Comparing Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation

In recent years semantic segmentation of 3D point clouds has been an argument that involves different fields of application. Cultural heritage scenarios have become the subject of this study mainly thanks to the development of photogrammetry and laser scanning techniques. Classification algorithms b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ISPRS international journal of geo-information Ročník 9; číslo 9; s. 535
Hlavní autori: Matrone, Francesca, Grilli, Eleonora, Martini, Massimo, Paolanti, Marina, Pierdicca, Roberto, Remondino, Fabio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2020
Predmet:
ISSN:2220-9964, 2220-9964
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years semantic segmentation of 3D point clouds has been an argument that involves different fields of application. Cultural heritage scenarios have become the subject of this study mainly thanks to the development of photogrammetry and laser scanning techniques. Classification algorithms based on machine and deep learning methods allow to process huge amounts of data as 3D point clouds. In this context, the aim of this paper is to make a comparison between machine and deep learning methods for large 3D cultural heritage classification. Then, considering the best performances of both techniques, it proposes an architecture named DGCNN-Mod+3Dfeat that combines the positive aspects and advantages of these two methodologies for semantic segmentation of cultural heritage point clouds. To demonstrate the validity of our idea, several experiments from the ArCH benchmark are reported and commented.
AbstractList In recent years semantic segmentation of 3D point clouds has been an argument that involves different fields of application. Cultural heritage scenarios have become the subject of this study mainly thanks to the development of photogrammetry and laser scanning techniques. Classification algorithms based on machine and deep learning methods allow to process huge amounts of data as 3D point clouds. In this context, the aim of this paper is to make a comparison between machine and deep learning methods for large 3D cultural heritage classification. Then, considering the best performances of both techniques, it proposes an architecture named DGCNN-Mod+3Dfeat that combines the positive aspects and advantages of these two methodologies for semantic segmentation of cultural heritage point clouds. To demonstrate the validity of our idea, several experiments from the ArCH benchmark are reported and commented.
In recent years semantic segmentation of 3D point clouds has been an argument that involves different fields of application. Cultural heritage scenarios have become the subject of this study mainly thanks to the development of photogrammetry and laser scanning techniques. Classification algorithms based on machine and deep learning methods allow to process huge amounts of data as 3D point clouds. In this context, the aim of this paper is to make a comparison between machine and deep learning methods for large 3D cultural heritage classification. Then, considering the best performances of both techniques, it proposes an architecture named DGCNN-Mod+3Dfeat that combines the positive aspects and advantages of these two methodologies for semantic segmentation of cultural heritage point clouds. To demonstrate the validity of our idea, several experiments from the ArCH benchmark are reported and commented. Keywords: classification; semantic segmentation; digital cultural heritage; point clouds; machine learning; deep learning
Audience Academic
Author Grilli, Eleonora
Pierdicca, Roberto
Matrone, Francesca
Remondino, Fabio
Paolanti, Marina
Martini, Massimo
Author_xml – sequence: 1
  givenname: Francesca
  orcidid: 0000-0002-9160-1674
  surname: Matrone
  fullname: Matrone, Francesca
– sequence: 2
  givenname: Eleonora
  orcidid: 0000-0003-3400-9364
  surname: Grilli
  fullname: Grilli, Eleonora
– sequence: 3
  givenname: Massimo
  orcidid: 0000-0003-1714-4310
  surname: Martini
  fullname: Martini, Massimo
– sequence: 4
  givenname: Marina
  orcidid: 0000-0002-5523-7174
  surname: Paolanti
  fullname: Paolanti, Marina
– sequence: 5
  givenname: Roberto
  orcidid: 0000-0002-9160-834X
  surname: Pierdicca
  fullname: Pierdicca, Roberto
– sequence: 6
  givenname: Fabio
  orcidid: 0000-0001-6097-5342
  surname: Remondino
  fullname: Remondino, Fabio
BookMark eNptUU1v1DAQtVCRKKUn_kAkLkhoi7-S2MdqC7TSIg6AOFoTZ5J6ldiLnT303zNtqqqqsA9-Gr_3xuP3lp3EFJGx94JfKGX557Afg-WW16p-xU6llHxjbaNPnuE37LyUPadlhTKan7I_2zQfIIc4Vt_B34aIFcS-ukI8VDuEHB9ucLlNfamGlKsd5BErdVVdYw4LEP6JM8QleALjjHGBJaT4jr0eYCp4_niesd9fv_zaXm92P77dbC93G19zuWy89o3iQhgjxdBqYdCC1da3tpe14Ur7rle6q3XTgTYKlJTWWgEt2nbgslNn7Gb17RPs3SGHGfKdSxDcQyHl0UGmx03oBNe8IZWW5MXrzoABgFb5XoKotSCvj6vXIae_RyyLm0PxOE0QMR2Lk9oaRSZKE_XDC-o-HXOkSYmlRSsaioFYFytrBOof4pCWDJ52j3PwlN4QqH7ZaCHr-0RI8GkV-JxKyTg8TSS4uw_ZPQuZ2OIF24f196lNmP6r-QcQh6g6
CitedBy_id crossref_primary_10_3390_s23125611
crossref_primary_10_3390_rs16193572
crossref_primary_10_3390_rs14215542
crossref_primary_10_1017_S0959774323000203
crossref_primary_10_3390_ijgi9120743
crossref_primary_10_3390_rs13193936
crossref_primary_10_1111_mice_13201
crossref_primary_10_3390_heritage7070180
crossref_primary_10_3390_rs15081961
crossref_primary_10_5194_gi_11_195_2022
crossref_primary_10_3390_rs15102590
crossref_primary_10_1016_j_daach_2024_e00322
crossref_primary_10_1061_JCCEE5_CPENG_4979
crossref_primary_10_3390_heritage8080292
crossref_primary_10_3390_app11198996
crossref_primary_10_1016_j_measurement_2023_113465
crossref_primary_10_3390_rs16183439
crossref_primary_10_1080_15583058_2025_2485242
crossref_primary_10_3390_app13179781
crossref_primary_10_3390_heritage8070265
crossref_primary_10_1016_j_autcon_2024_105831
crossref_primary_10_1016_j_culher_2025_01_005
crossref_primary_10_3390_rs15030548
crossref_primary_10_3390_app11157042
crossref_primary_10_3390_s23052497
crossref_primary_10_3390_s23218841
crossref_primary_10_1016_j_autcon_2022_104459
crossref_primary_10_1038_s40494_025_01724_9
crossref_primary_10_1016_j_daach_2024_e00370
crossref_primary_10_3390_s23104791
crossref_primary_10_3390_heritage8020081
crossref_primary_10_1038_s40494_025_01704_z
crossref_primary_10_1016_j_neucom_2025_131337
crossref_primary_10_1186_s40494_024_01353_8
crossref_primary_10_1080_15583058_2021_1900951
crossref_primary_10_1016_j_enggeo_2021_106344
crossref_primary_10_1016_j_engstruct_2025_120324
crossref_primary_10_1016_j_culher_2023_07_016
crossref_primary_10_3390_heritage7100261
crossref_primary_10_1186_s40494_022_00844_w
crossref_primary_10_1080_17538947_2024_2385081
crossref_primary_10_3390_rs14235934
crossref_primary_10_1080_01426397_2023_2289970
crossref_primary_10_3390_buildings15111854
crossref_primary_10_3390_rs15092408
crossref_primary_10_3390_ijgi10060423
crossref_primary_10_1007_s11831_025_10393_7
crossref_primary_10_3390_rs15030833
crossref_primary_10_3390_drones8060249
crossref_primary_10_3390_heritage5040204
crossref_primary_10_3390_rs13101985
crossref_primary_10_1080_09613218_2025_2521751
crossref_primary_10_3390_rs13030461
crossref_primary_10_1186_s40494_024_01367_2
crossref_primary_10_3390_s22030966
crossref_primary_10_1016_j_inffus_2024_102722
crossref_primary_10_3390_rs17122018
crossref_primary_10_3390_rs15040956
crossref_primary_10_1016_j_culher_2023_10_003
crossref_primary_10_1186_s40494_024_01382_3
crossref_primary_10_1186_s40494_024_01179_4
crossref_primary_10_3390_s24134390
crossref_primary_10_3390_heritage7120321
crossref_primary_10_1016_j_culher_2023_05_017
crossref_primary_10_3390_ijgi13070231
crossref_primary_10_1016_j_autcon_2024_105728
crossref_primary_10_1145_3649442
crossref_primary_10_3390_app12052426
crossref_primary_10_36680_j_itcon_2025_053
crossref_primary_10_3390_heritage6090336
Cites_doi 10.3390/rs11070847
10.1007/978-3-030-25965-5_16
10.5194/isprs-annals-IV-2-W2-115-2017
10.3390/rs12061005
10.3390/app7100992
10.1109/CVPR.2016.170
10.1016/j.rse.2017.07.030
10.23919/MVA.2017.7986776
10.5194/isprs-annals-IV-1-W1-91-2017
10.5194/isprs-archives-XLII-4-W18-447-2019
10.3390/ijgi9060379
10.1177/0278364913491297
10.1016/j.isprsjprs.2016.01.011
10.3390/rs5083749
10.3390/rs9040373
10.1109/ICCV.2017.324
10.1109/ICCV.2017.99
10.1111/mice.12145
10.1023/A:1010933404324
10.1109/CVPR.2018.00484
10.1142/S0218001405003983
10.1145/3197517.3201301
10.1016/j.neucom.2018.03.037
10.1109/JSTARS.2016.2628775
10.1109/TGRS.2016.2564501
10.3390/rs6031863
10.1038/nature14539
10.1109/DigitalHeritage.2018.8810107
10.1109/ACCESS.2019.2958671
10.5194/isprs-archives-XLII-2-W15-541-2019
10.1016/j.isprsjprs.2015.01.016
10.1109/3DIM.2007.10
10.3390/s20082161
10.5194/isprs-archives-XLII-2-W15-735-2019
10.1080/00031305.1992.10475879
10.3390/s19214717
10.1007/978-3-319-16628-5_13
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/ijgi9090535
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
Architecture
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_104067f042ba405b8a8aaa73cd2a1541
A641250913
10_3390_ijgi9090535
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c502t-c4c630118821f7418e9a949c79d258034cbd34b546ba483a3229991a7e97f02b3
IEDL.DBID DOA
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580550800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2220-9964
IngestDate Tue Oct 14 19:08:56 EDT 2025
Thu Oct 02 11:18:28 EDT 2025
Fri Jul 25 12:08:34 EDT 2025
Tue Nov 04 18:00:22 EST 2025
Tue Nov 18 21:57:40 EST 2025
Sat Nov 29 07:15:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-c4c630118821f7418e9a949c79d258034cbd34b546ba483a3229991a7e97f02b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5523-7174
0000-0002-9160-1674
0000-0002-9160-834X
0000-0003-3400-9364
0000-0003-1714-4310
0000-0001-6097-5342
OpenAccessLink https://doaj.org/article/104067f042ba405b8a8aaa73cd2a1541
PQID 2441716053
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_104067f042ba405b8a8aaa73cd2a1541
proquest_miscellaneous_2498304034
proquest_journals_2441716053
gale_infotracacademiconefile_A641250913
crossref_primary_10_3390_ijgi9090535
crossref_citationtrail_10_3390_ijgi9090535
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Barsanti (ref_21) 2017; 4
Geiger (ref_34) 2013; 32
ref_14
ref_11
ref_10
Malinverni (ref_7) 2019; XLII-2/W15
Zhang (ref_37) 2013; 5
Grilli (ref_5) 2019; XLII-4/W18
ref_18
Thompson (ref_44) 2017; 200
Poux (ref_22) 2017; 4
Grilli (ref_24) 2019; XLII-2/W15
Oses (ref_19) 2014; 6
ref_25
Zhang (ref_27) 2019; 7
ref_23
Weinmann (ref_49) 2015; 105
Altman (ref_12) 1992; 46
ref_29
ref_28
ref_26
Zhang (ref_13) 2005; 19
Wang (ref_16) 2019; 38
Chehata (ref_48) 2009; XXXVIII-3/W8
Belgiu (ref_45) 2016; 114
ref_36
ref_35
LeCun (ref_9) 2015; 521
ref_33
ref_32
ref_31
ref_30
Kang (ref_43) 2016; 10
Matrone (ref_17) 2020; XLIII-B2
ref_39
ref_38
Riveiro (ref_20) 2016; 31
ref_47
ref_42
ref_41
Breiman (ref_15) 2001; 45
ref_3
ref_2
Yu (ref_1) 2018; 304
ref_8
Li (ref_40) 2016; 54
ref_4
ref_6
Pedregosa (ref_46) 2011; 12
References_xml – ident: ref_6
  doi: 10.3390/rs11070847
– ident: ref_32
– ident: ref_8
  doi: 10.1007/978-3-030-25965-5_16
– volume: 4
  start-page: 115
  year: 2017
  ident: ref_21
  article-title: Segmentation of 3D models for cultural heritage structural analysis–some critical issues
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-annals-IV-2-W2-115-2017
– ident: ref_18
  doi: 10.3390/rs12061005
– ident: ref_4
  doi: 10.3390/app7100992
– volume: XXXVIII-3/W8
  start-page: 207
  year: 2009
  ident: ref_48
  article-title: Airborne lidar feature selection for urban classification using random forests
  publication-title: Laser Scanning 2009 IAPRS
– ident: ref_33
  doi: 10.1109/CVPR.2016.170
– volume: 200
  start-page: 18
  year: 2017
  ident: ref_44
  article-title: Airborne mapping of benthic reflectance spectra with Bayesian linear mixtures
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.030
– ident: ref_38
  doi: 10.23919/MVA.2017.7986776
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_46
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_35
  doi: 10.5194/isprs-annals-IV-1-W1-91-2017
– volume: XLII-4/W18
  start-page: 447
  year: 2019
  ident: ref_5
  article-title: Application of machine and deep learning strategies for the classification of heritage point clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-4-W18-447-2019
– ident: ref_25
  doi: 10.3390/ijgi9060379
– volume: 32
  start-page: 1231
  year: 2013
  ident: ref_34
  article-title: Vision meets robotics: The kitti dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_45
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 5
  start-page: 3749
  year: 2013
  ident: ref_37
  article-title: SVM-based classification of segmented airborne LiDAR point clouds in urban areas
  publication-title: Remote Sens.
  doi: 10.3390/rs5083749
– volume: XLIII-B2
  start-page: 1419
  year: 2020
  ident: ref_17
  article-title: A benchmark for large-scale heritage point cloud semantic segmentation
  publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_36
  doi: 10.3390/rs9040373
– ident: ref_50
  doi: 10.1109/ICCV.2017.324
– ident: ref_28
– ident: ref_30
– volume: 38
  start-page: 1
  year: 2019
  ident: ref_16
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans. Graph. (TOG)
– ident: ref_10
  doi: 10.1109/ICCV.2017.99
– ident: ref_3
– volume: 31
  start-page: 305
  year: 2016
  ident: ref_20
  article-title: Automatic morphologic analysis of quasi-periodic masonry walls from LiDAR
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12145
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_15
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_47
– ident: ref_11
  doi: 10.1109/CVPR.2018.00484
– volume: 19
  start-page: 183
  year: 2005
  ident: ref_13
  article-title: Exploring conditions for the optimality of naive Bayes
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001405003983
– ident: ref_14
– ident: ref_31
  doi: 10.1145/3197517.3201301
– volume: 304
  start-page: 82
  year: 2018
  ident: ref_1
  article-title: Methods and datasets on semantic segmentation: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.037
– volume: 10
  start-page: 1651
  year: 2016
  ident: ref_43
  article-title: A bayesian-network-based classification method integrating airborne lidar data with optical images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2628775
– volume: 4
  start-page: 203
  year: 2017
  ident: ref_22
  article-title: Point cloud classification of tesserae from terrestrial laser data combined with dense image matching for archaeological information extraction
  publication-title: Int. J. Adv. Life Sci.
– volume: 54
  start-page: 5412
  year: 2016
  ident: ref_40
  article-title: A three-step approach for TLS point cloud classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2564501
– volume: 6
  start-page: 1863
  year: 2014
  ident: ref_19
  article-title: Image-based delineation and classification of built heritage masonry
  publication-title: Remote Sens.
  doi: 10.3390/rs6031863
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_9
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_23
  doi: 10.1109/DigitalHeritage.2018.8810107
– volume: 7
  start-page: 179118
  year: 2019
  ident: ref_27
  article-title: A Review of Deep Learning-based Semantic Segmentation for Point Cloud (November 2019)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958671
– volume: XLII-2/W15
  start-page: 541
  year: 2019
  ident: ref_24
  article-title: Geometric features analysis for the classification of cultural heritage point clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-W15-541-2019
– volume: 105
  start-page: 286
  year: 2015
  ident: ref_49
  article-title: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.016
– ident: ref_41
  doi: 10.1109/3DIM.2007.10
– ident: ref_29
– ident: ref_26
  doi: 10.3390/s20082161
– ident: ref_2
– volume: XLII-2/W15
  start-page: 735
  year: 2019
  ident: ref_7
  article-title: Deep learning for semantic segmentation of 3D point cloud
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-W15-735-2019
– volume: 46
  start-page: 175
  year: 1992
  ident: ref_12
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– ident: ref_42
  doi: 10.3390/s19214717
– ident: ref_39
  doi: 10.1007/978-3-319-16628-5_13
SSID ssj0000913840
Score 2.5147965
Snippet In recent years semantic segmentation of 3D point clouds has been an argument that involves different fields of application. Cultural heritage scenarios have...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 535
SubjectTerms Algorithms
Annotations
Architectural elements
Architecture
Artificial intelligence
Case studies
Classification
computer vision
Cultural heritage
Cultural resources
data collection
Datasets
Deep learning
digital cultural heritage
digital images
Historic sites
image analysis
Image segmentation
Lasers
Learning algorithms
lidar
Machine learning
Masonry
Methods
Photogrammetry
point clouds
Semantic segmentation
Semantics
Three dimensional models
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7oKngBL6NidZUIC4JQNk3S25OMuy77oIuwXvat5Nax4nbG6Yzgv_ecNDOuoL74VtrTknBOTr8kJ98HsGecUdp5myqp81QZkaUGgXnqVW6EMNzywgWxifLkpDo7q9_FBbchllVucmJI1G5uaY18X5BWVobgW75cfEtJNYp2V6OExmW4QiwJIpTunW7XWIjzEicw47E8ibP7_e7LrKt5TaQmv_2IAl__37Jy-NUc3f7fRt6BWxFksukYFXfhku8ncHN6Yc9gAtei_PnnHxO48bEb1uMLwz34dDBqE_Yz9jaUWnqme8cOvV-wSMeKT4Ly9MAQ87I3VE3O5CE79rTUgNen_hw91lm8mJ3H0039ffhw9Pr9wXEa9RdSm3OxSq2yBY1_BOFZSyw3vta1qm1ZO5FXXCprnFQmV4XRqpIacwPBTV36umy5MPIB7PTz3j8E1lauIGOrMq9Kk5tWK4sf5a3JLc-rBF5snNHYSE5OGhlfG5ykkOeaC55LYG9rvBg5Of5s9oq8ujUhIu1wY76cNXFc4nuIaLC1SmAfeG4qXWmtS2md0IguswSeU0w0NNyxQVbHUwvYLSLOaqaFQohIgZbA7iYmmpgHhuZXQCTwbPsYRzBty-jez9dkU1cSmyHVo39_4jFcFzTbDxVuu7CzWq79E7hqv6-6Yfk0hP5PhuwL0w
  priority: 102
  providerName: ProQuest
Title Comparing Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation
URI https://www.proquest.com/docview/2441716053
https://www.proquest.com/docview/2498304034
https://doaj.org/article/104067f042ba405b8a8aaa73cd2a1541
Volume 9
WOSCitedRecordID wos000580550800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PCBAR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kFdSHUqvS68exQkEQgsl-JNnHflypYI9g_ai-LLubzRmxaWnuBF_8253ZbI8TFF98CUtmCJvZmZ2ZZPY3hBzY2gpTe5cIbmQiLMsSC4F54oW0jNnUpXkdmk0U02l5eamqlVZfWBM2wAMPggOrBpdTNKBb1kBwYUtTGmMK7mpmwP2HxAeinpVkKuzBKuOQugwH8jjk9a_ar7NWpQrhTH5zQQGp_2_7cXAyp5tkI0aH9HCY1WNyz3db5EFsVP7lxxZ59KHtFwNH_4R8PB66CHYzeh6KIj01XU1PvL-hETgVKKFHdE8hOqVvsO6b8hN65vGjAIwv_BXItnUwmF3Fc0jdU_L-dPLu-CyJnRISJ1M2T5xwOVoqhMtZg3g0XhkllCtUzWSZcuFszYWVIgchltyAFWNgaAqvQLTM8mdkrbvu_DahTVnnyOxE5kVhpW2McPDQtLHSpbIckZd3wtMuwohjN4tvGtIJlLRekfSIHCyZbwb0jD-zHeEqLFkQ8jrcAEXQURH0vxRhRF7gGmo0TJiQM_F8AbwWQlzpw1xAMIeKMSJ7d8uso8X2mmEvtgySOyA_X5LB1vAHiun89QJ5VMlhGlzs_I8Z75KHDLP3ULG2R9bmtwu_T-677_O2vx2T9aPJtHo7Doo9xprUC7z-nMC1kp-BXr0-rz79AnZh_qY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA2mAxKUwERhgpCEkpGiJ7dweECorU6d1FdIG7C3YjtMFsbQ0LWh_it_IObmUIQFve-AtSk4sO_5y_Nk-Ph_Ats60VJk1rhQqcKXmvquRmLtWBppz7RkvzGqxiWg8jk9Okndr8KM7C0NhlZ1PrB11NjW0Rr7DSSvLR_ItXs--uqQaRburnYRGA4sDe_4dp2zVq_0B9u9zzvfeHu8O3VZVwDWBxxeukSYkVCO19HPK3WITlcjEREnGg9gT0uhMSB3IUCsZC4WIJxKlIptEuce1wHKvwFVJ3r8OFTxarelQjk2cMDXHAIVIvJ3i86RIvISSqPw28NX6AH8bBeqhbe_2__ZR7sCtlkSzfoP6u7Bmyx7c7F_YE-nBRivvfnregxsfimrZvFDdg4-7jfZiOWGHdSipZarM2MDaGWvTzeKTWlm7Ysjp2Yii5ZkYsKGlpRS8PrJniMjC4MXkrD29Vd6H95fS6E1YL6elfQAsj7OQjI30rYx0oHMlDRbq5TowXhA78LLr_NS0yddJA-RLipMwQkp6ASkObK-MZ03OkT-bvSEUrUwoUXh9YzqfpK3fwfeQsWFtJcc2eIGOVayUioTJuEL27DvwgjCYkjvDChnVnsrAZlFisLQfSqTABGwHtjoMpq2fq9JfAHTg2eoxeijadlKlnS7JJokFVkPIh_8u4ilsDI8PR-lof3zwCK5zWtmoo_m2YH0xX9rHcM18WxTV_En92zH4dNmQ_gk2-GUl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA3GTuBQQgQFGGkJCiprYzu0BobJSbdqoKgFj4iXYjlOCWFqaFrS_xq_jnFzKkIC3PfAWNSeWnX45_o59fD6AbZ1pqTJrXClU4ErNfVcjMXetDDTn2jNemNViE9F4HB8dJZMN-NGdhaG0ys4n1o46mxlaI-9z0srykXyLft6mRUyGoxfzry4pSNFOayen0UBk3558x_Cter43xP_6CeejV293dt1WYcA1gceXrpEmJIQjzfRzquNiE5XIxERJxoPYE9LoTEgdyFArGQuF6CdCpSKbRLnHtcB2z8H5CGNMCvwmwYf1-g7V28TgqTkSKETi9YvP0yLxEiqo8tskWGsF_G1GqKe50fX_-QXdgGstuWaD5mu4CRu27MHVwam9kh5camXfP5304MphUa2aB6pb8H6n0WQsp-x1nWJqmSozNrR2ztoytHinVtyuGHJ9dkBZ9EwM2a6lJRa8fmOPEamFwYvpcXuqq7wN785k0Hdgs5yV9i6wPM5CMjbStzLSgc6VNNiol-vAeEHswLMOCKlpi7KTNsiXFIMzQk16CjUObK-N500tkj-bvSRErU2ogHj9w2wxTVt_hM8hk8PeSo5j8AIdq1gpFQmTcYWs2nfgKeExJTeHHTKqPa2Bw6KCYekglEiNCeQObHV4TFv_V6W_wOjA4_Vt9Fy0HaVKO1uRTRIL7IaQ9_7dxCO4iEhOD_bG-_fhMqcFjzrJbws2l4uVfQAXzLdlUS0e1l8gg49njeifFeBuCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Machine+and+Deep+Learning+Methods+for+Large+3D+Heritage+Semantic+Segmentation&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Matrone%2C+Francesca&rft.au=Grilli%2C+Eleonora&rft.au=Ma&rft.au=Paolanti%2C+Marina&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=9&rft.issue=9&rft.spage=1&rft_id=info:doi/10.3390%2Fijgi9090535&rft.externalDocID=A641250913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon