Flight delay prediction based on deep learning and Levenberg-Marquart algorithm
Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for airlines because the results can be applied to increase customer satisfaction and incomes of airline agencies. There have been many researches on...
Uloženo v:
| Vydáno v: | Journal of big data Ročník 7; číslo 1; s. 1 - 28 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
26.11.2020
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2196-1115, 2196-1115 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for airlines because the results can be applied to increase customer satisfaction and incomes of airline agencies. There have been many researches on modeling and predicting flight delays, where most of them have been trying to predict the delay through extracting important characteristics and most related features. However, most of the proposed methods are not accurate enough because of massive volume data, dependencies and extreme number of parameters. This paper proposes a model for predicting flight delay based on Deep Learning (DL). DL is one of the newest methods employed in solving problems with high level of complexity and massive amount of data. Moreover, DL is capable to automatically extract the important features from data. Furthermore, due to the fact that most of flight delay data are noisy, a technique based on stack denoising autoencoder is designed and added to the proposed model. Also, Levenberg-Marquart algorithm is applied to find weight and bias proper values, and finally the output has been optimized to produce high accurate results. In order to study effect of stack denoising autoencoder and LM algorithm on the model structure, two other structures are also designed. First structure is based on autoencoder and LM algorithm (SAE-LM), and the second structure is based on denoising autoencoder only (SDA). To investigate the three models, we apply the proposed model on U.S flight dataset that it is imbalanced dataset. In order to create balance dataset, undersampling method are used. We measured precision, accuracy, sensitivity, recall and F-measure of the three models on two cases. Accuracy of the proposed prediction model analyzed and compared to previous prediction method. results of three models on both imbalanced and balanced datasets shows that precision, accuracy, sensitivity, recall and F-measure of SDA-LM model with imbalanced and balanced dataset is improvement than SAE-LM and SDA models. The results also show that accuracy of the proposed model in forecasting flight delay on imbalanced and balanced dataset respectively has greater than previous model called RNN. |
|---|---|
| AbstractList | Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for airlines because the results can be applied to increase customer satisfaction and incomes of airline agencies. There have been many researches on modeling and predicting flight delays, where most of them have been trying to predict the delay through extracting important characteristics and most related features. However, most of the proposed methods are not accurate enough because of massive volume data, dependencies and extreme number of parameters. This paper proposes a model for predicting flight delay based on Deep Learning (DL). DL is one of the newest methods employed in solving problems with high level of complexity and massive amount of data. Moreover, DL is capable to automatically extract the important features from data. Furthermore, due to the fact that most of flight delay data are noisy, a technique based on stack denoising autoencoder is designed and added to the proposed model. Also, Levenberg-Marquart algorithm is applied to find weight and bias proper values, and finally the output has been optimized to produce high accurate results. In order to study effect of stack denoising autoencoder and LM algorithm on the model structure, two other structures are also designed. First structure is based on autoencoder and LM algorithm (SAE-LM), and the second structure is based on denoising autoencoder only (SDA). To investigate the three models, we apply the proposed model on U.S flight dataset that it is imbalanced dataset. In order to create balance dataset, undersampling method are used. We measured precision, accuracy, sensitivity, recall and F-measure of the three models on two cases. Accuracy of the proposed prediction model analyzed and compared to previous prediction method. results of three models on both imbalanced and balanced datasets shows that precision, accuracy, sensitivity, recall and F-measure of SDA-LM model with imbalanced and balanced dataset is improvement than SAE-LM and SDA models. The results also show that accuracy of the proposed model in forecasting flight delay on imbalanced and balanced dataset respectively has greater than previous model called RNN. Abstract Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for airlines because the results can be applied to increase customer satisfaction and incomes of airline agencies. There have been many researches on modeling and predicting flight delays, where most of them have been trying to predict the delay through extracting important characteristics and most related features. However, most of the proposed methods are not accurate enough because of massive volume data, dependencies and extreme number of parameters. This paper proposes a model for predicting flight delay based on Deep Learning (DL). DL is one of the newest methods employed in solving problems with high level of complexity and massive amount of data. Moreover, DL is capable to automatically extract the important features from data. Furthermore, due to the fact that most of flight delay data are noisy, a technique based on stack denoising autoencoder is designed and added to the proposed model. Also, Levenberg-Marquart algorithm is applied to find weight and bias proper values, and finally the output has been optimized to produce high accurate results. In order to study effect of stack denoising autoencoder and LM algorithm on the model structure, two other structures are also designed. First structure is based on autoencoder and LM algorithm (SAE-LM), and the second structure is based on denoising autoencoder only (SDA). To investigate the three models, we apply the proposed model on U.S flight dataset that it is imbalanced dataset. In order to create balance dataset, undersampling method are used. We measured precision, accuracy, sensitivity, recall and F-measure of the three models on two cases. Accuracy of the proposed prediction model analyzed and compared to previous prediction method. results of three models on both imbalanced and balanced datasets shows that precision, accuracy, sensitivity, recall and F-measure of SDA-LM model with imbalanced and balanced dataset is improvement than SAE-LM and SDA models. The results also show that accuracy of the proposed model in forecasting flight delay on imbalanced and balanced dataset respectively has greater than previous model called RNN. |
| ArticleNumber | 106 |
| Author | Kamel, Seyed Reza Kheirabadi, Maryam Yazdi, Maryam Farshchian Chabok, Seyyed Javad Mahdavi |
| Author_xml | – sequence: 1 givenname: Maryam Farshchian surname: Yazdi fullname: Yazdi, Maryam Farshchian organization: Department of Computer Engineering, Neyshabur Branch, Islamic Azad University – sequence: 2 givenname: Seyed Reza orcidid: 0000-0003-3043-0207 surname: Kamel fullname: Kamel, Seyed Reza email: Drkamel@mshdiau.ac.ir organization: Department of Computer Engineering, Mashhad Branch, Islamic Azad University – sequence: 3 givenname: Seyyed Javad Mahdavi surname: Chabok fullname: Chabok, Seyyed Javad Mahdavi organization: Department of Computer Engineering, Mashhad Branch, Islamic Azad University – sequence: 4 givenname: Maryam surname: Kheirabadi fullname: Kheirabadi, Maryam organization: Department of Computer Engineering, Neyshabur Branch, Islamic Azad University |
| BookMark | eNp9kUFP3DAQhS0EElvgD3CK1HNaO44T51itSkHaikt7tsb2OHiVtXftbCX49TUEFdQDpxmN5nvzNO8TOQ0xICHXjH5hTHZfc0sF72va0JpSLmn9dEJWDRu6mjEmTt_15-Qq5y2llPHCdO2K3N9MfnyYK4sTPFb7hNab2cdQachoq9JYxH01IaTgw1hBsNUG_2DQmMb6J6TDEdJcwTTG5OeH3SU5czBlvHqtF-T3zfdf69t6c__jbv1tUxtBm7m20jUOgHfCGgO0ByOk4cJoKThzvZONa7vG9Fo6g26QAiz2rtVagwSugV-Qu0XXRtiqffI7SI8qglcvg5hGVXx5M6HSfNCmxUFo5lpsHQjg6DTjZuiRoihanxetfYqHI-ZZbeMxhWJfNW3POe_l0JWtZtkyKeac0P27yqh6zkEtOaiSg3rJQT0VSP4HGT_D84PnBH76GOULmsudMGJ6c_UB9Rdq8KE6 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3298979 crossref_primary_10_1088_1402_4896_acff2c crossref_primary_10_3390_aerospace10040358 crossref_primary_10_1016_j_tre_2022_102805 crossref_primary_10_1016_j_jatrs_2025_100077 crossref_primary_10_1109_ACCESS_2022_3158313 crossref_primary_10_3390_s21227518 crossref_primary_10_1016_j_trc_2024_104947 crossref_primary_10_1109_ACCESS_2022_3152570 crossref_primary_10_3390_app13106032 crossref_primary_10_3390_math13142274 crossref_primary_10_1186_s40537_023_00854_w crossref_primary_10_1016_j_jairtraman_2023_102488 crossref_primary_10_1109_TITS_2025_3528536 crossref_primary_10_3390_aerospace9110645 crossref_primary_10_1016_j_eswa_2023_120287 crossref_primary_10_3390_math11112427 crossref_primary_10_1007_s10586_025_05416_8 crossref_primary_10_1109_ACCESS_2023_3300373 crossref_primary_10_3390_app14135632 crossref_primary_10_32604_cmc_2023_034399 crossref_primary_10_1016_j_eswa_2024_123306 crossref_primary_10_1016_j_ejor_2023_02_035 crossref_primary_10_3390_pr10050975 crossref_primary_10_1186_s40537_023_00867_5 crossref_primary_10_14801_jkiit_2025_23_7_13 crossref_primary_10_1007_s00521_022_06898_y crossref_primary_10_1155_atr_4851103 crossref_primary_10_1016_j_jairtraman_2023_102491 crossref_primary_10_3390_rs17111839 crossref_primary_10_3233_JIFS_222827 crossref_primary_10_3390_aerospace9070394 crossref_primary_10_3390_app14135472 |
| Cites_doi | 10.1177/0361198105191500112 10.1016/j.jairtraman.2004.06.008 10.1126/science.1127647 10.1016/j.trc.2011.05.017 10.1287/trsc.2015.0590 10.1016/j.trc.2010.03.003 10.1016/S0969-6997(99)00006-X 10.1016/j.tra.2014.08.024 10.1016/j.jairtraman.2006.07.004 10.3390/su12072749 10.1016/j.eswa.2010.11.076 10.1016/j.jue.2007.04.005 10.1016/j.tre.2013.05.003 10.1145/3065386 10.1016/j.tre.2019.03.013 10.1016/j.trc.2007.09.001 10.1109/MIE.2009.934790 10.1198/016214507000000257 10.1016/j.jairtraman.2009.02.004 10.1016/j.trc.2017.05.011 10.1287/trsc.1050.0134 10.1016/j.trc.2014.04.007 10.2514/1.I010304 10.1007/b107408 10.1016/j.trc.2005.04.007 10.1016/j.cor.2014.02.011 10.1016/j.jairtraman.2017.03.001 10.1016/j.jairtraman.2005.01.005 10.1016/j.tra.2012.02.015 10.1016/j.tra.2014.03.013 10.1049/iet-its.2011.0182 10.1109/TITS.2008.2006813 10.1016/j.neucom.2013.09.055 10.1186/s40537-014-0007-7 10.1016/j.cja.2016.01.010 10.1109/MSP.2012.2205597 10.1016/j.jairtraman.2014.11.008 10.1016/j.tre.2011.07.004 10.1038/srep01159 10.1177/0361198105191500102 10.1109/TITS.2018.2833452 10.2514/atcq.7.4.259 10.1002/met.74 10.1016/j.trc.2011.11.013 10.1109/TASL.2011.2109382 10.1016/j.jairtraman.2012.01.016 10.1016/j.jairtraman.2007.06.002 10.1016/j.trb.2013.10.001 10.1109/ACCESS.2014.2325029 10.1016/j.procs.2016.09.321 10.1016/j.tre.2007.07.002 10.1016/j.ejor.2007.06.017 10.1016/j.trc.2017.05.012 10.3141/2139-12 10.1109/TNN.2010.2045657 10.1109/TASL.2011.2134090 10.2514/atcq.12.1.1 10.1016/j.jairtraman.2017.06.020 10.1109/TVT.2019.2954094 10.1561/2200000006 10.1287/trsc.1110.0372 10.1016/j.tre.2011.10.009 10.1016/j.jairtraman.2011.03.004 10.1162/neco.2006.18.7.1527 10.3141/2626-03 10.1016/j.tre.2016.09.013 10.1016/j.trc.2011.02.009 10.1016/j.tre.2012.03.006 10.1016/j.tre.2014.03.007 10.1002/qre.1127 10.1016/j.jairtraman.2008.04.010 10.1016/j.tre.2014.05.016 10.1016/j.eneco.2012.12.005 10.1016/S0969-6997(01)00045-X 10.1088/1475-7516/2007/05/011 10.1109/TNNLS.2016.2574840 10.1109/DASC.2016.7778092 10.1155/2016/4836260 10.1109/ChiCC.2015.7260255 10.1109/IEMECONX.2019.8876970 10.1109/ICNC.2008.597 10.1109/WSC.2008.4736382 10.1109/CVPR.2010.5540018 10.1088/1755-1315/81/1/012198 10.2514/6.2017-3429 10.1109/WSC.2007.4419730 10.1007/978-3-030-19063-7_70 10.1109/DASC.2016.7777956 10.1109/VTC2020-Spring48590.2020.9129110 10.1109/DASC.2013.6712598 10.1155/2015/742541 10.1109/DASC.2010.5655493 10.1088/1755-1315/108/3/032037 10.1109/SIEDS49339.2020.9106657 10.7551/mitpress/7503.003.0024 10.2514/6.2018-3670 10.1201/b10604-15 10.1109/DASC.2011.6096002 10.1145/3347146.3359079 10.1109/DASC.2008.4702812 10.21437/Interspeech.2011-242 10.1109/WSC.2017.8247851 10.1109/CCCM.2009.5267976 10.1109/SPIN48934.2020.9071159 10.1007/978-0-387-09823-4_45 10.1145/3321619.3321669 10.2514/6.2002-5866 10.1177/0361198120930014 10.1109/UPCON.2017.8251111 10.21437/Interspeech.2011-169 10.1155/2017/8139215 10.1109/DASC.2017.8102138 10.2514/6.2008-8855 10.1109/ICNC.2008.423 10.1109/KAM.2008.70 10.1109/FUZZ-IEEE.2014.6891588 10.1109/TEMSCON.2017.7998375 10.1109/DASC.2014.6979510 10.1109/ITNEC48623.2020.9084929 10.2514/6.2017-1323 10.1109/ICCV.2011.6126474 10.1109/KAM.2008.18 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-020-00380-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central (New) Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM global Computing Database Social Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 28 |
| ExternalDocumentID | oai_doaj_org_article_b39bc4e95b1f4e4fa5a3efb13c97e0e5 10_1186_s40537_020_00380_z |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB PRQQA 7XB 8AL 8FK JQ2 L.- PKEHL POGQB PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c502t-d8f2faa365dcca07ac58c35cb8531f7f82f462c7b8fcef985ade7f4bbba8a3ba3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595988500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Fri Oct 03 12:52:03 EDT 2025 Fri Nov 14 18:48:09 EST 2025 Tue Nov 18 21:43:04 EST 2025 Sat Nov 29 06:20:02 EST 2025 Fri Feb 21 02:36:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Big data Flight delay prediction Stacked denoising autoencoders |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-d8f2faa365dcca07ac58c35cb8531f7f82f462c7b8fcef985ade7f4bbba8a3ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3043-0207 |
| OpenAccessLink | https://www.proquest.com/docview/2473337896?pq-origsite=%requestingapplication% |
| PQID | 2473337896 |
| PQPubID | 2046140 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b39bc4e95b1f4e4fa5a3efb13c97e0e5 proquest_journals_2473337896 crossref_primary_10_1186_s40537_020_00380_z crossref_citationtrail_10_1186_s40537_020_00380_z springer_journals_10_1186_s40537_020_00380_z |
| PublicationCentury | 2000 |
| PublicationDate | 20201126 |
| PublicationDateYYYYMMDD | 2020-11-26 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201126 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Markovic (CR48) 2008; 15 Zou, Hansen (CR89) 2012; 48 CR162 CR163 CR160 CR38 CR161 Dahl (CR139) 2011; 20 CR35 Krizhevsky, Sutskever, Hinton (CR30) 2012 CR33 CR32 Liou (CR31) 2014; 139 Dück (CR95) 2012; 20 CR158 CR153 CR154 Ball, Lulli (CR113) 2004; 12 Beatty (CR42) 1999; 7 Khanmohammadi, Tutun, Kucuk (CR118) 2016; 95 Zou, Hansen (CR37) 2012; 46 Bishop (CR21) 2016 Reynolds-Feighan, Button (CR3) 1999; 5 CR45 Wilamowski, Yu (CR157) 2010; 21 Pathomsiri (CR40) 2008; 44 CR44 CR166 CR164 Soomer, Franx (CR99) 2008; 190 Wilamowski (CR159) 2009; 3 CR165 Pérez-Rodríguez, Pérez-Sánchez, Gómez-Déniz (CR55) 2017; 62 Yu (CR152) 2019; 125 Zhong, Varun, Lin (CR57) 2017; 64 Wan, Roy (CR71) 2008; 9 Castaing (CR98) 2016; 65 Murça, Hansman (CR109) 2018; 20 CR140 CR59 Chen, Lin (CR134) 2014; 2 Bengio (CR155) 2009; 2 Pejovic (CR46) 2009; 2139 CR137 Hansen (CR90) 2002; 8 CR135 CR52 CR131 Balakrishna, Ganesan, Sherry (CR34) 2010; 18 Abdelghany (CR92) 2004; 10 Fleurquin, Ramasco, Eguiluz (CR62) 2013; 3 Jayam, Nozick (CR91) 2017; 2626 CR151 CR150 Yang, Dillon, Chen (CR147) 2016; 28 Hsiao, Hansen (CR10) 2005; 1915 CR68 CR148 CR65 CR146 Ye (CR128) 2020; 12 CR144 CR61 CR145 CR60 Gürbüz, Özbakir, Yapici (CR124) 2011; 38 CR142 Hinton (CR136) 2012; 29 CR143 Zou, Hansen (CR36) 2014; 69 Montlaur, Delgado (CR47) 2017; 81 Pfeil, Balakrishnan (CR115) 2012; 46 Bloem, Bambos (CR111) 2015; 12 Tu, Ball, Jank (CR7) 2008; 103 CR79 CR78 Hinton, Salakhutdinov (CR156) 2006; 313 CR77 CR76 CR116 CR75 CR74 CR114 CR73 Gui (CR149) 2019; 69 Khaksar, Sheikholeslami (CR105) 2019; 26 CR112 Xu, Dalmau, Prats (CR16) 2017; 81 CR110 Hinton, Osindero, Teh (CR141) 2006; 18 Ganesan, Balakrishna, Sherry (CR102) 2010; 26 CR119 Najafabadi (CR133) 2015; 2 CR117 Evans, Schäfer (CR66) 2013; 36 Evans, Schäfer (CR49) 2011; 17 CR2 Mohamed, Dahl, Hinton (CR138) 2011; 20 CR4 CR6 Ryerson, Hansen, Bonn (CR13) 2014; 69 Glover, Ball (CR39) 2013; 33 CR130 D’Ariano, Pistelli, Pacciarelli (CR19) 2012; 6 Biesiada, Piórkowska (CR58) 2007; 2007 CR9 Pejovic (CR12) 2009; 15 Vlahogianni, Karlaftis, Golias (CR23) 2005; 13 CR88 CR126 CR87 CR127 CR86 Al-Tabbakh, El-Zahed (CR20) 2018; 35 CR125 Maimon, Rokach (CR167) 2005 CR122 CR83 CR123 CR82 CR120 CR81 CR121 CR80 Sternberg (CR104) 2016; 95 CR129 Woda, Wątrucka (CR132) 2018; 39 Morrison, Winston (CR53) 2008; 63 AhmadBeygi (CR5) 2008; 14 Lin, Wang, Sadek (CR67) 2014; 64 Hansen, Zhang (CR69) 2005; 1915 CR18 CR17 CR15 Simić, Babić (CR14) 2015; 42 Azadian, Murat, Chinnam (CR51) 2012; 48 McCrea, Sherali, Trani (CR70) 2008; 16 CR96 Cong (CR72) 2016; 29 Boswell, Evans (CR64) 1997 Baumgarten, Malina, Lange (CR54) 2014; 66 Kim, Hansen (CR93) 2013; 58 Pyrgiotis, Malone, Odoni (CR94) 2013; 27 Wong, Tsai (CR43) 2012; 23 Rebollo, Balakrishnan (CR1) 2014; 44 Britto, Dresner, Voltes (CR11) 2012; 48 CR29 CR28 Abdel-Aty (CR50) 2007; 13 CR27 CR26 Sim, Koh, Shetty (CR63) 2006; 12 CR25 CR24 CR22 Bertsimas, Frankovich (CR85) 2016; 50 Lan, Clarke, Barnhart (CR97) 2006; 40 CR103 CR100 CR101 Oza (CR8) 2015; 4 Xiong, Hansen (CR41) 2013; 56 Wu (CR56) 2005; 11 CR108 CR106 Robinson, Evans, Hancock (CR84) 2006 CR107 380_CR161 380_CR160 380_CR163 380_CR162 380_CR165 380_CR164 380_CR166 380_CR38 J Xiong (380_CR41) 2013; 56 380_CR33 CM Bishop (380_CR21) 2016 380_CR32 A Sternberg (380_CR104) 2016; 95 380_CR35 Y Wan (380_CR71) 2008; 9 S Oza (380_CR8) 2015; 4 M Hansen (380_CR90) 2002; 8 S Pathomsiri (380_CR40) 2008; 44 SA Morrison (380_CR53) 2008; 63 J-T Wong (380_CR43) 2012; 23 Y Bengio (380_CR155) 2009; 2 SM Al-Tabbakh (380_CR20) 2018; 35 H Jayam (380_CR91) 2017; 2626 M Woda (380_CR132) 2018; 39 MM Najafabadi (380_CR133) 2015; 2 M Biesiada (380_CR58) 2007; 2007 G Gui (380_CR149) 2019; 69 W Cong (380_CR72) 2016; 29 380_CR29 Y Tu (380_CR7) 2008; 103 380_CR28 C-Y Hsiao (380_CR10) 2005; 1915 380_CR27 S Khanmohammadi (380_CR118) 2016; 95 380_CR22 A Kim (380_CR93) 2013; 58 380_CR26 380_CR25 380_CR24 A Krizhevsky (380_CR30) 2012 P Balakrishna (380_CR34) 2010; 18 A D’Ariano (380_CR19) 2012; 6 JV Pérez-Rodríguez (380_CR55) 2017; 62 A Evans (380_CR66) 2013; 36 380_CR101 380_CR100 380_CR103 380_CR18 380_CR17 X-W Chen (380_CR134) 2014; 2 380_CR107 380_CR106 380_CR108 380_CR96 380_CR15 JJ Rebollo (380_CR1) 2014; 44 B Zou (380_CR89) 2012; 48 M Bloem (380_CR111) 2015; 12 S AhmadBeygi (380_CR5) 2008; 14 380_CR110 C-L Wu (380_CR56) 2005; 11 380_CR112 380_CR114 MJ Soomer (380_CR99) 2008; 190 380_CR116 M Robinson (380_CR84) 2006 F Gürbüz (380_CR124) 2011; 38 R Britto (380_CR11) 2012; 48 380_CR117 380_CR119 A Montlaur (380_CR47) 2017; 81 380_CR88 380_CR87 380_CR86 DM Pfeil (380_CR115) 2012; 46 L Lin (380_CR67) 2014; 64 MV McCrea (380_CR70) 2008; 16 380_CR80 Y Xu (380_CR16) 2017; 81 M Abdel-Aty (380_CR50) 2007; 13 380_CR83 T Pejovic (380_CR12) 2009; 15 F Azadian (380_CR51) 2012; 48 380_CR82 B Yu (380_CR152) 2019; 125 380_CR81 B Ye (380_CR128) 2020; 12 SB Boswell (380_CR64) 1997 S Lan (380_CR97) 2006; 40 MO Ball (380_CR113) 2004; 12 380_CR121 380_CR120 380_CR123 A-R Mohamed (380_CR138) 2011; 20 380_CR122 380_CR125 380_CR127 380_CR126 B Zou (380_CR36) 2014; 69 380_CR129 GE Dahl (380_CR139) 2011; 20 C-Y Liou (380_CR31) 2014; 139 380_CR77 380_CR76 380_CR75 380_CR74 H-F Yang (380_CR147) 2016; 28 R Ganesan (380_CR102) 2010; 26 O Maimon (380_CR167) 2005 380_CR79 380_CR78 TK Simić (380_CR14) 2015; 42 D Markovic (380_CR48) 2008; 15 380_CR73 MCR Murça (380_CR109) 2018; 20 380_CR130 MS Ryerson (380_CR13) 2014; 69 380_CR131 EI Vlahogianni (380_CR23) 2005; 13 380_CR135 380_CR137 A Evans (380_CR49) 2011; 17 380_CR65 R Beatty (380_CR42) 1999; 7 H Khaksar (380_CR105) 2019; 26 380_CR68 GE Hinton (380_CR141) 2006; 18 B Zou (380_CR37) 2012; 46 BM Wilamowski (380_CR159) 2009; 3 380_CR61 380_CR60 380_CR140 M Hansen (380_CR69) 2005; 1915 380_CR143 380_CR142 CN Glover (380_CR39) 2013; 33 G Hinton (380_CR136) 2012; 29 380_CR145 KF Abdelghany (380_CR92) 2004; 10 380_CR144 380_CR146 T Pejovic (380_CR46) 2009; 2139 380_CR148 D Bertsimas (380_CR85) 2016; 50 KL Sim (380_CR63) 2006; 12 GE Hinton (380_CR156) 2006; 313 380_CR52 380_CR59 N Pyrgiotis (380_CR94) 2013; 27 BM Wilamowski (380_CR157) 2010; 21 J Castaing (380_CR98) 2016; 65 380_CR150 380_CR9 P Fleurquin (380_CR62) 2013; 3 V Dück (380_CR95) 2012; 20 380_CR151 380_CR4 380_CR154 380_CR153 380_CR6 AJ Reynolds-Feighan (380_CR3) 1999; 5 380_CR158 380_CR2 380_CR44 Z Zhong (380_CR57) 2017; 64 380_CR45 P Baumgarten (380_CR54) 2014; 66 |
| References_xml | – ident: CR45 – volume: 1915 start-page: 95 issue: 1 year: 2005 end-page: 104 ident: CR69 article-title: Operational consequences of alternative airport demand management policies: case of LaGuardia airport, New York publication-title: Transp Res Rec doi: 10.1177/0361198105191500112 – ident: CR150 – ident: CR22 – volume: 10 start-page: 385 issue: 6 year: 2004 end-page: 394 ident: CR92 article-title: A model for projecting flight delays during irregular operation conditions publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2004.06.008 – ident: CR68 – ident: CR74 – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: CR156 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: CR158 – volume: 27 start-page: 60 year: 2013 end-page: 75 ident: CR94 article-title: Modelling delay propagation within an airport network publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2011.05.017 – ident: CR135 – volume: 50 start-page: 77 issue: 1 year: 2016 end-page: 93 ident: CR85 article-title: Unified optimization of traffic flows through airports publication-title: Transp Sci doi: 10.1287/trsc.2015.0590 – ident: CR80 – ident: CR77 – ident: CR106 – ident: CR25 – ident: CR121 – volume: 18 start-page: 950 issue: 6 year: 2010 end-page: 962 ident: CR34 article-title: Accuracy of reinforcement learning algorithms for predicting aircraft taxi-out times: a case-study of Tampa Bay departures publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2010.03.003 – volume: 5 start-page: 113 issue: 3 year: 1999 end-page: 134 ident: CR3 article-title: An assessment of the capacity and congestion levels at European airports publication-title: J Air Transp Manag doi: 10.1016/S0969-6997(99)00006-X – ident: CR129 – ident: CR144 – ident: CR101 – volume: 69 start-page: 286 year: 2014 end-page: 298 ident: CR13 article-title: Time to burn: flight delay, terminal efficiency, and fuel consumption in the National Airspace System publication-title: Transp Res Part A Policy Pract doi: 10.1016/j.tra.2014.08.024 – volume: 12 start-page: 293 issue: 6 year: 2006 end-page: 299 ident: CR63 article-title: Some potential issues of service quality reporting for airlines publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2006.07.004 – volume: 12 start-page: 2749 issue: 7 year: 2020 ident: CR128 article-title: A methodology for predicting aggregate flight departure delays in airports based on supervised learning publication-title: Sustainability doi: 10.3390/su12072749 – ident: CR88 – ident: CR153 – volume: 38 start-page: 6618 issue: 6 year: 2011 end-page: 6626 ident: CR124 article-title: Data mining and preprocessing application on component reports of an airline company in Turkey publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.11.076 – volume: 63 start-page: 669 issue: 2 year: 2008 end-page: 678 ident: CR53 article-title: The effect of FAA expenditures on air travel delays publication-title: J Urban Econ doi: 10.1016/j.jue.2007.04.005 – year: 2016 ident: CR21 publication-title: Pattern recognition and machine learning – ident: CR60 – ident: CR112 – volume: 56 start-page: 64 year: 2013 end-page: 80 ident: CR41 article-title: Modelling airline flight cancellation decisions publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2013.05.003 – year: 2012 ident: CR30 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inform Process Syst doi: 10.1145/3065386 – volume: 125 start-page: 203 year: 2019 end-page: 221 ident: CR152 article-title: Flight delay prediction for commercial air transport: A deep learning approach publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2019.03.013 – volume: 16 start-page: 410 issue: 4 year: 2008 end-page: 431 ident: CR70 article-title: A probabilistic framework for weather-based rerouting and delay estimations within an airspace planning model publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2007.09.001 – volume: 3 start-page: 56 issue: 4 year: 2009 end-page: 63 ident: CR159 article-title: Neural network architectures and learning algorithms publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2009.934790 – ident: CR164 – ident: CR126 – volume: 103 start-page: 112 issue: 481 year: 2008 end-page: 125 ident: CR7 article-title: Estimating flight departure delay distributions—a statistical approach with long-term trend and short-term pattern publication-title: J Am Stat Assoc doi: 10.1198/016214507000000257 – ident: CR100 – volume: 15 start-page: 241 issue: 5 year: 2009 end-page: 248 ident: CR12 article-title: A tentative analysis of the impacts of an airport closure publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2009.02.004 – ident: CR18 – volume: 81 start-page: 99 year: 2017 end-page: 117 ident: CR47 article-title: Flight and passenger delay assignment optimization strategies publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2017.05.011 – volume: 40 start-page: 15 issue: 1 year: 2006 end-page: 28 ident: CR97 article-title: Planning for robust airline operations: optimizing aircraft routings and flight departure times to minimize passenger disruptions publication-title: Transp Sci doi: 10.1287/trsc.1050.0134 – volume: 26 start-page: 2689 issue: 5 year: 2019 end-page: 2702 ident: CR105 article-title: Airline delay prediction by machine learning algorithms publication-title: Scientiairanica – volume: 44 start-page: 231 year: 2014 end-page: 241 ident: CR1 article-title: Characterization and prediction of air traffic delays publication-title: Transportation Res Part C Emerg Technol doi: 10.1016/j.trc.2014.04.007 – volume: 12 start-page: 299 issue: 3 year: 2015 end-page: 313 ident: CR111 article-title: Ground Delay Program analytics with behavioral cloning and inverse reinforcement learning publication-title: J Aerosp Inform Syst doi: 10.2514/1.I010304 – ident: CR117 – year: 2005 ident: CR167 publication-title: Data mining and knowledge discovery handbook doi: 10.1007/b107408 – volume: 13 start-page: 211 issue: 3 year: 2005 end-page: 234 ident: CR23 article-title: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2005.04.007 – ident: CR33 – volume: 65 start-page: 189 year: 2016 end-page: 199 ident: CR98 article-title: Reducing airport gate blockage in passenger aviation: models and analysis publication-title: Comput Oper Res doi: 10.1016/j.cor.2014.02.011 – ident: CR137 – ident: CR6 – volume: 62 start-page: 90 year: 2017 end-page: 98 ident: CR55 article-title: Modelling the asymmetric probabilistic delay of aircraft arrival publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2017.03.001 – ident: CR86 – ident: CR27 – volume: 11 start-page: 273 issue: 4 year: 2005 end-page: 282 ident: CR56 article-title: Inherent delays and operational reliability of airline schedules publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2005.01.005 – year: 1997 ident: CR64 publication-title: Analysis of downstream impacts of air traffic delay – ident: CR165 – volume: 46 start-page: 965 issue: 6 year: 2012 end-page: 980 ident: CR37 article-title: Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium publication-title: Transp Res Part A Pol Pract doi: 10.1016/j.tra.2012.02.015 – ident: CR123 – volume: 64 start-page: 65 year: 2014 end-page: 91 ident: CR67 article-title: Border crossing delay prediction using transient multi-server queueing models publication-title: Transp Res Part A Policy Pract doi: 10.1016/j.tra.2014.03.013 – ident: CR108 – ident: CR142 – volume: 6 start-page: 433 issue: 4 year: 2012 end-page: 443 ident: CR19 article-title: Aircraft retiming and rerouting in vicinity of airports publication-title: IET Intel Transp Syst doi: 10.1049/iet-its.2011.0182 – volume: 9 start-page: 644 issue: 4 year: 2008 end-page: 656 ident: CR71 article-title: A scalable methodology for evaluating and designing coordinated air-traffic flow management strategies under uncertainty publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2008.2006813 – ident: CR44 – volume: 139 start-page: 84 year: 2014 end-page: 96 ident: CR31 article-title: Autoencoder for words publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.055 – ident: CR103 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: CR133 article-title: Deep learning applications and challenges in big data analytics publication-title: J Big Data doi: 10.1186/s40537-014-0007-7 – volume: 29 start-page: 512 issue: 2 year: 2016 end-page: 519 ident: CR72 article-title: Empirical analysis of airport network and critical airports publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2016.01.010 – ident: CR38 – volume: 35 start-page: 390 issue: 1 year: 2018 end-page: 399 ident: CR20 article-title: Machine learning techniques for analysis of Egyptian Flight delay publication-title: J Sci Res Sci – volume: 29 start-page: 82 issue: 6 year: 2012 end-page: 97 ident: CR136 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – ident: CR52 – volume: 42 start-page: 260 year: 2015 end-page: 271 ident: CR14 article-title: Airport traffic complexity and environment efficiency metrics for evaluation of ATM measures publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2014.11.008 – volume: 48 start-page: 355 issue: 1 year: 2012 end-page: 372 ident: CR51 article-title: Dynamic routing of time-sensitive air cargo using real-time information publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2011.07.004 – volume: 3 start-page: 1159 year: 2013 ident: CR62 article-title: Systemic delay propagation in the US airport network publication-title: Sci Rep doi: 10.1038/srep01159 – ident: CR151 – volume: 1915 start-page: 12 issue: 1 year: 2005 end-page: 19 ident: CR10 article-title: Air transportation network flows: equilibrium model publication-title: Transp Res Rec doi: 10.1177/0361198105191500102 – ident: CR162 – ident: CR114 – volume: 20 start-page: 1683 issue: 5 year: 2018 end-page: 1696 ident: CR109 article-title: Identification, characterization, and prediction of traffic flow patterns in multi-airport systems publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2833452 – ident: CR83 – volume: 7 start-page: 259 issue: 4 year: 1999 end-page: 270 ident: CR42 article-title: Preliminary evaluation of flight delay propagation through an airline schedule publication-title: Air Traffic Control Q doi: 10.2514/atcq.7.4.259 – ident: CR120 – ident: CR24 – ident: CR145 – ident: CR125 – ident: CR148 – volume: 15 start-page: 293 issue: 2 year: 2008 end-page: 303 ident: CR48 article-title: A statistical study of the weather impact on punctuality at Frankfurt Airport publication-title: Meteorol Appl doi: 10.1002/met.74 – volume: 33 start-page: 196 year: 2013 end-page: 202 ident: CR39 article-title: Stochastic optimization models for ground delay program planning with equity–efficiency tradeoffs publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2011.11.013 – ident: CR4 – ident: CR87 – ident: CR131 – ident: CR154 – ident: CR119 – volume: 20 start-page: 14 issue: 1 year: 2011 end-page: 22 ident: CR138 article-title: Acoustic modeling using deep belief networks publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2109382 – volume: 23 start-page: 5 year: 2012 end-page: 11 ident: CR43 article-title: A survival model for flight delay propagation publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2012.01.016 – volume: 13 start-page: 355 issue: 6 year: 2007 end-page: 361 ident: CR50 article-title: Detecting periodic patterns of arrival delay publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2007.06.002 – ident: CR35 – ident: CR29 – ident: CR61 – volume: 4 start-page: 11765 issue: 05 year: 2015 ident: CR8 article-title: Flight delay prediction system using weighted multiple linear regression publication-title: Int J Eng Comp Sci – volume: 58 start-page: 119 year: 2013 end-page: 133 ident: CR93 article-title: Deconstructing delay: A non-parametric approach to analyzing delay changes in single server queuing systems publication-title: Transp Res Part B Methodol doi: 10.1016/j.trb.2013.10.001 – ident: CR140 – ident: CR163 – volume: 2 start-page: 514 year: 2014 end-page: 525 ident: CR134 article-title: Big data deep learning: challenges and perspectives publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – ident: CR96 – ident: CR75 – volume: 95 start-page: 237 year: 2016 end-page: 244 ident: CR118 article-title: A new multilevel input layer artificial neural network for predicting flight delays at JFK airport publication-title: Procedia Comp Sci doi: 10.1016/j.procs.2016.09.321 – ident: CR15 – ident: CR116 – volume: 44 start-page: 235 issue: 2 year: 2008 end-page: 259 ident: CR40 article-title: Impact of undesirable outputs on the productivity of US airports publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2007.07.002 – ident: CR9 – ident: CR32 – volume: 190 start-page: 277 issue: 1 year: 2008 end-page: 291 ident: CR99 article-title: Scheduling aircraft landings using airlines’ preferences publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.06.017 – ident: CR78 – ident: CR81 – ident: CR26 – ident: CR122 – ident: CR143 – ident: CR160 – volume: 81 start-page: 137 year: 2017 end-page: 152 ident: CR16 article-title: Maximizing airborne delay at no extra fuel cost by means of linear holding publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2017.05.012 – volume: 2139 start-page: 97 issue: 1 year: 2009 end-page: 106 ident: CR46 article-title: Factors affecting the frequency and severity of airport weather delays and the implications of climate change for future delays publication-title: Transp Res Rec doi: 10.3141/2139-12 – volume: 21 start-page: 930 issue: 6 year: 2010 end-page: 937 ident: CR157 article-title: Improved computation for Levenberg–Marquardt training publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2045657 – volume: 20 start-page: 30 issue: 1 year: 2011 end-page: 42 ident: CR139 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2134090 – ident: CR2 – volume: 12 start-page: 1 issue: 1 year: 2004 end-page: 25 ident: CR113 article-title: Ground delay programs: optimizing over the included flight set based on distance publication-title: Air Traffic Control Q doi: 10.2514/atcq.12.1.1 – volume: 64 start-page: 15 year: 2017 end-page: 20 ident: CR57 article-title: Studies for air traffic management R&D in the ASEAN-region context publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2017.06.020 – volume: 69 start-page: 140 issue: 1 year: 2019 end-page: 150 ident: CR149 article-title: Flight delay prediction based on aviation big data and machine learning publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2954094 – ident: CR82 – year: 2006 ident: CR84 publication-title: Assessment of air traffic control productivity enhancements from the Corridor Integrated Weather System (CIWS) – ident: CR79 – volume: 2 start-page: 1 issue: 1 year: 2009 end-page: 127 ident: CR155 article-title: Learning deep architectures for AI publication-title: Found Trends Mach Learn. doi: 10.1561/2200000006 – volume: 46 start-page: 56 issue: 1 year: 2012 end-page: 73 ident: CR115 article-title: Identification of robust terminal-area routes in convective weather publication-title: Transp Sci doi: 10.1287/trsc.1110.0372 – volume: 48 start-page: 460 issue: 2 year: 2012 end-page: 469 ident: CR11 article-title: The impact of flight delays on passenger demand and societal welfare publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2011.10.009 – volume: 17 start-page: 288 issue: 5 year: 2011 end-page: 295 ident: CR49 article-title: The impact of airport capacity constraints on future growth in the US air transportation system publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2011.03.004 – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: CR141 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 2626 start-page: 18 issue: 1 year: 2017 end-page: 24 ident: CR91 article-title: Understanding the trade-off between maximum passenger throughput and airline equity in allocating capacity under severe weather conditions publication-title: Transp Res Rec doi: 10.3141/2626-03 – ident: CR146 – volume: 95 start-page: 282 year: 2016 end-page: 298 ident: CR104 article-title: An analysis of Brazilian flight delays based on frequent patterns publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2016.09.013 – volume: 20 start-page: 47 issue: 1 year: 2012 end-page: 61 ident: CR95 article-title: Increasing stability of crew and aircraft schedules publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2011.02.009 – ident: CR127 – ident: CR161 – volume: 48 start-page: 1032 issue: 5 year: 2012 end-page: 1048 ident: CR89 article-title: Impact of operational performance on air carrier cost structure: evidence from US airlines publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2012.03.006 – ident: CR73 – ident: CR65 – ident: CR130 – volume: 39 start-page: 89 issue: 1 year: 2018 end-page: 101 ident: CR132 article-title: A case study-analysis of weather data impact on the disruptions/delays in passenger air traffic publication-title: Studia Informatica – ident: CR17 – volume: 66 start-page: 103 year: 2014 end-page: 114 ident: CR54 article-title: The impact of hubbing concentration on flight delays within airline networks: an empirical analysis of the US domestic market publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2014.03.007 – volume: 26 start-page: 717 issue: 7 year: 2010 end-page: 732 ident: CR102 article-title: Improving quality of prediction in highly dynamic environments using approximate dynamic programming publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1127 – volume: 14 start-page: 221 issue: 5 year: 2008 end-page: 236 ident: CR5 article-title: Analysis of the potential for delay propagation in passenger airline networks publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2008.04.010 – volume: 69 start-page: 54 year: 2014 end-page: 74 ident: CR36 article-title: Flight delay impact on airfare and flight frequency: a comprehensive assessment publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2014.05.016 – volume: 36 start-page: 158 year: 2013 end-page: 165 ident: CR66 article-title: The rebound effect in the aviation sector publication-title: Energy Econ doi: 10.1016/j.eneco.2012.12.005 – volume: 8 start-page: 73 issue: 2 year: 2002 end-page: 87 ident: CR90 article-title: Micro-level analysis of airport delay externalities using deterministic queuing models: a case study publication-title: J Air Transp Manag doi: 10.1016/S0969-6997(01)00045-X – ident: CR110 – ident: CR59 – ident: CR76 – ident: CR107 – ident: CR28 – ident: CR166 – volume: 2007 start-page: 011 issue: 05 year: 2007 ident: CR58 article-title: Gamma-ray burst neutrinos, Lorenz invariance violation and the influence of background cosmology publication-title: J Cosmol Astropart Phys doi: 10.1088/1475-7516/2007/05/011 – volume: 28 start-page: 2371 issue: 10 year: 2016 end-page: 2381 ident: CR147 article-title: Optimized structure of the traffic flow forecasting model with a deep learning approach publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2574840 – ident: 380_CR154 – volume: 58 start-page: 119 year: 2013 ident: 380_CR93 publication-title: Transp Res Part B Methodol doi: 10.1016/j.trb.2013.10.001 – ident: 380_CR24 doi: 10.1109/DASC.2016.7778092 – volume: 27 start-page: 60 year: 2013 ident: 380_CR94 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2011.05.017 – volume: 2626 start-page: 18 issue: 1 year: 2017 ident: 380_CR91 publication-title: Transp Res Rec doi: 10.3141/2626-03 – volume: 65 start-page: 189 year: 2016 ident: 380_CR98 publication-title: Comput Oper Res doi: 10.1016/j.cor.2014.02.011 – ident: 380_CR77 doi: 10.1155/2016/4836260 – ident: 380_CR18 – volume-title: Analysis of downstream impacts of air traffic delay year: 1997 ident: 380_CR64 – volume: 46 start-page: 56 issue: 1 year: 2012 ident: 380_CR115 publication-title: Transp Sci doi: 10.1287/trsc.1110.0372 – ident: 380_CR82 doi: 10.1109/ChiCC.2015.7260255 – ident: 380_CR126 doi: 10.1109/IEMECONX.2019.8876970 – volume: 21 start-page: 930 issue: 6 year: 2010 ident: 380_CR157 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2045657 – volume: 5 start-page: 113 issue: 3 year: 1999 ident: 380_CR3 publication-title: J Air Transp Manag doi: 10.1016/S0969-6997(99)00006-X – ident: 380_CR6 doi: 10.1109/ICNC.2008.597 – ident: 380_CR76 – volume: 125 start-page: 203 year: 2019 ident: 380_CR152 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2019.03.013 – volume: 50 start-page: 77 issue: 1 year: 2016 ident: 380_CR85 publication-title: Transp Sci doi: 10.1287/trsc.2015.0590 – ident: 380_CR101 doi: 10.1109/WSC.2008.4736382 – volume-title: Data mining and knowledge discovery handbook year: 2005 ident: 380_CR167 doi: 10.1007/b107408 – ident: 380_CR33 doi: 10.1109/CVPR.2010.5540018 – volume: 56 start-page: 64 year: 2013 ident: 380_CR41 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2013.05.003 – ident: 380_CR160 – ident: 380_CR120 doi: 10.1088/1755-1315/81/1/012198 – ident: 380_CR15 doi: 10.2514/6.2017-3429 – volume: 95 start-page: 237 year: 2016 ident: 380_CR118 publication-title: Procedia Comp Sci doi: 10.1016/j.procs.2016.09.321 – ident: 380_CR122 – ident: 380_CR145 – volume: 14 start-page: 221 issue: 5 year: 2008 ident: 380_CR5 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2008.04.010 – volume-title: Assessment of air traffic control productivity enhancements from the Corridor Integrated Weather System (CIWS) year: 2006 ident: 380_CR84 – volume: 95 start-page: 282 year: 2016 ident: 380_CR104 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2016.09.013 – ident: 380_CR65 – ident: 380_CR4 doi: 10.1109/WSC.2007.4419730 – ident: 380_CR153 doi: 10.1007/978-3-030-19063-7_70 – ident: 380_CR17 doi: 10.1109/DASC.2016.7777956 – volume: 39 start-page: 89 issue: 1 year: 2018 ident: 380_CR132 publication-title: Studia Informatica – volume: 2139 start-page: 97 issue: 1 year: 2009 ident: 380_CR46 publication-title: Transp Res Rec doi: 10.3141/2139-12 – volume: 11 start-page: 273 issue: 4 year: 2005 ident: 380_CR56 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2005.01.005 – volume: 9 start-page: 644 issue: 4 year: 2008 ident: 380_CR71 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2008.2006813 – ident: 380_CR96 – ident: 380_CR131 doi: 10.1109/VTC2020-Spring48590.2020.9129110 – volume: 103 start-page: 112 issue: 481 year: 2008 ident: 380_CR7 publication-title: J Am Stat Assoc doi: 10.1198/016214507000000257 – volume: 48 start-page: 355 issue: 1 year: 2012 ident: 380_CR51 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2011.07.004 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 380_CR136 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – volume: 69 start-page: 286 year: 2014 ident: 380_CR13 publication-title: Transp Res Part A Policy Pract doi: 10.1016/j.tra.2014.08.024 – ident: 380_CR44 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 380_CR155 publication-title: Found Trends Mach Learn. doi: 10.1561/2200000006 – volume: 44 start-page: 235 issue: 2 year: 2008 ident: 380_CR40 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2007.07.002 – ident: 380_CR27 – ident: 380_CR148 – ident: 380_CR117 doi: 10.1109/DASC.2013.6712598 – volume: 81 start-page: 99 year: 2017 ident: 380_CR47 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2017.05.011 – ident: 380_CR83 – volume: 6 start-page: 433 issue: 4 year: 2012 ident: 380_CR19 publication-title: IET Intel Transp Syst doi: 10.1049/iet-its.2011.0182 – volume: 64 start-page: 65 year: 2014 ident: 380_CR67 publication-title: Transp Res Part A Policy Pract doi: 10.1016/j.tra.2014.03.013 – volume: 1915 start-page: 12 issue: 1 year: 2005 ident: 380_CR10 publication-title: Transp Res Rec doi: 10.1177/0361198105191500102 – volume: 23 start-page: 5 year: 2012 ident: 380_CR43 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2012.01.016 – ident: 380_CR35 – ident: 380_CR60 doi: 10.1155/2015/742541 – ident: 380_CR74 – ident: 380_CR26 – volume: 7 start-page: 259 issue: 4 year: 1999 ident: 380_CR42 publication-title: Air Traffic Control Q doi: 10.2514/atcq.7.4.259 – ident: 380_CR68 – volume: 64 start-page: 15 year: 2017 ident: 380_CR57 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2017.06.020 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 380_CR156 publication-title: Science doi: 10.1126/science.1127647 – volume: 44 start-page: 231 year: 2014 ident: 380_CR1 publication-title: Transportation Res Part C Emerg Technol doi: 10.1016/j.trc.2014.04.007 – volume: 20 start-page: 30 issue: 1 year: 2011 ident: 380_CR139 publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2134090 – volume-title: Pattern recognition and machine learning year: 2016 ident: 380_CR21 – ident: 380_CR38 doi: 10.1109/DASC.2010.5655493 – volume: 36 start-page: 158 year: 2013 ident: 380_CR66 publication-title: Energy Econ doi: 10.1016/j.eneco.2012.12.005 – volume: 15 start-page: 241 issue: 5 year: 2009 ident: 380_CR12 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2009.02.004 – ident: 380_CR88 – year: 2012 ident: 380_CR30 publication-title: Adv Neural Inform Process Syst doi: 10.1145/3065386 – volume: 62 start-page: 90 year: 2017 ident: 380_CR55 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2017.03.001 – ident: 380_CR32 – volume: 69 start-page: 54 year: 2014 ident: 380_CR36 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2014.05.016 – ident: 380_CR100 doi: 10.1088/1755-1315/108/3/032037 – ident: 380_CR151 doi: 10.1109/SIEDS49339.2020.9106657 – ident: 380_CR140 doi: 10.7551/mitpress/7503.003.0024 – ident: 380_CR110 doi: 10.2514/6.2018-3670 – ident: 380_CR162 doi: 10.1201/b10604-15 – ident: 380_CR29 – ident: 380_CR80 – volume: 69 start-page: 140 issue: 1 year: 2019 ident: 380_CR149 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2954094 – volume: 12 start-page: 299 issue: 3 year: 2015 ident: 380_CR111 publication-title: J Aerosp Inform Syst doi: 10.2514/1.I010304 – volume: 46 start-page: 965 issue: 6 year: 2012 ident: 380_CR37 publication-title: Transp Res Part A Pol Pract doi: 10.1016/j.tra.2012.02.015 – volume: 20 start-page: 14 issue: 1 year: 2011 ident: 380_CR138 publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2109382 – volume: 18 start-page: 950 issue: 6 year: 2010 ident: 380_CR34 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2010.03.003 – ident: 380_CR108 doi: 10.1109/DASC.2011.6096002 – volume: 42 start-page: 260 year: 2015 ident: 380_CR14 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2014.11.008 – ident: 380_CR135 – volume: 12 start-page: 1 issue: 1 year: 2004 ident: 380_CR113 publication-title: Air Traffic Control Q doi: 10.2514/atcq.12.1.1 – volume: 35 start-page: 390 issue: 1 year: 2018 ident: 380_CR20 publication-title: J Sci Res Sci – volume: 15 start-page: 293 issue: 2 year: 2008 ident: 380_CR48 publication-title: Meteorol Appl doi: 10.1002/met.74 – ident: 380_CR158 – volume: 33 start-page: 196 year: 2013 ident: 380_CR39 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2011.11.013 – volume: 1915 start-page: 95 issue: 1 year: 2005 ident: 380_CR69 publication-title: Transp Res Rec doi: 10.1177/0361198105191500112 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 380_CR141 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – ident: 380_CR129 doi: 10.1145/3347146.3359079 – ident: 380_CR114 doi: 10.1109/DASC.2008.4702812 – ident: 380_CR143 doi: 10.21437/Interspeech.2011-242 – ident: 380_CR81 – ident: 380_CR28 – ident: 380_CR25 doi: 10.1109/WSC.2017.8247851 – ident: 380_CR86 doi: 10.1109/CCCM.2009.5267976 – ident: 380_CR127 doi: 10.1109/SPIN48934.2020.9071159 – ident: 380_CR164 – volume: 20 start-page: 47 issue: 1 year: 2012 ident: 380_CR95 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2011.02.009 – ident: 380_CR165 doi: 10.1007/978-0-387-09823-4_45 – volume: 2 start-page: 514 year: 2014 ident: 380_CR134 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – volume: 17 start-page: 288 issue: 5 year: 2011 ident: 380_CR49 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2011.03.004 – ident: 380_CR103 – volume: 26 start-page: 717 issue: 7 year: 2010 ident: 380_CR102 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1127 – volume: 48 start-page: 1032 issue: 5 year: 2012 ident: 380_CR89 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2012.03.006 – volume: 13 start-page: 355 issue: 6 year: 2007 ident: 380_CR50 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2007.06.002 – volume: 40 start-page: 15 issue: 1 year: 2006 ident: 380_CR97 publication-title: Transp Sci doi: 10.1287/trsc.1050.0134 – ident: 380_CR150 doi: 10.1145/3321619.3321669 – ident: 380_CR61 doi: 10.2514/6.2002-5866 – volume: 190 start-page: 277 issue: 1 year: 2008 ident: 380_CR99 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.06.017 – volume: 3 start-page: 1159 year: 2013 ident: 380_CR62 publication-title: Sci Rep doi: 10.1038/srep01159 – ident: 380_CR130 doi: 10.1177/0361198120930014 – ident: 380_CR119 doi: 10.1109/UPCON.2017.8251111 – ident: 380_CR123 – volume: 139 start-page: 84 year: 2014 ident: 380_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.055 – volume: 2007 start-page: 011 issue: 05 year: 2007 ident: 380_CR58 publication-title: J Cosmol Astropart Phys doi: 10.1088/1475-7516/2007/05/011 – ident: 380_CR161 – volume: 66 start-page: 103 year: 2014 ident: 380_CR54 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2014.03.007 – ident: 380_CR144 – ident: 380_CR137 doi: 10.21437/Interspeech.2011-169 – ident: 380_CR79 doi: 10.1155/2017/8139215 – ident: 380_CR2 doi: 10.1109/DASC.2017.8102138 – ident: 380_CR9 – ident: 380_CR87 – volume: 29 start-page: 512 issue: 2 year: 2016 ident: 380_CR72 publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2016.01.010 – volume: 16 start-page: 410 issue: 4 year: 2008 ident: 380_CR70 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2007.09.001 – ident: 380_CR166 – volume: 12 start-page: 293 issue: 6 year: 2006 ident: 380_CR63 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2006.07.004 – volume: 3 start-page: 56 issue: 4 year: 2009 ident: 380_CR159 publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2009.934790 – ident: 380_CR59 doi: 10.2514/6.2008-8855 – ident: 380_CR75 doi: 10.1109/ICNC.2008.423 – volume: 10 start-page: 385 issue: 6 year: 2004 ident: 380_CR92 publication-title: J Air Transp Manag doi: 10.1016/j.jairtraman.2004.06.008 – ident: 380_CR78 – volume: 4 start-page: 11765 issue: 05 year: 2015 ident: 380_CR8 publication-title: Int J Eng Comp Sci – ident: 380_CR45 – volume: 63 start-page: 669 issue: 2 year: 2008 ident: 380_CR53 publication-title: J Urban Econ doi: 10.1016/j.jue.2007.04.005 – volume: 8 start-page: 73 issue: 2 year: 2002 ident: 380_CR90 publication-title: J Air Transp Manag doi: 10.1016/S0969-6997(01)00045-X – ident: 380_CR22 – ident: 380_CR73 doi: 10.1109/KAM.2008.70 – ident: 380_CR106 doi: 10.1109/FUZZ-IEEE.2014.6891588 – ident: 380_CR52 doi: 10.1109/TEMSCON.2017.7998375 – volume: 12 start-page: 2749 issue: 7 year: 2020 ident: 380_CR128 publication-title: Sustainability doi: 10.3390/su12072749 – volume: 28 start-page: 2371 issue: 10 year: 2016 ident: 380_CR147 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2574840 – ident: 380_CR112 doi: 10.1109/DASC.2014.6979510 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 380_CR133 publication-title: J Big Data doi: 10.1186/s40537-014-0007-7 – volume: 81 start-page: 137 year: 2017 ident: 380_CR16 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2017.05.012 – ident: 380_CR125 doi: 10.1109/ITNEC48623.2020.9084929 – ident: 380_CR116 doi: 10.2514/6.2017-1323 – ident: 380_CR121 – volume: 38 start-page: 6618 issue: 6 year: 2011 ident: 380_CR124 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.11.076 – ident: 380_CR142 doi: 10.1109/ICCV.2011.6126474 – ident: 380_CR107 doi: 10.1109/KAM.2008.18 – volume: 48 start-page: 460 issue: 2 year: 2012 ident: 380_CR11 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2011.10.009 – volume: 13 start-page: 211 issue: 3 year: 2005 ident: 380_CR23 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2005.04.007 – ident: 380_CR163 – volume: 20 start-page: 1683 issue: 5 year: 2018 ident: 380_CR109 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2833452 – ident: 380_CR146 – volume: 26 start-page: 2689 issue: 5 year: 2019 ident: 380_CR105 publication-title: Scientiairanica |
| SSID | ssj0001340564 |
| Score | 2.4105496 |
| Snippet | Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for... Abstract Flight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Air travel Airlines Algorithms Big Data Client satisfaction Communications Engineering Computational Science and Engineering Computer Science Customer satisfaction Data Data Mining and Knowledge Discovery Database Management Datasets Deep learning Delay Denoising Feature extraction Flight delay prediction Forecasting Information Storage and Retrieval Learning Machine learning Mathematical Applications in Computer Science Model accuracy Networks Noise reduction Prediction models Predictions Profits Recall Satisfaction Sensitivity Stacked denoising autoencoders |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4sClL1p1KUU-9EYtEr9zbCtWPVDKgVbcrLFjU6TtsmQXJPj19TgJj0ptL71FiSONvhlnZjLjbwh5l5KGKjSJqVQByxF4y3zwinlts0VB4KbMIft-aI6O7Olpc_xg1Bf2hPX0wD1w-140PsjYKF8nGWUCBSImX4vQmFjFwl5ameZBMlX-rogciGg5npKxen8pkbmEYbaE1bCK3T7yRIWw_1GU-VthtPib6TPyZAgU6YdewOdkLc5fkKfjEAY67Mkt8nU6w_yaItvjDV10WHhBsCn6p5bmizbGBR2mQ5xRmLf0EGmbsLGLfYHuEts6KczOLrrz1Y-fL8m36cHJp89smJLAgqr4irU28QQgtGqzNhBfZYNQwWdHXCeTLE9S82C8TSGmxipoo0nSew8WhAfxiqzPL-bxNaGagxBS5A-PgByoWJBVTJU0QbShNiFNSD0i5sJAIY6TLGaupBJWux5ll1F2BWV3OyF7d-8segKNv67-iIq4W4nk1-VGNgk3mIT7l0lMyM6oRjfsyKXj0gghjG30hLwfVXv_-M8ibf8Pkd6QTY6mV9eM6x2yvuqu4luyEa5X58tut9juL6tj9EI priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBCeYqlBfnADSwSv3Nsq644lMIBUG-W7XiWStvdJbsg0V-Px-sUFQES3KJkLFnz8IwzM98Q8gJA-yZ2wBQ0nuUIvGchBsWCtlmjfOSmzCH7dGJOT-3ZWfe-NoWtx2r3MSVZTupi1la_XkuEHmF43cF0VsMub5JbqrUdFvId1R6H8mdFZEotxw6Z3y695oUKWP-1CPOXpGjxNdPd_9vlPXK3xpb0YKsM98mNtHhAdse5DbSa8UPybjrHKzlFgMjvdDVgrgblQ9Gl9TQ_9CmtaB0oMaN-0dMTRHrCWjD21g9fsBKU-vlsOZxvPl88Ih-nxx-O3rA6WIFF1fAN6y1w8F5o1WcBokiUjULFkH13CwYsB6l5NMFCTNBZ5ftkQIYQvPUiePGY7CyWi_SEUM29EFLks0r4HNtYL5sEjTRR9LE1ESakHRntYkUdx-EXc1duH1a7Lcdc5pgrHHOXE_Lyas1qi7nxV-pDlN8VJeJllxfLYeaq-bkguhBl6lRoQSYJXnmRILQidiY1SU3I_ih9V4147bg0QghjOz0hr0Zp__z85y09_TfyPXKHo8K0LeN6n-xshq_pGbkdv23O18Pzotw_AMZg9uc priority: 102 providerName: Springer Nature |
| Title | Flight delay prediction based on deep learning and Levenberg-Marquart algorithm |
| URI | https://link.springer.com/article/10.1186/s40537-020-00380-z https://www.proquest.com/docview/2473337896 https://doaj.org/article/b39bc4e95b1f4e4fa5a3efb13c97e0e5 |
| Volume | 7 |
| WOSCitedRecordID | wos000595988500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: 7WY dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M0C dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: K7- dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: P5Z dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Social Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M2R dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/socscijournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYxoEL41MrjMoHbmAt8XdOiFWrQKylQnxsXCzbsQtSabu0ILG_Hr_UWTUkduESJbETWfk9-z2_9_J7CD2PUdrCV5GIWFiSLPCaOO8EcVInibKeqrYO2edTNR7rs7Nqkh1uq5xW2a2J7UJdLzz4yI8oV4wxpSv5anlBoGoURFdzCY0dtAeWDaT0jYrB1sfCkjkiefevjJZHKw78JQT2TBATK8jlNX3U0vZfszX_Co-2Wme4_7_jvYfuZnsTv94IyH10K8wfoP2ulgPOU_shej-cwTYdA2nkb7xsIH4DmGFQczVOJ3UIS5yLTEyxndf4FNifID-MjGxzAdmh2M6maRDrbz8eoU_Dk4-DNyQXWyBeFHRNah1ptJZJUSdQASahPRPeJX1eRhU1jVxSr5yOPsRKC1sHFblzzmrLnGWP0e58MQ8HCEtqGeMsrV_MJntHW16EWHDlWe1L5WMPld0nNz4zkUNBjJlpdyRamg1MJsFkWpjMZQ-9uHpmueHhuLH3MSB51RM4tNsbi2Zq8pQ0jlXO81AJV0YeeLTCshBdyXylQhFEDx12yJo8sVdmC2sPvexkY9v87yE9ufltT9EdClJZloTKQ7S7bn6GZ-i2_7X-vmr6aEd9Oe-jveOT8eRDuhpQ3m-9B-n4TpF-K_ZwpNA6EV9T38nb0eT8D-KcCZM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBQkulK0iUMAHOIHVGS9jzwEhtqhV0sChoN6M7bEDUkjSSQC1P4rfiN9kplGR6K0HbqMZj-Xle4v97PcBPI2xsJkvI5UxszR54BV13knqCp0QZT1TDQ_Z56EajfTRUflxA353d2HwWGWnExtFXc087pHvMqE450qXxav5MUXWKIyudhQaK1gMwsmvtGRbvNx_l-b3GWP994dv92jLKkC9zNiSVjqyaC0vZJVaj-2R2nPpXTJceVRRsygK5pXT0YdYammroKJwzlltubM81XsFrgquFcrVQNH1ng5P7k8hurs5uthdCMyXQnGNhjG4jJ6es38NTcA53_avcGxj5fpb_9v43IKbrT9NXq8E4DZshOkd2Oq4Kkiruu7Ch_4EtyEIJsU8IfMa41OISYJmvCLpoQphTloSjTGx04oMMbsVnn-jB7Y-xtOvxE7GqdPLr9_vwadL6dY2bE5n03AfSMEs54In_cxt8ue0FVmImVCeVz5XPvYg76bY-DbTOhJ-TEyz4tKFWcHCJFiYBhbmtAfPz_6Zr_KMXFj6DSLnrCTmCG9ezOqxaVWOcbx0XoRSujyKIKKVlofocu5LFbIge7DTIcm0imth1jDqwYsOi-vP_27Sg4trewLX9w4Phma4Pxo8hBsMJSLPKSt2YHNZ_wiP4Jr_ufy2qB83IkXgy2Vj9A8xumLo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSF8hQLBXzgBlYTv3MsbVcglqUHQL1ZtmNvKy3ZJRuQ6K-vx0kKRYCEuEXJWLLm4RlnZr5B6HmM0ha-ikTEwpIUgdfEeSeIkzpplPVU5Tlkn2ZqPtfHx9XRT138udp9TEn2PQ2A0tR0u-s69iau5e6GAwwJgasPpLYKcnYVXYOMFOj4_tDvkP-ysEQp-dgt89ullzxSBu6_FG3-kiDNfme6_f87vo1uDTEn3uuV5A66Epq7aHuc54AH876H3k-XcFXHABz5Ha9byOGA3DC4uhqnhzqENR4GTSywbWo8AwQoqBEj72z7BSpEsV0uVu1pd_L5Pvo4Pfyw_5oMAxeIFwXtSK0jjdYyKeokWBCV0J4J75JPL6OKmkYuqVdORx9ipYWtg4rcOWe1Zc6yB2irWTXhIcKSWsY4S2cYsynm0ZYXIRZceVb7Uvk4QeXIdOMHNHIYirE0-Vaipek5ZhLHTOaYOZugFxdr1j0Wx1-pX4EsLygBRzu_WLULM5ilcaxynodKuDLywKMVloXoSuYrFYogJmhn1AQzGPfGUK4YY0pXcoJejpL_8fnPW3r0b-TP0I2jg6mZvZm_fYxuUtCdsiRU7qCtrv0anqDr_lt3ummfZp0_BzSGAr8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flight+delay+prediction+based+on+deep+learning+and+Levenberg-Marquart+algorithm&rft.jtitle=Journal+of+big+data&rft.au=Yazdi%2C+Maryam+Farshchian&rft.au=Kamel%2C+Seyed+Reza&rft.au=Chabok+Seyyed+Javad+Mahdavi&rft.au=Kheirabadi+Maryam&rft.date=2020-11-26&rft.pub=Springer+Nature+B.V&rft.eissn=2196-1115&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-020-00380-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |