Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving

The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 16; H. 10; S. 1668
Hauptverfasser: Elfring, Jos, Appeldoorn, Rein, Van den Dries, Sjoerd, Kwakkernaat, Maurice
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 11.10.2016
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle’s surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s16101668