN3UQClGgttHb7MFmhyjTKrCZWcGpB887TK5e__uX7p_f22O4unOw3zf93cHeA7jGkmTk5KBNWJ9PF_4hXLE_5sPZ9FEWLQJfLxqrfwDcLWVz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSF8qpYKOADN7Ca-BX7CIUViGrpgUdv1sT2VCuV7GofSPDrsZ2kUARIiGsyTux52GN75htCnmgeYqwhsMr7yCQYYGCsZwobrlpQKhScgo9HzWxmTk7s8U9Z_CXafbyS7HMaMkpTtzlYBuxN3OiDtcwwJCytLywDYipmLpMr-UYqb78Oh3yHcsoiEqWWY7bMb5teWJEKcP8Fb_OXC9Ky7kx3_7_HN8mNweekz3sluUUuxe422R3rOdDBvO-QT-_S_PF5_i39gy5zvenVVwrbMF_QHOWRvuCzq51ji4o4aT7DpUkISzrUnjil0AWaxNTRM0i-PMVtPoy7Sz5MX70_fM2GwgvMq4pvWKxbsBp0CxplE1SFWFvUIgCCCW0QFbbRog1SRrCtNRixqsBwNCHNGCj2yE636OI9Qhvl61aKwANaabSy3nOIgmPTqtBgNSH1yHznB1TyXBzjzJXdidGu55xLnHOFc85MyNPzNssek-Ov1C-yTM8pM552ebBYnbrBPJ0AYZFDHoyQsamMbRtUBkCB9WlHNiH7o0a4wcjXLnnGWuXo3DSKZ6MG_Hj95y7d_zfyx-Ta8cupO3oze_uAXOdZh0o8zT7Z2ay28SG56r9s5uvVo6L73wFmNwUr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+poultry+audio+signal+classification+with+deep+learning+and+burn+layer+fusion&rft.jtitle=Journal+of+big+data&rft.au=Hassan%2C+Esraa&rft.au=Elbedwehy%2C+Samar&rft.au=Shams%2C+Mahmoud+Y.&rft.au=Abd+El-Hafeez%2C+Tarek&rft.date=2024-12-01&rft.pub=Springer+International+Publishing&rft.eissn=2196-1115&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-024-00985-8&rft.externalDocID=10_1186_s40537_024_00985_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |