Ensuring security in edge computing through effective blockchain node detection
The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data. Despite the advantages that blockchain technology offers, the...
Uloženo v:
| Vydáno v: | Journal of cloud computing : advances, systems and applications Ročník 12; číslo 1; s. 88 - 16 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2192-113X, 2192-113X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data. Despite the advantages that blockchain technology offers, there are also security threats that must be addressed. Attackers may manipulate certain nodes in the blockchain network, which can result in tampering with transaction records or other malicious activities. Moreover, the creation of a large number of false nodes can be utilized to gain control and manipulate transaction records of the blockchain network, which can compromise the reliability and security of edge computing. This paper proposes a blockchain node detection method named
T
2
A
2
v
e
c
that provides a more secure, credible, and reliable solution to address these challenges. In order to achieve
T
2
A
2
v
e
c
, a transaction dataset that is evenly distributed in both space and time was collected. The transaction dataset is constructed as a transaction graph, where nodes represent accounts and edges describe transactions. BP neural network is used to extract account features, and a random walk strategy based on transaction time, type, and amount is used to extract transaction features. The obtained account features and transaction features are fused to obtain account representation. Finally, the obtained node representation is fed into different classifiers to identify malicious nodes. |
|---|---|
| AbstractList | The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data. Despite the advantages that blockchain technology offers, there are also security threats that must be addressed. Attackers may manipulate certain nodes in the blockchain network, which can result in tampering with transaction records or other malicious activities. Moreover, the creation of a large number of false nodes can be utilized to gain control and manipulate transaction records of the blockchain network, which can compromise the reliability and security of edge computing. This paper proposes a blockchain node detection method named T2A2vec that provides a more secure, credible, and reliable solution to address these challenges. In order to achieve T2A2vec, a transaction dataset that is evenly distributed in both space and time was collected. The transaction dataset is constructed as a transaction graph, where nodes represent accounts and edges describe transactions. BP neural network is used to extract account features, and a random walk strategy based on transaction time, type, and amount is used to extract transaction features. The obtained account features and transaction features are fused to obtain account representation. Finally, the obtained node representation is fed into different classifiers to identify malicious nodes. The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data. Despite the advantages that blockchain technology offers, there are also security threats that must be addressed. Attackers may manipulate certain nodes in the blockchain network, which can result in tampering with transaction records or other malicious activities. Moreover, the creation of a large number of false nodes can be utilized to gain control and manipulate transaction records of the blockchain network, which can compromise the reliability and security of edge computing. This paper proposes a blockchain node detection method named T 2 A 2 v e c that provides a more secure, credible, and reliable solution to address these challenges. In order to achieve T 2 A 2 v e c , a transaction dataset that is evenly distributed in both space and time was collected. The transaction dataset is constructed as a transaction graph, where nodes represent accounts and edges describe transactions. BP neural network is used to extract account features, and a random walk strategy based on transaction time, type, and amount is used to extract transaction features. The obtained account features and transaction features are fused to obtain account representation. Finally, the obtained node representation is fed into different classifiers to identify malicious nodes. The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data. Despite the advantages that blockchain technology offers, there are also security threats that must be addressed. Attackers may manipulate certain nodes in the blockchain network, which can result in tampering with transaction records or other malicious activities. Moreover, the creation of a large number of false nodes can be utilized to gain control and manipulate transaction records of the blockchain network, which can compromise the reliability and security of edge computing. This paper proposes a blockchain node detection method named $$T^2A2vec$$ T 2 A 2 v e c that provides a more secure, credible, and reliable solution to address these challenges. In order to achieve $$T^2A2vec$$ T 2 A 2 v e c , a transaction dataset that is evenly distributed in both space and time was collected. The transaction dataset is constructed as a transaction graph, where nodes represent accounts and edges describe transactions. BP neural network is used to extract account features, and a random walk strategy based on transaction time, type, and amount is used to extract transaction features. The obtained account features and transaction features are fused to obtain account representation. Finally, the obtained node representation is fed into different classifiers to identify malicious nodes. Abstract The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a significant subject of research in this area due to its ability to protect the privacy of data. Despite the advantages that blockchain technology offers, there are also security threats that must be addressed. Attackers may manipulate certain nodes in the blockchain network, which can result in tampering with transaction records or other malicious activities. Moreover, the creation of a large number of false nodes can be utilized to gain control and manipulate transaction records of the blockchain network, which can compromise the reliability and security of edge computing. This paper proposes a blockchain node detection method named $$T^2A2vec$$ T 2 A 2 v e c that provides a more secure, credible, and reliable solution to address these challenges. In order to achieve $$T^2A2vec$$ T 2 A 2 v e c , a transaction dataset that is evenly distributed in both space and time was collected. The transaction dataset is constructed as a transaction graph, where nodes represent accounts and edges describe transactions. BP neural network is used to extract account features, and a random walk strategy based on transaction time, type, and amount is used to extract transaction features. The obtained account features and transaction features are fused to obtain account representation. Finally, the obtained node representation is fed into different classifiers to identify malicious nodes. |
| ArticleNumber | 88 |
| Author | Liu, Zhaowei Wang, Jianping Wang, Haiyang Wang, Shenqiang |
| Author_xml | – sequence: 1 givenname: Shenqiang surname: Wang fullname: Wang, Shenqiang organization: School of Computer Science and Control Engineering, Yantai University – sequence: 2 givenname: Zhaowei surname: Liu fullname: Liu, Zhaowei email: lzw@ytu.edu.cn organization: School of Computer Science and Control Engineering, Yantai University – sequence: 3 givenname: Haiyang surname: Wang fullname: Wang, Haiyang organization: Institute of Network Technology Yantai – sequence: 4 givenname: Jianping surname: Wang fullname: Wang, Jianping organization: Shandong marine resources and environment Research Institute |
| BookMark | eNp9UU1r3DAQFSWFpmn-QE-Gnt3ow7akYwlpEwjkkkBvQhqNdr3ZWFtJLuy_rxyHtPSQ0wwz77150vtITqY4ISGfGf3KmBouMhODlC3loqW0G4b2-I6ccqZ5y5j4efJP_4Gc57yjlDLKuFDylNxdTXlO47RpMkJtyrEZpwb9BhuIT4e5LKuyTXHebBsMAaGMv7Fx-wiPsLUVO0WPjceybOL0ibwPdp_x_KWekYfvV_eX1-3t3Y-by2-3LfSUl9ZzL7EXqLWiaENQGiiAlxq57SQI1tNBKhHqyxwEyYOmQwDXO3CcQSfEGblZdX20O3NI45NNRxPtaJ4HMW2MTWWEPRrvg1eWeSZ13zndu45qdI4q0Hqg0letL6vWIcVfM-ZidnFOU7VvuOJD9dh1rKL4ioIUc04YXq8yapYczJqDqTmY5xzMsZLUfyQYi10-qiQ77t-mipWaD0s-mP66eoP1B00OoJI |
| CitedBy_id | crossref_primary_10_3390_fi17040175 crossref_primary_10_1016_j_neucom_2024_127260 |
| Cites_doi | 10.1109/TPDS.2021.3131680 10.1109/JIOT.2018.2797187 10.1016/j.ipm.2020.102397 10.1109/TCSS.2021.3088145 10.1109/JSYST.2020.3048363 10.1109/JIOT.2021.3130434 10.1109/TETC.2020.3027309 10.1016/j.eswa.2020.113318 10.1109/TII.2022.3158974 10.1109/TII.2021.3116085 10.1109/TNNLS.2020.2978386 10.1109/TKDE.2018.2807452 10.1109/JIOT.2021.3077937 10.1109/JIOT.2022.3179231 10.1109/TII.2020.3012157 10.1109/COMST.2021.3062546 10.1007/s42786-018-00002-6 10.1016/j.ins.2019.07.036 10.1016/j.ins.2020.12.021 10.3390/s20143965 10.1109/TSMC.2020.3016821 10.1109/TII.2021.3083596 10.1145/2939672.2939754 10.1145/2623330.2623732 10.1109/BRAINS49436.2020.9223304 10.1016/j.asoc.2023.110040 10.1145/3394486.3403076 10.1109/JBHI.2022.3157725 10.24963/ijcai.2020/621 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics55523.2022.00043 10.1109/JIOT.2021.3077449 10.1109/Blockchain55522.2022.00042 10.1016/j.dcan.2022.11.018 10.1007/978-981-15-9213-3_14 10.1109/JIOT.2022.3181136 10.1109/ISCAS45731.2020.9180815 10.1109/TII.2021.3139363 10.1145/2736277.2741093 10.1109/TBDATA.2022.3177455 10.1109/JIOT.2022.3151359 10.1145/3543507.3583472 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7RQ 7SC 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O MBDVC P62 PADUT PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U U9A DOA |
| DOI | 10.1186/s13677-023-00466-y |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Career & Technical Education Database Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest research library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Research Library China Advanced Technologies Database with Aerospace Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest Career and Technical Education ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7RQ name: Career & Technical Education Database url: https://search.proquest.com/career sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2192-113X |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_ddfd8a1d17954b95b409ebb08c99607d 10_1186_s13677_023_00466_y |
| GrantInformation_xml | – fundername: School and Locality Integration Development Project of Yantai City grantid: 2022 – fundername: Open Foundation of State key Laboratory of Networking and Switching Technology grantid: SKLNST-2022-1-12 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2022MF238 – fundername: Yantai Science and Technology Innovation Development Plan Project grantid: 2021YT06000645 – fundername: National Natural Science Foundation of China grantid: 62272405 – fundername: Youth Innovation Science and Technology Support Program of Shandong Provincial grantid: 2021KJ080 |
| GroupedDBID | -A0 0R~ 3V. 40G 5VS 7RQ 8FE 8FG 8G5 AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ GUQSH HCIFZ HZ~ IAO ISR ITC K6V K7- KQ8 M0N M2O M~E O9- OK1 PADUT PIMPY PQQKQ PROAC RNS RSV SCO SOJ AASML AAYXX CITATION ICD IVC 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC P62 PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U U9A |
| ID | FETCH-LOGICAL-c502t-d2d7e53e9980eaff89c0ccd79e2a47c31506783f136bcf72f906fcb5bcb21c433 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011462300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-113X |
| IngestDate | Fri Oct 03 12:29:44 EDT 2025 Wed Oct 15 14:11:21 EDT 2025 Tue Nov 18 22:37:51 EST 2025 Sat Nov 29 01:40:29 EST 2025 Fri Feb 21 02:43:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Edge Computing Graph Embedding Security Blockchain |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-d2d7e53e9980eaff89c0ccd79e2a47c31506783f136bcf72f906fcb5bcb21c433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1186/s13677-023-00466-y |
| PQID | 2826998441 |
| PQPubID | 2034894 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ddfd8a1d17954b95b409ebb08c99607d proquest_journals_2826998441 crossref_primary_10_1186_s13677_023_00466_y crossref_citationtrail_10_1186_s13677_023_00466_y springer_journals_10_1186_s13677_023_00466_y |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Advances, Systems and Applications |
| PublicationTitle | Journal of cloud computing : advances, systems and applications |
| PublicationTitleAbbrev | J Cloud Comp |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | Liang, Hu, Zhou, Pan, Kevin, Wang (CR15) 2021; 18 Zhang, Yu, Li, Raza, Cao (CR27) 2022; 9 Zhou, Yang, Ma, Kevin, Wang (CR1) 2021; 9 CR39 Qi, Hu, Zhang, Khosravi, Sharma, Pang, Wang (CR5) 2021; 17 Cai, Zheng, Chang (CR33) 2018; 30 CR37 CR14 Dai, Xiao, Jiang, Alazab, Lui, Dustdar, Liu (CR8) 2022; 19 CR13 CR35 CR34 Farrugia, Ellul, Azzopardi (CR25) 2020; 150 CR10 CR32 CR30 Nawaz, Peña Queralta, Guan, Awais, Gia, Bashir, Kan, Westerlund (CR18) 2020; 20 Lin, Wu, Yuan, Zheng (CR38) 2020; 67 CR4 CR3 Boo, Kim, Ko (CR17) 2021; 16 Li, Li, Wan, Liu, Imran (CR7) 2018; 5 CR28 Berdik, Otoum, Schmidt, Porter, Jararweh (CR20) 2021; 58 CR26 CR47 Dasgupta, Shrein, Gupta (CR19) 2019; 3 CR24 CR46 CR45 Ranaweera, Jurcut, Liyanage (CR9) 2021; 23 CR22 CR44 CR43 Wu, Pan, Chen, Long, Zhang, Philip (CR29) 2020; 32 CR42 CR41 Wang, Li, Huang, Wang, Luo (CR16) 2022; 252 CR40 Zhou, Liang, Yan, Li, Kevin, Wang, Ma, Jin (CR11) 2022; 10 Hu, Fan, Zeng, Hang, Wang, Qi, Bhuiyan (CR2) 2021; 18 Zhang, Li, Chen (CR6) 2021; 557 Wu, Yuan, Lin, You, Chen, Chen, Zheng (CR36) 2022; 52 Liu, Tang, Li, Guo, Fan, Zhang (CR31) 2022; 10 Zhou, Liang, Li, Yan, Shimizu, Kevin, Wang (CR23) 2021; 9 Yuan, He, Chen, Zhang, Qi, Xu, Xiang, Yang (CR12) 2022; 33 Feng, Yang, Gati, Xie, Gavuna (CR21) 2020; 527 E Boo (466_CR17) 2021; 16 Y Zhang (466_CR27) 2022; 9 L Yuan (466_CR12) 2022; 33 L Qi (466_CR5) 2021; 17 P Ranaweera (466_CR9) 2021; 23 466_CR39 466_CR47 466_CR24 466_CR46 466_CR26 466_CR4 466_CR43 466_CR42 466_CR45 466_CR3 466_CR22 466_CR44 D Dasgupta (466_CR19) 2019; 3 H Cai (466_CR33) 2018; 30 466_CR41 466_CR40 X Dai (466_CR8) 2022; 19 J Wu (466_CR36) 2022; 52 J Feng (466_CR21) 2020; 527 X Zhou (466_CR23) 2021; 9 Z Wu (466_CR29) 2020; 32 X Zhou (466_CR1) 2021; 9 S Farrugia (466_CR25) 2020; 150 D Berdik (466_CR20) 2021; 58 X Li (466_CR7) 2018; 5 466_CR28 W Liang (466_CR15) 2021; 18 466_CR14 X Zhou (466_CR11) 2022; 10 466_CR13 466_CR35 C Hu (466_CR2) 2021; 18 466_CR37 466_CR10 466_CR32 G Wang (466_CR16) 2022; 252 X Liu (466_CR31) 2022; 10 466_CR34 D Lin (466_CR38) 2020; 67 466_CR30 T Zhang (466_CR6) 2021; 557 A Nawaz (466_CR18) 2020; 20 |
| References_xml | – volume: 33 start-page: 1873 issue: 8 year: 2022 end-page: 1887 ident: CR12 article-title: Csedge: Enabling collaborative edge storage for multi-access edge computing based on blockchain publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2021.3131680 – ident: CR45 – ident: CR22 – volume: 5 start-page: 1351 issue: 3 year: 2018 end-page: 1360 ident: CR7 article-title: Adaptive transmission optimization in sdn-based industrial internet of things with edge computing publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2797187 – ident: CR43 – volume: 58 start-page: 102397 issue: 1 year: 2021 ident: CR20 article-title: A survey on blockchain for information systems management and security publication-title: Inf Process Manag doi: 10.1016/j.ipm.2020.102397 – ident: CR47 – volume: 9 start-page: 624 issue: 2 year: 2022 end-page: 637 ident: CR27 article-title: Detecting Ethereum Ponzi schemes based on improved lightGBM algorithm publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2021.3088145 – ident: CR4 – ident: CR14 – ident: CR39 – volume: 16 start-page: 112 issue: 1 year: 2021 end-page: 123 ident: CR17 article-title: Litezkp: Lightening zero-knowledge proof-based blockchains for IoT and edge platforms publication-title: IEEE Syst J doi: 10.1109/JSYST.2020.3048363 – ident: CR37 – volume: 9 start-page: 9310 issue: 12 year: 2021 end-page: 9319 ident: CR23 article-title: Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3130434 – volume: 10 start-page: 438 issue: 1 year: 2022 end-page: 449 ident: CR31 article-title: A graph learning based approach for identity inference in dapp platform blockchain publication-title: IEEE Trans Emerg Top Comput doi: 10.1109/TETC.2020.3027309 – volume: 150 start-page: 1 year: 2020 end-page: 11 ident: CR25 article-title: Detection of illicit accounts over the Ethereum blockchain publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113318 – ident: CR30 – volume: 67 start-page: 2737 issue: 11 year: 2020 end-page: 2741 ident: CR38 article-title: Modeling and understanding Ethereum transaction records via a complex network approach publication-title: IEEE Trans Circ Syst II: Express Briefs – ident: CR10 – ident: CR35 – volume: 19 start-page: 480 issue: 1 year: 2022 end-page: 490 ident: CR8 article-title: Task co-offloading for d2d-assisted mobile edge computing in industrial internet of things publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3158974 – volume: 18 start-page: 5087 issue: 8 year: 2021 end-page: 5095 ident: CR15 article-title: Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial IoT publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2021.3116085 – volume: 32 start-page: 4 issue: 1 year: 2020 end-page: 24 ident: CR29 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2978386 – volume: 30 start-page: 1616 issue: 9 year: 2018 end-page: 1637 ident: CR33 article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2807452 – volume: 9 start-page: 14988 issue: 16 year: 2021 end-page: 14997 ident: CR1 article-title: Energy-efficient smart routing based on link correlation mining for wireless edge computing in IoT publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3077937 – ident: CR40 – volume: 10 start-page: 3295 issue: 4 year: 2022 end-page: 3304 ident: CR11 article-title: Edge-enabled two-stage scheduling based on deep reinforcement learning for internet of everything publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3179231 – ident: CR42 – volume: 17 start-page: 4159 issue: 6 year: 2021 end-page: 4167 ident: CR5 article-title: Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2020.3012157 – volume: 23 start-page: 1078 issue: 2 year: 2021 end-page: 1124 ident: CR9 article-title: Survey on multi-access edge computing security and privacy publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2021.3062546 – volume: 3 start-page: 1 year: 2019 end-page: 17 ident: CR19 article-title: A survey of blockchain from security perspective publication-title: J Bank Financ Technol doi: 10.1007/s42786-018-00002-6 – ident: CR46 – ident: CR44 – volume: 527 start-page: 341 year: 2020 end-page: 355 ident: CR21 article-title: Privacy-preserving computation in cyber-physical-social systems: A survey of the state-of-the-art and perspectives publication-title: Inf Sci doi: 10.1016/j.ins.2019.07.036 – volume: 557 start-page: 34 year: 2021 end-page: 65 ident: CR6 article-title: Edge computing and its role in industrial internet: Methodologies, applications, and future directions publication-title: Inf Sci doi: 10.1016/j.ins.2020.12.021 – volume: 20 start-page: 3965 issue: 14 year: 2020 ident: CR18 article-title: Edge computing to secure IoT data ownership and trade with the Ethereum blockchain publication-title: Sensors doi: 10.3390/s20143965 – ident: CR3 – volume: 52 start-page: 1156 issue: 2 year: 2022 end-page: 1166 ident: CR36 article-title: Who are the phishers? phishing scam detection on Ethereum via network embedding publication-title: IEEE Trans Syst Man Cybern: Syst doi: 10.1109/TSMC.2020.3016821 – volume: 252 start-page: 344 issue: 109 year: 2022 ident: CR16 article-title: Smart contract-based caching and data transaction optimization in mobile edge computing publication-title: Knowl-Based Syst – ident: CR13 – ident: CR32 – ident: CR34 – volume: 18 start-page: 2811 issue: 4 year: 2021 end-page: 2819 ident: CR2 article-title: Digital twin-assisted real-time traffic data prediction method for 5g-enabled internet of vehicles publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3083596 – ident: CR28 – ident: CR41 – ident: CR26 – ident: CR24 – ident: 466_CR42 doi: 10.1145/2939672.2939754 – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 466_CR29 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2978386 – ident: 466_CR41 doi: 10.1145/2623330.2623732 – volume: 16 start-page: 112 issue: 1 year: 2021 ident: 466_CR17 publication-title: IEEE Syst J doi: 10.1109/JSYST.2020.3048363 – ident: 466_CR32 – volume: 557 start-page: 34 year: 2021 ident: 466_CR6 publication-title: Inf Sci doi: 10.1016/j.ins.2020.12.021 – volume: 10 start-page: 3295 issue: 4 year: 2022 ident: 466_CR11 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3179231 – ident: 466_CR26 doi: 10.1109/BRAINS49436.2020.9223304 – ident: 466_CR44 – volume: 19 start-page: 480 issue: 1 year: 2022 ident: 466_CR8 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3158974 – volume: 9 start-page: 624 issue: 2 year: 2022 ident: 466_CR27 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2021.3088145 – volume: 67 start-page: 2737 issue: 11 year: 2020 ident: 466_CR38 publication-title: IEEE Trans Circ Syst II: Express Briefs – ident: 466_CR45 – volume: 3 start-page: 1 year: 2019 ident: 466_CR19 publication-title: J Bank Financ Technol doi: 10.1007/s42786-018-00002-6 – ident: 466_CR22 doi: 10.1016/j.asoc.2023.110040 – ident: 466_CR30 doi: 10.1145/3394486.3403076 – ident: 466_CR10 doi: 10.1109/JBHI.2022.3157725 – volume: 10 start-page: 438 issue: 1 year: 2022 ident: 466_CR31 publication-title: IEEE Trans Emerg Top Comput doi: 10.1109/TETC.2020.3027309 – volume: 52 start-page: 1156 issue: 2 year: 2022 ident: 466_CR36 publication-title: IEEE Trans Syst Man Cybern: Syst doi: 10.1109/TSMC.2020.3016821 – volume: 18 start-page: 5087 issue: 8 year: 2021 ident: 466_CR15 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2021.3116085 – volume: 527 start-page: 341 year: 2020 ident: 466_CR21 publication-title: Inf Sci doi: 10.1016/j.ins.2019.07.036 – volume: 58 start-page: 102397 issue: 1 year: 2021 ident: 466_CR20 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2020.102397 – volume: 30 start-page: 1616 issue: 9 year: 2018 ident: 466_CR33 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2807452 – volume: 150 start-page: 1 year: 2020 ident: 466_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113318 – ident: 466_CR28 doi: 10.24963/ijcai.2020/621 – volume: 9 start-page: 14988 issue: 16 year: 2021 ident: 466_CR1 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3077937 – volume: 5 start-page: 1351 issue: 3 year: 2018 ident: 466_CR7 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2797187 – ident: 466_CR4 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics55523.2022.00043 – ident: 466_CR3 doi: 10.1109/JIOT.2021.3077449 – ident: 466_CR24 doi: 10.1109/Blockchain55522.2022.00042 – ident: 466_CR40 doi: 10.1016/j.dcan.2022.11.018 – volume: 18 start-page: 2811 issue: 4 year: 2021 ident: 466_CR2 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3083596 – volume: 33 start-page: 1873 issue: 8 year: 2022 ident: 466_CR12 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2021.3131680 – volume: 9 start-page: 9310 issue: 12 year: 2021 ident: 466_CR23 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3130434 – ident: 466_CR37 doi: 10.1007/978-981-15-9213-3_14 – ident: 466_CR46 – volume: 23 start-page: 1078 issue: 2 year: 2021 ident: 466_CR9 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2021.3062546 – ident: 466_CR14 doi: 10.1109/JIOT.2022.3181136 – volume: 252 start-page: 344 issue: 109 year: 2022 ident: 466_CR16 publication-title: Knowl-Based Syst – ident: 466_CR35 doi: 10.1109/ISCAS45731.2020.9180815 – ident: 466_CR39 doi: 10.1109/TII.2021.3139363 – ident: 466_CR43 doi: 10.1145/2736277.2741093 – volume: 20 start-page: 3965 issue: 14 year: 2020 ident: 466_CR18 publication-title: Sensors doi: 10.3390/s20143965 – ident: 466_CR34 doi: 10.1109/TBDATA.2022.3177455 – volume: 17 start-page: 4159 issue: 6 year: 2021 ident: 466_CR5 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2020.3012157 – ident: 466_CR13 doi: 10.1109/JIOT.2022.3151359 – ident: 466_CR47 doi: 10.1145/3543507.3583472 |
| SSID | ssj0001012387 |
| Score | 2.2843509 |
| Snippet | The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a significant... Abstract The rapid development of blockchain technology has garnered increasing attention, particularly in the field of edge computing. It has become a... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 88 |
| SubjectTerms | Access control Back propagation networks Blockchain Cloud computing Computer Communication Networks Computer Science Computer System Implementation Computer Systems Organization and Communication Networks Cryptography Cybersecurity Data integrity Datasets Edge Computing Graph Embedding Graph theory Information Systems Applications (incl.Internet) Internet of Things Methods Neural networks Nodes Privacy Random walk Representations Security Security and privacy issues for artificial intelligence in edge-cloud computing Software Engineering/Programming and Operating Systems Special Purpose and Application-Based Systems |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yePDiW1xf5OBNw3b7SnJUcfEgqwcFb6GZJLgoXdlWwX_vJG1XV1AvXpsppN9MMjPp5BtCjhNZJMaJjGXWAUN_nDMhdcQ4GCtB5NY0JEnXfDwWDw_y9kurL18T1tADN8ANjHFGFEODhpOlWmYaExKrdSTA84pw43ffiMsvyVQ4XfGhguDdLRmRDyrPTcYZuijmc8KcvS94okDYvxBlfvsxGvzNaJ2stoEiPWsmuEGWbLlJ1romDLRdk1vk5rKswlVDWrWt6OikpP6UjEIQ9kNtNx7aVG_gBkc1OrEneCxQtpwaS42tQ1FWuU3uR5d3F1es7ZLAIIvimpnYcJslFvOmyBbOCQkRgOHSxkXKIfEUglwkDr9fg-Oxk1HuQGcadDyENEl2SK-clnaXUFkUSV6kGFNoncaRQYCNywCDFK5xnQ77ZNghpqClEPedLJ5VSCVErhqUFaKsAsrqvU9O5u-8NAQav0qfe0XMJT35dXiAJqFak1B_mUSfHHRqVO2KrBSmljlChNFfn5x2qv0c_nlKe_8xpX2y4vvUN3UwB6RXz17tIVmGt3pSzY6C7X4ANsryQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Career & Technical Education Database dbid: 7RQ link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cCFBQpiy4J86I1azebhxwkBasUBlYJaqTcrHtuwKsqWzbZS_33HjtNVkeiFazyJrMx7PJ4PYLfSbeWCanjjA3Lyx4IrbQsu0XmNSng3DEn6Ko-O1NmZPs4Ftz63VY42MRlqt8RYI9-n1EBQakDe-8PFHx5Ro-LpaobQeAiPyFGLKOfyx_dNjSUGDEqOd2WU2O_jhDLJyVHxmBkKfn3HH6Wx_Xdizb-OR5PXOZz8736fwdMcb7KPg4A8hwe-ewGTEcuBZdXehm8HXZ9uLLI-I9qxRcdisY1hIo5LGdSHDU0gZCeZJV94jr9aou2WzjPn16m3q3sJp4cHJ5-_8Ay2wLEpyjV3pZO-qTztufBtCEpjgeik9mVbS6ziJEKpqkA_0GKQZdCFCGgbi7acY11Vr2CrW3b-NTDdtpVoawpNrK3LwlGS5EKDFOtIS-o-n8J8_OUG8yTyCIjx26SMRAkzsMkQm0xik7mewvvbdy6GORz3Un-KnLyljDO004Pl6qfJKmmcC061c0cmqamtbiylut7aQmGcWCPdFGYjZ01W7N5s2DqFvVE2Nsv_3tLO_V97A08ikP3QKDODrfXq0r-Fx3i1XvSrd0msbwBuX__w priority: 102 providerName: ProQuest |
| Title | Ensuring security in edge computing through effective blockchain node detection |
| URI | https://link.springer.com/article/10.1186/s13677-023-00466-y https://www.proquest.com/docview/2826998441 https://doaj.org/article/ddfd8a1d17954b95b409ebb08c99607d |
| Volume | 12 |
| WOSCitedRecordID | wos001011462300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2192-113X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001012387 issn: 2192-113X databaseCode: C24 dateStart: 20121201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLZoy4ELLS91S7vKgRtEzDvJkVZbgaDbpQKpnKKJk0BVNFvtLEj99ziZTFERIMElh4kjZZw4thP7M8CzUrWl9bLmtfPISR83XCqTcYHWKZSNswNI0jsxn8vzc7VISWH9GO0-PknGkzqKtWxe9gFcTHDSMTw4dQ2_3oCtOpcqBPIdpRyHeLMSzAQpxgyZ3w69pYUiWP8tC_OXR9Goa463_2-WO3A_2Zbs1bAZHsAd1z2E7bFuA0ti_AhOZ10fsxNZn6rXsYuOhYs1hpE4dKUCPmwI-KAzkRnSe5f4pSXabmkds24d47i6x_DxePbh6DVPhRU41lmx5rawwtWlI1crc633UmGGaIVyRVsJLAPqoJClp38x6EXhVdZ4NLVBU-RYleUT2OyWndsFptq2bNqKzBBjqiKz5BBZXyPZNcKQaOcTyEdGa0yo46H4xVcdvQ_Z6IFjmjimI8f09QSe34y5GjA3_kp9GNbvhjLgZccPy9VnncRPW-utbHNLx09dGVUbcmudMZnEgE4j7AT2x9XXSYh7Td5oQywig3ECL8bV_tn95ynt_Rv5U7gXitgPQTL7sLlefXMHcBe_ry_61RQ2xNn7KWwdzuaLs2nc6tN4c0DtW8GpPSlOqX_x5mTx6QcrRP0L |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkulKe6UMAHOIHVxHnYOaCKR6tWuywcitSbicc2VKBs2Syt9k_xGzt2kq6KRG89cI2dKIm_eXo8H8CLrKoz61XBC-eRkz0uuapMwiVaV6Eqne2aJE3kdKqOjqrPa_BnOAsTyioHnRgVtZ1hyJFvU2hQUmhA1nvn5BcPrFFhd3Wg0OhgMXbLMwrZ2jcHH2h9Xwqxt3v4fp_3rAIci0QsuBVWuiJz9LDE1d6rChNEKysn6lxiFlruSZX5NCsNeil8lZQeTWHQiBTzkAAllX8jz5QMcjWWfJXTCQ6KksPZHFVut6EjmuRkGHmIREu-vGT_Ik3AJd_2r-3YaOX2Nv63_3MX7vT-NHvbCcA9WHPNfdgYuCpYr7oewKfdpo0nMlnbM_ax44aFZCLDODkM9aRFrCtyITvADNn6H_i9prnNzDpm3SLWrjUP4cu1fNYjWG9mjdsEVtV1VtY5uV7G5CKxFARaXyD5ctKQOktHkA5LrLHvtB4IP37qGHGpUnew0AQLHWGhlyN4dXHPSddn5MrZ7wJyLmaGHuHxwmz-TfcqR1vrrapTSyq3yE1VGArlnTGJwtCRR9oRbA1I0r3iavUKRiN4PWBxNfzvV3p89dOew639w48TPTmYjp_AbREkIhYFbcH6Yv7bPYWbeLo4bufPokgx-HrdGD0HS4JeDw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4S4UJ7qQgEf4ATWJs7DzgFVhXbFqmXZA0jlZOIXVKBs2Syg_Wv9dR07TldForceuMaTKIk_z8vj-QCeZ1WdGScKWlinKdrjkopKJZRrYystSmu6JklHfDoVx8fVbAPO-rMwvqyy14lBUZu59jnyEYYGJYYGaL1HLpZFzPbHu6c_qWeQ8jutPZ1GB5FDu_qD4Vv7erKPc_2CsfHBx7fvaGQYoLpI2JIaZrgtMosPTmztnKh0orXhlWV1znXm2-9xkbk0K5V2nLkqKZ1WhdKKpTr3yVBU_5vokudsAJuzyfvZ53WGx7srgvcndUQ5an1_NE7RTFIfl5Z0dckaBtKAS57uX5uzweaNt_7nv3UHbkdPm-x1S-MubNjmHmz1LBYkKrX78OGgacNZTdJGLj9y0hCfZiQ6CPuhSGdEuvIXtBBEoRfwXX-rUbaZG0uMXYaqtuYBfLqWz3oIg2be2G0gVV1nZZ2jU6ZUzhKD4aFxhUYvjytUdOkQ0n66pY492D0VyA8ZYjFRyg4iEiEiA0TkaggvL-457TqQXCn9xqPoQtJ3Dw8X5ouvMiojaYwzok4NKuMiV1WhMMi3SiVC-1493Axhp0eVjCqtlWtIDeFVj8v18L9f6dHVT3sGNxGa8mgyPXwMt5hfHKFaaAcGy8Uv-wRu6N_Lk3bxNK4vAl-uG6TnT_BokA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensuring+security+in+edge+computing+through+effective+blockchain+node+detection&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Wang%2C+Shenqiang&rft.au=Liu%2C+Zhaowei&rft.au=Wang%2C+Haiyang&rft.au=Wang%2C+Jianping&rft.date=2023-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-113X&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs13677-023-00466-y&rft.externalDocID=10_1186_s13677_023_00466_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon |