Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches
Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg eff...
Gespeichert in:
| Veröffentlicht in: | Frontiers in oncology Jg. 9; S. 1143 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
01.11.2019
|
| Schlagworte: | |
| ISSN: | 2234-943X, 2234-943X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed. |
|---|---|
| AbstractList | Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as “Warburg effect or aerobic glycolysis.” As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed. Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed. |
| Author | Castro-Muñoz, Leonardo Josué de la Cruz-López, Karen G. García-Carrancá, Alejandro Reyes-Hernández, Diego O. Manzo-Merino, Joaquín |
| AuthorAffiliation | 6 Cátedras CONACyT-Instituto Nacional de Cancerología , Mexico City , Mexico 5 Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología , Mexico City , Mexico 2 Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico 1 Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico 4 Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Maestría en Investigación Clínica Experimental, Universidad Nacional Autónoma de Mexico , Mexico City , Mexico 3 Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología , Mexico City , Mexico |
| AuthorAffiliation_xml | – name: 2 Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico – name: 3 Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología , Mexico City , Mexico – name: 1 Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico – name: 6 Cátedras CONACyT-Instituto Nacional de Cancerología , Mexico City , Mexico – name: 5 Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología , Mexico City , Mexico – name: 4 Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Maestría en Investigación Clínica Experimental, Universidad Nacional Autónoma de Mexico , Mexico City , Mexico |
| Author_xml | – sequence: 1 givenname: Karen G. surname: de la Cruz-López fullname: de la Cruz-López, Karen G. – sequence: 2 givenname: Leonardo Josué surname: Castro-Muñoz fullname: Castro-Muñoz, Leonardo Josué – sequence: 3 givenname: Diego O. surname: Reyes-Hernández fullname: Reyes-Hernández, Diego O. – sequence: 4 givenname: Alejandro surname: García-Carrancá fullname: García-Carrancá, Alejandro – sequence: 5 givenname: Joaquín surname: Manzo-Merino fullname: Manzo-Merino, Joaquín |
| BookMark | eNp1kd1rFDEUxYNUbK199jWPvuw2nzOTF6EUq4VVQVbwLdzJ3OymzCRjZqbgf292t4IVDOSD5J4fJ_e8JmcxRSTkLWdrKRtz7VN0a8G4WTPOlXxBLoSQamWU_HH21_mcXE3TAyuj0owz-YqcS17LWtfsgnzZgJthRhoinfdIv-Fu6WEOKdLk6XYZUqafg8sJ42PIKQ4YZwqxo9s9ZhhxmYOjN-OYE7g9Tm_ISw_9hFdP-yX5fvdhe_tptfn68f72ZrNymol51XYaW8BWYc0AhOi0NgKbtqyN161qWc0couKG1y2ypjJal4nOV4x1xshLcn_idgke7JjDAPmXTRDs8SLlnYVcrPVohWqUYawV2nNV8woa4byHhkn0DlRdWO9PrHFpB-xc-WGG_hn0-UsMe7tLj7ZqpGGiKoB3T4Ccfi44zXYIk8O-h4hpmayQXGtRXBxK9am0dHSaMnrrwnxsdyGH3nJmD9HaQ7T2EK09Rlt01__o_tj7n-I3T7uofQ |
| CitedBy_id | crossref_primary_10_1007_s10585_021_10102_1 crossref_primary_10_1016_j_molimm_2024_08_004 crossref_primary_10_3724_abbs_2025106 crossref_primary_10_1093_carcin_bgaf030 crossref_primary_10_3390_ijms25063142 crossref_primary_10_1016_j_molcel_2025_02_011 crossref_primary_10_1016_j_biopha_2022_113690 crossref_primary_10_1007_s42978_020_00074_1 crossref_primary_10_1088_1752_7163_ace647 crossref_primary_10_3390_ijms232415650 crossref_primary_10_1007_s00262_023_03382_x crossref_primary_10_1016_j_semcancer_2022_05_003 crossref_primary_10_31083_j_fbl2903099 crossref_primary_10_3389_fimmu_2022_929677 crossref_primary_10_3390_pharmaceutics14061303 crossref_primary_10_1038_s41580_022_00538_y crossref_primary_10_1021_jacs_2c07669 crossref_primary_10_3892_ijo_2023_5584 crossref_primary_10_1186_s13046_024_03121_9 crossref_primary_10_3389_fimmu_2022_840610 crossref_primary_10_3390_gels11040269 crossref_primary_10_1016_j_ccr_2025_216889 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1016_j_biopha_2023_114802 crossref_primary_10_3390_ijms231810479 crossref_primary_10_3389_fphar_2024_1392241 crossref_primary_10_1002_adhm_202001549 crossref_primary_10_3390_cells12172144 crossref_primary_10_3390_metabo14040217 crossref_primary_10_7554_eLife_76987 crossref_primary_10_1016_j_intimp_2021_107461 crossref_primary_10_1186_s11658_024_00682_7 crossref_primary_10_1155_2024_7484490 crossref_primary_10_1007_s00432_024_05771_w crossref_primary_10_1016_j_heliyon_2024_e24777 crossref_primary_10_1016_j_semcancer_2020_02_007 crossref_primary_10_3389_fneur_2022_789355 crossref_primary_10_3390_cancers13184609 crossref_primary_10_1007_s11095_022_03399_4 crossref_primary_10_3390_cells10030714 crossref_primary_10_1016_j_bbadis_2023_166983 crossref_primary_10_3389_fonc_2023_1247444 crossref_primary_10_3390_cancers13236142 crossref_primary_10_3390_ph16101392 crossref_primary_10_3390_biology12020204 crossref_primary_10_1016_j_tcb_2020_10_002 crossref_primary_10_3389_fphys_2020_543564 crossref_primary_10_3390_antiox14081002 crossref_primary_10_1016_j_yexcr_2020_112282 crossref_primary_10_1097_RMR_0000000000000303 crossref_primary_10_1007_s12032_023_01997_9 crossref_primary_10_1016_j_talanta_2024_126839 crossref_primary_10_1007_s10555_025_10267_1 crossref_primary_10_1038_s41401_023_01205_4 crossref_primary_10_1007_s43440_025_00768_9 crossref_primary_10_1016_j_cell_2023_11_022 crossref_primary_10_3390_ijms242115500 crossref_primary_10_3390_ijms251910713 crossref_primary_10_1016_j_canlet_2020_12_020 crossref_primary_10_1111_cas_15699 crossref_primary_10_1093_jb_mvad066 crossref_primary_10_1002_smll_202100130 crossref_primary_10_3390_ijms22179507 crossref_primary_10_1186_s12885_021_08561_6 crossref_primary_10_1002_smtd_202201404 crossref_primary_10_1101_gad_348226_120 crossref_primary_10_3390_ijms252010894 crossref_primary_10_1038_s41590_024_01999_3 crossref_primary_10_3390_cells10040762 crossref_primary_10_1016_j_compbiomed_2023_107078 crossref_primary_10_3390_biom12111590 crossref_primary_10_2147_DDDT_S517331 crossref_primary_10_3390_molecules26237134 crossref_primary_10_1016_j_bbcan_2025_189396 crossref_primary_10_1016_j_jiec_2022_03_022 crossref_primary_10_3389_fimmu_2023_1137107 crossref_primary_10_1016_j_expneurol_2025_115318 crossref_primary_10_3389_fonc_2022_1000106 crossref_primary_10_1016_j_intimp_2024_113412 crossref_primary_10_3390_cancers14040976 crossref_primary_10_1042_BSR20230677 crossref_primary_10_1038_s41419_022_04821_w crossref_primary_10_1093_bjro_tzae019 crossref_primary_10_1002_anie_202307706 crossref_primary_10_1016_j_coisb_2021_100381 crossref_primary_10_3892_or_2024_8839 crossref_primary_10_1038_s41416_022_02099_5 crossref_primary_10_3389_fimmu_2023_1149989 crossref_primary_10_1038_s41392_022_01245_y crossref_primary_10_1002_smll_202404741 crossref_primary_10_1186_s12935_025_03761_7 crossref_primary_10_1016_j_jconrel_2021_07_038 crossref_primary_10_1016_j_bcp_2024_116469 crossref_primary_10_3389_fonc_2023_1264083 crossref_primary_10_3389_fphys_2022_859820 crossref_primary_10_1111_cpr_13388 crossref_primary_10_1177_10732748211041243 crossref_primary_10_1016_j_lfs_2021_119709 crossref_primary_10_1002_jcp_30570 crossref_primary_10_1186_s12885_021_09151_2 crossref_primary_10_3390_ijms252212201 crossref_primary_10_1146_annurev_cancerbio_061421_042605 crossref_primary_10_3390_cells10113093 crossref_primary_10_1038_s41598_024_76919_4 crossref_primary_10_1080_16078454_2023_2293514 crossref_primary_10_1051_epjconf_202125513002 crossref_primary_10_3390_cancers12061668 crossref_primary_10_3390_ijms241813928 crossref_primary_10_3389_fimmu_2023_894853 crossref_primary_10_1016_j_jff_2020_104143 crossref_primary_10_1371_journal_pcbi_1011374 crossref_primary_10_1186_s12935_022_02845_y crossref_primary_10_1038_s41598_020_73721_w crossref_primary_10_3389_fimmu_2021_786666 crossref_primary_10_1016_j_ccell_2023_01_009 crossref_primary_10_1134_S0026893324700663 crossref_primary_10_1016_j_drup_2021_100787 crossref_primary_10_3390_molecules30020393 crossref_primary_10_3724_abbs_2024111 crossref_primary_10_1038_s41571_021_00564_3 crossref_primary_10_1016_j_tranon_2025_102323 crossref_primary_10_3390_ijms241311015 crossref_primary_10_1002_advs_202406486 crossref_primary_10_3390_cancers16162817 crossref_primary_10_1155_2021_5529484 crossref_primary_10_3390_cells9041053 crossref_primary_10_3390_ph16020153 crossref_primary_10_1016_j_canlet_2024_217243 crossref_primary_10_1016_j_micres_2024_127857 crossref_primary_10_3390_cancers12061558 crossref_primary_10_3390_s22155480 crossref_primary_10_1158_0008_5472_CAN_23_0519 crossref_primary_10_3390_ijms24010024 crossref_primary_10_1093_noajnl_vdaf078 crossref_primary_10_3390_molecules30081763 crossref_primary_10_1016_j_coviro_2024_101424 crossref_primary_10_1158_0008_5472_CAN_22_0887 crossref_primary_10_3389_fcell_2021_739392 crossref_primary_10_3389_fonc_2022_1042196 crossref_primary_10_3390_metabo13070872 crossref_primary_10_1111_cpr_13478 crossref_primary_10_1016_j_apmt_2024_102277 crossref_primary_10_1016_j_micromeso_2024_113182 crossref_primary_10_1002_adfm_202516400 crossref_primary_10_1007_s12672_025_02822_7 crossref_primary_10_1007_s12094_022_03000_9 crossref_primary_10_3389_fphys_2021_710420 crossref_primary_10_3389_fonc_2022_816504 crossref_primary_10_3389_fimmu_2021_691134 crossref_primary_10_3892_ijo_2023_5532 crossref_primary_10_1016_j_bbcan_2025_189353 crossref_primary_10_1038_s41420_025_02415_x crossref_primary_10_3389_fimmu_2025_1513806 crossref_primary_10_1186_s12885_025_14393_5 crossref_primary_10_1016_j_ab_2025_115885 crossref_primary_10_1089_cbr_2020_3564 crossref_primary_10_2147_CMAR_S262075 crossref_primary_10_1007_s10565_025_10068_w crossref_primary_10_1016_j_critrevonc_2024_104438 crossref_primary_10_1038_s41392_020_00298_1 crossref_primary_10_1002_cam4_6623 crossref_primary_10_3390_biomedicines12081801 crossref_primary_10_1111_imr_13316 crossref_primary_10_3390_biom14101202 crossref_primary_10_3390_cancers17010155 crossref_primary_10_1186_s12951_025_03524_6 crossref_primary_10_3390_ijms23010157 crossref_primary_10_3390_ijms241512222 crossref_primary_10_1186_s12935_023_02852_7 crossref_primary_10_1002_smtd_202001207 crossref_primary_10_1016_j_cej_2023_144563 crossref_primary_10_1002_smll_202311101 crossref_primary_10_3389_fonc_2022_908695 crossref_primary_10_3389_fonc_2023_1106667 crossref_primary_10_1371_journal_pone_0271818 crossref_primary_10_15252_embj_2022112067 crossref_primary_10_1016_j_jconrel_2022_06_022 crossref_primary_10_3389_fimmu_2024_1513047 crossref_primary_10_1016_j_semcancer_2022_11_007 crossref_primary_10_3390_ijms26167947 crossref_primary_10_3390_ijms25189896 crossref_primary_10_3389_fonc_2021_757323 crossref_primary_10_1038_s41568_021_00348_y crossref_primary_10_3389_fonc_2020_00231 crossref_primary_10_3389_froh_2021_686337 crossref_primary_10_3390_cancers14143528 crossref_primary_10_3390_cancers14194552 crossref_primary_10_1016_j_bmc_2020_115870 crossref_primary_10_1111_1759_7714_14235 crossref_primary_10_1038_s41467_024_51207_x crossref_primary_10_1186_s13045_024_01600_2 crossref_primary_10_1002_adma_202304296 crossref_primary_10_3389_fimmu_2024_1434118 crossref_primary_10_3389_fnut_2022_924192 crossref_primary_10_1016_j_dld_2022_11_012 crossref_primary_10_1371_journal_pone_0309700 crossref_primary_10_3390_ijms232415831 crossref_primary_10_3390_nu16244338 crossref_primary_10_3389_fonc_2022_897703 crossref_primary_10_1097_CM9_0000000000002989 crossref_primary_10_3389_fonc_2022_967342 crossref_primary_10_3390_cancers13163999 crossref_primary_10_1016_j_apsb_2025_04_002 crossref_primary_10_3389_pore_2021_1609951 crossref_primary_10_1136_bmjopen_2023_080377 crossref_primary_10_1016_j_biopha_2024_117509 crossref_primary_10_3390_cancers15010196 crossref_primary_10_1038_s41598_024_77628_8 crossref_primary_10_1002_ange_202307706 crossref_primary_10_1002_ange_202104304 crossref_primary_10_1038_s41419_021_04391_3 crossref_primary_10_1186_s12935_023_03007_4 crossref_primary_10_1038_s41467_023_41139_3 crossref_primary_10_1177_10732748221148912 crossref_primary_10_3390_cancers14143500 crossref_primary_10_3892_ol_2024_14726 crossref_primary_10_1007_s10620_021_07057_4 crossref_primary_10_1016_j_compbiomed_2025_111000 crossref_primary_10_1016_j_molmet_2021_101389 crossref_primary_10_3389_fimmu_2022_901111 crossref_primary_10_1016_j_cell_2021_08_023 crossref_primary_10_1016_j_mad_2022_111742 crossref_primary_10_3390_pharmaceutics15082166 crossref_primary_10_1016_j_cej_2024_152574 crossref_primary_10_3390_metabo12020154 crossref_primary_10_3390_antiox13070801 crossref_primary_10_3389_fimmu_2024_1360291 crossref_primary_10_1016_j_ccell_2023_05_015 crossref_primary_10_1002_1878_0261_70083 crossref_primary_10_1016_j_ymben_2021_11_006 crossref_primary_10_3390_biom14091195 crossref_primary_10_3390_ijms222413311 crossref_primary_10_3390_cancers13225817 crossref_primary_10_1007_s10753_022_01680_7 crossref_primary_10_1016_j_biopha_2022_113801 crossref_primary_10_1210_endrev_bnae005 crossref_primary_10_1186_s12885_023_11631_6 crossref_primary_10_3389_fphar_2022_928419 crossref_primary_10_1016_j_aca_2025_344049 crossref_primary_10_1016_j_bbcan_2023_189062 crossref_primary_10_5306_wjco_v16_i8_107208 crossref_primary_10_1016_j_ejmech_2024_116598 crossref_primary_10_3389_fcell_2021_701672 crossref_primary_10_3390_v14010103 crossref_primary_10_3389_fonc_2020_00317 crossref_primary_10_1002_advs_202102595 crossref_primary_10_1002_tox_23497 crossref_primary_10_3390_ijms252211994 crossref_primary_10_1016_j_intimp_2025_114871 crossref_primary_10_3390_metabo15030201 crossref_primary_10_1055_a_1308_3476 crossref_primary_10_1002_hed_27161 crossref_primary_10_1016_j_semcancer_2022_10_001 crossref_primary_10_3390_nu15061514 crossref_primary_10_1111_jog_15791 crossref_primary_10_3389_fphar_2022_1004383 crossref_primary_10_1016_j_biochi_2023_09_021 crossref_primary_10_1021_acscentsci_3c00702 crossref_primary_10_3390_biom15071010 crossref_primary_10_4049_jimmunol_2300339 crossref_primary_10_1186_s12859_022_04967_6 crossref_primary_10_1016_j_omto_2020_07_006 crossref_primary_10_1016_j_intimp_2024_113470 crossref_primary_10_1016_j_bcp_2025_117337 crossref_primary_10_1186_s40170_021_00247_8 crossref_primary_10_1016_j_addr_2021_114003 crossref_primary_10_1016_j_omtn_2023_01_017 crossref_primary_10_1080_08830185_2022_2095374 crossref_primary_10_1016_j_mehy_2021_110520 crossref_primary_10_1089_ars_2022_0190 crossref_primary_10_1016_j_matbio_2024_07_003 crossref_primary_10_3390_antiox12020220 crossref_primary_10_3390_biom10071068 crossref_primary_10_1002_ijc_34766 crossref_primary_10_1186_s12943_022_01503_1 crossref_primary_10_1128_mbio_03595_24 crossref_primary_10_3389_fimmu_2024_1409238 crossref_primary_10_3390_cancers14092306 crossref_primary_10_3389_fimmu_2025_1563303 crossref_primary_10_1371_journal_pbio_3001197 crossref_primary_10_3389_fonc_2023_1141851 crossref_primary_10_1016_j_jconrel_2022_12_003 crossref_primary_10_1016_j_cmet_2021_08_012 crossref_primary_10_1186_s13578_024_01231_7 crossref_primary_10_7554_eLife_92511 crossref_primary_10_1002_cac2_12182 crossref_primary_10_3390_antiox12112012 crossref_primary_10_7759_cureus_48100 crossref_primary_10_3390_cells13181533 crossref_primary_10_1016_j_mtchem_2023_101894 crossref_primary_10_3390_genes12050777 crossref_primary_10_3390_biom13030465 crossref_primary_10_3389_fmolb_2023_1229760 crossref_primary_10_3390_cancers16244132 crossref_primary_10_1007_s10147_024_02664_3 crossref_primary_10_3390_cells10071715 crossref_primary_10_3389_fonc_2023_1183474 crossref_primary_10_1177_23993693241297380 crossref_primary_10_1016_j_heliyon_2024_e27465 crossref_primary_10_1158_2326_6066_CIR_20_0741 crossref_primary_10_1186_s41181_024_00267_x crossref_primary_10_1002_adtp_202000248 crossref_primary_10_1002_adhm_202500655 crossref_primary_10_1016_j_biocel_2020_105752 crossref_primary_10_1158_1535_7163_MCT_24_0266 crossref_primary_10_1016_j_canlet_2021_02_019 crossref_primary_10_1002_smtd_202300945 crossref_primary_10_3389_fonc_2022_979154 crossref_primary_10_7717_peerj_14930 crossref_primary_10_1016_j_ejmcr_2024_100131 crossref_primary_10_1007_s12274_022_4620_z crossref_primary_10_1186_s12929_022_00855_6 crossref_primary_10_1016_j_isci_2023_107898 crossref_primary_10_3390_ph17020195 crossref_primary_10_3389_fvets_2021_700669 crossref_primary_10_3390_ijms252413242 crossref_primary_10_3892_or_2023_8642 crossref_primary_10_1016_j_bbadis_2020_166016 crossref_primary_10_3390_ijms242417422 crossref_primary_10_1007_s12026_023_09376_2 crossref_primary_10_1002_mrm_28976 crossref_primary_10_1016_j_prp_2025_156151 crossref_primary_10_1136_bjo_2024_326495 crossref_primary_10_3389_fimmu_2020_616188 crossref_primary_10_1080_13543776_2022_2067478 crossref_primary_10_3390_ijms26178231 crossref_primary_10_1038_s41598_022_10143_w crossref_primary_10_3390_cancers13195028 crossref_primary_10_2147_OTT_S253485 crossref_primary_10_3390_foods14101713 crossref_primary_10_1002_cbin_12097 crossref_primary_10_1158_0008_5472_CAN_22_3551 crossref_primary_10_3389_fonc_2022_1101503 crossref_primary_10_3390_metabo13030345 crossref_primary_10_1007_s00432_023_05483_7 crossref_primary_10_1186_s12943_024_02205_6 crossref_primary_10_1016_j_ajps_2025_101059 crossref_primary_10_3389_fimmu_2022_979116 crossref_primary_10_3389_fonc_2022_1022716 crossref_primary_10_1155_2023_2830306 crossref_primary_10_22456_1679_9216_125067 crossref_primary_10_26508_lsa_202302200 crossref_primary_10_1007_s10439_022_02904_5 crossref_primary_10_1016_j_bbadis_2024_167563 crossref_primary_10_1186_s12935_021_02217_y crossref_primary_10_1016_j_pbiomolbio_2021_08_005 crossref_primary_10_1186_s12964_022_00951_y crossref_primary_10_1038_s41467_020_17402_2 crossref_primary_10_3892_or_2023_8548 crossref_primary_10_1016_j_cnsns_2021_105783 crossref_primary_10_1038_s44319_024_00288_2 crossref_primary_10_3390_cancers13050996 crossref_primary_10_3390_ijms242015369 crossref_primary_10_1002_EXP_20230037 crossref_primary_10_1007_s00262_022_03215_3 crossref_primary_10_3389_fphar_2022_868695 crossref_primary_10_3390_cancers14020437 crossref_primary_10_1007_s43440_023_00504_1 crossref_primary_10_3390_cancers17091457 crossref_primary_10_1016_j_bbcan_2020_188442 crossref_primary_10_3390_biom12091182 crossref_primary_10_3748_wjg_v29_i29_4499 crossref_primary_10_1016_j_metabol_2022_155371 crossref_primary_10_1186_s12885_022_10364_2 crossref_primary_10_1007_s11010_025_05312_0 crossref_primary_10_1016_j_phrs_2025_107841 crossref_primary_10_1242_dmm_048934 crossref_primary_10_3390_cancers16213671 crossref_primary_10_3390_antiox10060966 crossref_primary_10_3390_cancers14246214 crossref_primary_10_1002_med_21874 crossref_primary_10_3390_ijms25126328 crossref_primary_10_1038_s41467_023_41016_z crossref_primary_10_3389_fphys_2023_1114231 crossref_primary_10_1186_s13045_022_01349_6 crossref_primary_10_1111_tra_12933 crossref_primary_10_26508_lsa_202000903 crossref_primary_10_3390_ijms21155487 crossref_primary_10_1016_j_mbs_2023_109044 crossref_primary_10_1186_s12951_022_01752_8 crossref_primary_10_1158_0008_5472_CAN_22_3015 crossref_primary_10_3390_pharmaceutics14112331 crossref_primary_10_1371_journal_pcbi_1011944 crossref_primary_10_1111_imm_13574 crossref_primary_10_1038_s42005_025_02133_x crossref_primary_10_1007_s00432_022_04501_4 crossref_primary_10_1016_j_molcel_2020_05_034 crossref_primary_10_1016_j_drudis_2021_07_014 crossref_primary_10_3390_molecules25225355 crossref_primary_10_3389_fonc_2025_1599183 crossref_primary_10_3390_ijms24065141 crossref_primary_10_1007_s10957_023_02271_8 crossref_primary_10_1007_s12672_025_02873_w crossref_primary_10_3389_fendo_2022_1044670 crossref_primary_10_3390_ijms24119137 crossref_primary_10_3390_md22090391 crossref_primary_10_1007_s12015_024_10833_0 crossref_primary_10_1016_j_bbagen_2025_130801 crossref_primary_10_1186_s13046_022_02447_6 crossref_primary_10_1007_s12149_023_01892_3 crossref_primary_10_1016_j_bbcan_2022_188705 crossref_primary_10_1016_j_cej_2025_161370 crossref_primary_10_1038_s41418_023_01157_6 crossref_primary_10_1016_j_tim_2020_01_001 crossref_primary_10_2174_1874467214666211006123728 crossref_primary_10_1002_nbm_4599 crossref_primary_10_3389_fimmu_2021_729209 crossref_primary_10_1002_elps_202100217 crossref_primary_10_3390_biomedicines10040806 crossref_primary_10_1016_j_coi_2020_08_001 crossref_primary_10_3390_cancers13174281 crossref_primary_10_1038_s41419_023_06187_z crossref_primary_10_1017_erm_2024_9 crossref_primary_10_3390_pharmaceutics15061612 crossref_primary_10_1039_D2BM00650B crossref_primary_10_1126_scitranslmed_add2712 crossref_primary_10_1186_s40170_024_00362_2 crossref_primary_10_3390_cancers13071488 crossref_primary_10_1038_s41598_022_15562_3 crossref_primary_10_1002_mc_23436 crossref_primary_10_1016_j_ejmech_2024_116179 crossref_primary_10_1002_cbin_12172 crossref_primary_10_1016_j_bbcan_2021_188553 crossref_primary_10_1038_s41419_023_05998_4 crossref_primary_10_3390_ijms232214360 crossref_primary_10_3390_ijms22189910 crossref_primary_10_1186_s13046_022_02302_8 crossref_primary_10_3390_cells10102617 crossref_primary_10_3390_biology14091213 crossref_primary_10_3390_ijms22115703 crossref_primary_10_3390_ijms25052630 crossref_primary_10_3389_fphar_2022_1052922 crossref_primary_10_1111_cas_14603 crossref_primary_10_3390_cells12060939 crossref_primary_10_1016_j_colsurfb_2025_114844 crossref_primary_10_3390_ijms24032020 crossref_primary_10_1007_s12672_025_02663_4 crossref_primary_10_1038_s41416_023_02282_2 crossref_primary_10_3389_fonc_2021_628359 crossref_primary_10_1016_j_bcp_2023_115528 crossref_primary_10_1158_0008_5472_CAN_22_3481 crossref_primary_10_3892_ijo_2024_5628 crossref_primary_10_3389_fonc_2020_575037 crossref_primary_10_1002_jcp_30661 crossref_primary_10_1186_s10020_024_00879_8 crossref_primary_10_3389_fphar_2025_1586973 crossref_primary_10_3389_fonc_2022_831079 crossref_primary_10_3389_fonc_2020_589434 crossref_primary_10_3390_cancers14215468 crossref_primary_10_1016_j_cclet_2024_110314 crossref_primary_10_1007_s11010_024_05041_w crossref_primary_10_1016_j_colsurfb_2022_112832 crossref_primary_10_3389_fnut_2025_1591508 crossref_primary_10_1186_s12958_021_00770_9 crossref_primary_10_1002_jcb_30381 crossref_primary_10_1002_1878_0261_13261 crossref_primary_10_1155_jimr_6573891 crossref_primary_10_3390_cells14090673 crossref_primary_10_1002_adma_202203915 crossref_primary_10_4155_fmc_2021_0205 crossref_primary_10_1016_j_taap_2023_116378 crossref_primary_10_1038_s41417_024_00864_7 crossref_primary_10_1016_j_toxrep_2025_101902 crossref_primary_10_3389_fonc_2021_672339 crossref_primary_10_1002_jcp_30536 crossref_primary_10_1016_j_bbrc_2024_149741 crossref_primary_10_1016_j_phanu_2023_100340 crossref_primary_10_1111_cas_16133 crossref_primary_10_3389_fonc_2021_696402 crossref_primary_10_3390_nu15010003 crossref_primary_10_7759_cureus_70700 crossref_primary_10_1016_j_jddst_2024_105938 crossref_primary_10_3389_fonc_2022_796311 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_3390_ph15101257 crossref_primary_10_1002_2211_5463_13452 crossref_primary_10_1002_adma_202404901 crossref_primary_10_1039_D5TB00509D crossref_primary_10_3389_fonc_2022_1077053 crossref_primary_10_3390_cancers12051232 crossref_primary_10_1016_j_abb_2020_108659 crossref_primary_10_3390_cells11111854 crossref_primary_10_1007_s12672_025_02238_3 crossref_primary_10_1002_wnan_1842 crossref_primary_10_1038_s41598_024_71140_9 crossref_primary_10_1016_j_cbi_2021_109602 crossref_primary_10_1007_s12094_025_03894_1 crossref_primary_10_1016_j_tranon_2023_101758 crossref_primary_10_1039_D0BM01153C crossref_primary_10_1172_JCI177606 crossref_primary_10_3389_fimmu_2020_587913 crossref_primary_10_1021_acsomega_5c00052 crossref_primary_10_1111_imm_13871 crossref_primary_10_3390_cells12162048 crossref_primary_10_7554_eLife_92511_3 crossref_primary_10_1038_s41418_024_01436_w crossref_primary_10_1002_ijc_35139 crossref_primary_10_3390_cells12060857 crossref_primary_10_3390_molecules26195900 crossref_primary_10_1002_jbio_202000301 crossref_primary_10_1007_s40279_024_02031_2 crossref_primary_10_1021_acscentsci_3c01250 crossref_primary_10_3390_foods13172687 crossref_primary_10_3389_fonc_2020_615472 crossref_primary_10_1016_j_adcanc_2022_100058 crossref_primary_10_1134_S002209302206028X crossref_primary_10_1007_s10822_024_00568_y crossref_primary_10_1002_advs_202305662 crossref_primary_10_1002_agt2_533 crossref_primary_10_1016_j_devcel_2020_06_018 crossref_primary_10_1038_s41388_024_03054_9 crossref_primary_10_1515_nanoph_2021_0171 crossref_primary_10_1016_j_inoche_2025_114313 crossref_primary_10_1007_s11033_021_06149_8 crossref_primary_10_1016_j_bspc_2023_105169 crossref_primary_10_1002_nbm_4650 crossref_primary_10_1038_s44222_022_00004_6 crossref_primary_10_3389_fimmu_2024_1492050 crossref_primary_10_3389_fphys_2022_951390 crossref_primary_10_1186_s12885_022_09956_9 crossref_primary_10_1186_s40170_021_00252_x crossref_primary_10_2147_OTT_S338826 crossref_primary_10_26599_NR_2025_94907420 crossref_primary_10_1002_adtp_202100224 crossref_primary_10_1016_j_tem_2022_07_004 crossref_primary_10_1002_adfm_202400929 crossref_primary_10_1016_j_cej_2022_140730 crossref_primary_10_1186_s12964_023_01253_7 crossref_primary_10_1016_j_talanta_2023_125582 crossref_primary_10_1002_biof_1799 crossref_primary_10_1016_j_trac_2022_116640 crossref_primary_10_1016_j_semcancer_2020_12_002 crossref_primary_10_1016_j_mtnano_2024_100509 crossref_primary_10_1038_s41556_022_01002_x crossref_primary_10_3390_cancers15133473 crossref_primary_10_3390_ijms242417628 crossref_primary_10_1016_j_heliyon_2025_e42098 crossref_primary_10_1016_j_jddst_2025_107050 crossref_primary_10_3390_cancers12020310 crossref_primary_10_3389_fmolb_2023_1143073 crossref_primary_10_1002_cnr2_2116 crossref_primary_10_1016_j_tibs_2020_07_005 crossref_primary_10_1002_anie_202104304 crossref_primary_10_3389_fsurg_2022_923427 crossref_primary_10_1016_j_heliyon_2024_e32914 crossref_primary_10_3389_fimmu_2021_683381 crossref_primary_10_3390_cancers15082195 crossref_primary_10_1007_s12032_023_02115_5 crossref_primary_10_1186_s12943_024_02216_3 crossref_primary_10_2174_0929867330666230607104441 crossref_primary_10_1093_nar_gkaa1179 crossref_primary_10_1016_j_semcancer_2023_01_007 crossref_primary_10_1002_advs_202507820 crossref_primary_10_3390_ijms22031258 crossref_primary_10_1007_s11060_024_04862_5 crossref_primary_10_1016_j_biomaterials_2025_123203 crossref_primary_10_1007_s00726_024_03438_x crossref_primary_10_3389_fsurg_2023_1118403 crossref_primary_10_1186_s10020_021_00300_8 crossref_primary_10_31083_j_fbl2905178 crossref_primary_10_3389_fonc_2020_591342 crossref_primary_10_1369_00221554221101662 crossref_primary_10_1155_2021_8859181 crossref_primary_10_3390_nu14091722 crossref_primary_10_1016_j_mcpro_2025_100944 crossref_primary_10_3389_fonc_2022_1036477 crossref_primary_10_3390_cancers17111793 crossref_primary_10_3390_molecules26123494 crossref_primary_10_1016_j_pharmthera_2021_107986 crossref_primary_10_3390_ijms23031353 crossref_primary_10_1016_j_cmet_2023_07_005 crossref_primary_10_3389_fimmu_2025_1576283 crossref_primary_10_3390_cancers12082087 crossref_primary_10_1016_j_semcancer_2022_09_007 crossref_primary_10_1109_TIM_2023_3296819 crossref_primary_10_3390_metabo11110777 crossref_primary_10_1186_s12885_020_06885_3 crossref_primary_10_3390_cells9122598 crossref_primary_10_3389_fphar_2022_1091779 crossref_primary_10_1039_D0BM01196G crossref_primary_10_3390_biology11020270 crossref_primary_10_1111_cns_70121 crossref_primary_10_3390_cancers14133237 crossref_primary_10_3389_fonc_2022_790916 crossref_primary_10_3389_fcell_2022_873029 crossref_primary_10_3389_fphar_2024_1383274 crossref_primary_10_3390_biomedicines9060698 crossref_primary_10_1007_s12272_023_01431_8 crossref_primary_10_1016_j_cmet_2025_01_002 crossref_primary_10_3390_vaccines8040562 |
| Cites_doi | 10.1038/sj.jid.5700001 10.18632/oncotarget.22786 10.1080/15384101.2016.1252882 10.1016/j.tcb.2017.06.003 10.1016/j.cell.2017.09.019 10.1038/s41598-019-40617-3 10.1038/nchembio.1141 10.1080/15384101.2016.1175258 10.1146/annurev.iy.09.040191.001415 10.1101/GAD.314617.118 10.1016/j.cell.2016.11.037 10.1038/nature13490 10.1038/nchembio.2172 10.1016/j.cmet.2011.12.009 10.1128/CDLI.8.2.209-220.2001 10.1016/j.ejrad.2009.12.022 10.1101/gad.189365.112 10.3390/biology5040038 10.1534/genetics.117.300262 10.1007/s13277-015-4415-x 10.1093/jnci/djt184 10.1080/15384101.2015.1120930 10.1128/mcb.06120-11 10.1085/jgp.8.6.519 10.1159/000176723 10.1038/onc.2017.6 10.1039/c7md00222j 10.1042/bj3500219 10.1113/jphysiol.2003.058701 10.1186/1471-2407-14-760 10.4103/0976-237x.194108 10.1124/mol.106.026245 10.1074/jbc.271.51.32529 10.1073/pnas.0709747104 10.1007/s13238-017-0451-1 10.1126/science.8097338 10.1158/0008-5472.CAN-08-4806 10.1016/j.urolonc.2018.08.015 10.1073/pnas.0914433107 10.1007/s00109-015-1376-x 10.4161/cc.10.23.18151 10.1002/jcp.27049 10.1158/0008-5472.CAN-06-3184 10.1016/j.tibs.2015.12.001 10.3389/fonc.2018.00324 10.3390/nu10111564 10.1038/nchembio744 10.18632/oncotarget.18175 10.1158/2326-6066.cir-18-0481 10.1038/ni1581.Up 10.1016/j.canlet.2015.05.015 10.1007/s12272-019-01139-8 10.1016/J.CLINBIOCHEM.2008.06.011 10.1002/cam4.2024 10.4049/jimmunol.1202702 10.1038/onc.2014.47 10.1016/j.trecan.2016.11.001 10.4049/jimmunol.1300772 10.1007/s00432-003-0450-x 10.1016/j.radonc.2006.08.012 10.1158/0008-5472.can-18-3726 10.1038/s41416-018-0216-5 10.1074/jbc.RA118.005536 10.3389/fimmu.2017.01124 10.3390/cancers11040450 10.1021/acs.jmedchem.7b00318 10.1016/s0092-8674(00)81683-9 10.1016/j.ejmech.2019.05.033 10.2174/0929867043364711 10.1080/15548627.2017.1381804 10.3390/cancers11020257 10.1093/brain/awp202 10.2174/138161212799504902 10.1182/blood.v95.10.3183.010k36_3183_3190 10.1016/j.tibs.2012.04.002 10.1038/icb.2010.78 10.1074/jbc.M411950200 10.1371/journal.pone.0002915 10.18632/oncotarget.20836 10.1182/blood-2006-07-035972 10.1146/annurev.bi.34.070165.001501 10.1038/srep13605 10.2147/CMAR.S57550 10.1379/csc-99r.1 10.3892/or.2017.5479 10.1002/eji.200838331 10.1186/s12943-019-0992-4 10.1093/emboj/19.15.3896 10.1074/jbc.M116.749424 10.1371/journal.pone.0139598 10.1158/1535-7163.MCT-17-1253 10.1097/MD.0000000000010741 10.1016/j.clineuro.2004.10.009 10.1371/journal.pone.0075154 10.1136/bmj.1.5022.779 10.1016/j.cmet.2015.06.023 10.1038/nature01112 10.1016/j.ccr.2006.04.023 10.1016/j.trecan.2017.09.002 10.1002/cpt.418 10.7150/jca.25257 10.1016/j.canlet.2014.01.031 10.1172/JCI64264DS1 10.1159/000495232 10.1208/s12248-018-0279-5 10.1016/j.exger.2013.12.009 10.1159/000349944 10.1016/j.bbabio.2017.02.005 10.1016/j.tibs.2018.10.011 10.1016/j.celrep.2016.03.026 10.2307/1712825 10.1016/j.tibs.2006.11.006 10.1074/jbc.M202487200 10.1016/S0021-9258(18)99819-4 10.1016/j.celrep.2018.11.043 10.1016/j.cmet.2016.08.011 10.1158/0008-5472.CAN-12-1949 10.1172/JCI36843 10.1158/0008-5472.CAN-15-1743 10.1080/15384101.2018.1444305 10.1038/s41598-019-38854-7 10.1038/nrc3599 10.1016/j.ejps.2017.05.015 10.1016/j.celrep.2014.11.025 10.1113/jphysiol.2009.178350 10.1016/j.mito.2014.05.007 10.1042/bsr20181476 10.1002/hed.21618 10.18632/oncotarget.18215 10.1152/ajpendo.1990.259.5.e677 10.1002/cam4.1587 10.1158/0008-5472.CAN-17-3226 10.1016/j.ebiom.2019.02.025 10.1073/pnas.94.13.6658 10.3904/kjim.2016.227 10.1155/2013/540850 10.1126/sciadv.1600200 10.1016/j.cmet.2018.03.008 10.1158/0008-5472.CAN-12-2796 10.1016/j.cmet.2015.12.006 10.3390/ijms19092714 10.1042/bj1540405 10.1186/1471-2407-14-751 10.1038/bjc.1995.472 10.1002/cam4.1820 10.3233/CBM-150514 10.1016/j.celrep.2014.07.053 10.1152/ajpendo.00594.2005 10.1097/md.0000000000013151 10.1074/jbc.M111.255331 10.1016/0092-8674(94)90361-1 10.1016/S0360-3016(01)01630-3 10.1146/annurev.immunol.19.1.683 10.1038/s41467-018-06841-7 10.1002/path.4006 10.1038/nchembio.2307 10.1016/j.coph.2019.01.008 10.4161/cc.10.15.16585 10.1016/S0021-9258(17)30124-2 10.1073/pnas.1901376116 10.4049/jimmunol.180.11.7175 10.1016/j.cmet.2018.08.006 10.18632/oncotarget.25371 10.1002/0470868716.ch15 10.1126/science.1193494 10.1016/j.cell.2011.02.013 10.1038/nature04808 10.3233/DMA-2009-0596 10.1016/j.bbamcr.2019.03.004 10.1038/bjc.1979.192 10.1158/0008-5472.CAN-17-0764 10.3892/ijo.2017.3979 10.1038/nature24057 10.7150/ijbs.30297 10.1016/j.cmet.2017.04.004 10.1093/carcin/bgw127 10.1074/jbc.M511397200 10.4161/cc.9.17.12731 10.1016/j.cell.2016.07.002 10.1016/j.cell.2015.12.034 10.1007/s11427-016-0348-7 10.1016/j.celrep.2018.10.100 10.4161/cc.24092 10.1158/0008-5472.CAN-11-1272 10.1038/onc.2009.229 10.1016/j.humpath.2014.09.013 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino. Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino. 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino |
| Copyright_xml | – notice: Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino. – notice: Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino. 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fonc.2019.01143 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2234-943X |
| ExternalDocumentID | oai_doaj_org_article_2484900b25f14716a82cffa803efca47 PMC6839026 10_3389_fonc_2019_01143 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c502t-bd5ebaeb4e70aa22d5592e8b5928f5b4b070cee41917be086955695ecf600d993 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 703 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497397800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2234-943X |
| IngestDate | Fri Oct 03 12:52:15 EDT 2025 Thu Aug 21 18:42:22 EDT 2025 Fri Sep 05 12:18:42 EDT 2025 Tue Nov 18 22:41:42 EST 2025 Sat Nov 29 01:49:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-bd5ebaeb4e70aa22d5592e8b5928f5b4b070cee41917be086955695ecf600d993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Nadia Judith Jacobo-Herrera, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico This article was submitted to Cancer Metabolism, a section of the journal Frontiers in Oncology Reviewed by: Michael P. Lisanti, University of Salford, United Kingdom; Liwei Lang, Augusta University, United States |
| OpenAccessLink | https://doaj.org/article/2484900b25f14716a82cffa803efca47 |
| PMID | 31737570 |
| PQID | 2315528496 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2484900b25f14716a82cffa803efca47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839026 proquest_miscellaneous_2315528496 crossref_citationtrail_10_3389_fonc_2019_01143 crossref_primary_10_3389_fonc_2019_01143 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Frontiers in oncology |
| PublicationYear | 2019 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Park (B8) 2013; 36 Daneshmandi (B160) 2019; 11 Pérez-Escuredo (B59) 2016; 15 Baek (B116) 2014; 9 Bonuccelli (B118) 2010; 9 Fiaschi (B126) 2012; 72 Quennet (B37) 2006; 81 Consoli (B26) 2017; 259 Zhao (B188) 2009; 28 Le (B68) 2010; 107 Park (B54) 2016; 15 Pavlova (B117) 2016; 23 Andersen (B148) 2006; 126 Walenta (B33) 2003; 129 Liang (B61) 2016; 291 Curry (B93) 2013; 12 Steinman (B143) 1991; 9 Hou (B67) 2019; 39 Gupta (B142) 2014; 54 Fu (B127) 2017; 8 Nikoobakht (B36) 2019; 22 Racker (B4) 1972; 60 Dang (B131) 2012; 26 La Manna (B189) 2018; 19 Chen (B47) 2016; 12 Lambert (B166) 2017; 168 Leithner (B55) 2015; 34 Mayer (B13) 2014; 14 Brooks (B29) 2018; 27 Leone (B147) 2013; 105 Ippolito (B101) 2019; 44 Saluja (B70) 2016; 37 Bisetto (B100) 2018; 8 Dimmer (B115) 2000; 350 Calcinotto (B161) 2012; 72 Nalbandian (B23) 2016; 5 Estrella (B104) 2013; 73 Morandi (B102) 2016; 2 Scott (B146) 2001; 8 Levine (B18) 2010; 330 Groh (B136) 2002; 419 Lyssiotis (B20) 2017; 27 DeBerardinis (B41) 2007; 104 Zhang (B94) 2018; 9 Holohan (B170) 2013; 13 Brand (B159) 2016; 24 Hsieh (B151) 1993; 260 Hanahan (B2) 2011; 144 Hashimoto (B48) 2006; 290 Mohajertehran (B71) 2019; 7 Johnson (B16) 2012; 37 Martinez-Outschoorn (B120) 2011; 10 Davies (B128) 2014; 6 Burnet (B149) 1957; 1 Kennedy (B34) 2013; 8 Deligeoroglou (B145) 2013; 2013 Mu (B165) 2018; 17 Walenta (B30) 2000; 60 Warburg (B3) 1927; 8 Spencer (B85) 1976; 154 Kim (B178) 2019; 9 Henninot (B190) 2018; 61 Gladden (B24) 2004; 558 Kimmelman (B121) 2017; 25 Zhou (B177) 2019; 177 Hensley (B113) 2016; 164 Gallagher (B50) 2009; 132 Wong (B12) 2015; 356 Shime (B157) 2008; 180 Jin (B74) 2017; 36 Paul (B133) 2017; 8 Apicella (B173) 2018; 28 Colegio (B163) 2014; 513 Nasi (B150) 2013; 191 Brooks (B27) Fu (B64) 2018; 97 Lin (B164) 2017; 8 Guan (B183) 2019; 21 Faubert (B56) 2017; 171 Talasniemi (B21) 2008; 41 Intlekofer (B78) 2017; 13 Pilon-Thomas (B162) 2016; 76 Kim (B144) 2018; 33 DeBerardinis (B174) 2016; 2 Semenza (B80) 1996; 271 Fischer (B158) 2007; 109 Bok (B57) 2019; 11 Li (B75) 2019; 15 Adeva-Andany (B60) 2014; 17 Zhou (B124) 2017; 16 Zhang (B66) 2019; 8 Shan (B119) 2017; 37 Connor (B22) 1983; 27 Tamulevicius (B38) 1995; 72 Wilson (B87) 2005; 280 Hirayama (B51) 2009; 69 Lanier (B135) 2009; 9 Zhao (B155) 2015; 10 Liu (B73) 2018; 78 Garcia (B84) 1994; 76 Harmon (B137) 2019; 7 Büscheck (B107) 2018; 36 Cruzat (B42) 2018; 10 Pegram (B134) 2011; 89 Amorim (B184) 2015; 365 Castagnoli (B169) 2019; 234 Qu (B172) 2019; 18 Hanahan (B1) 2000; 100 Zacksenhaus (B45) 2017; 3 Quanz (B185) 2018; 17 Walenta (B167) 2012; 11 Chaudhari (B69) 2016; 7 Luo (B123) 2018; 51 Ciocca (B187) 2005; 10 Amoedo (B171) 2017; 1858 Le (B58) 2012; 15 Fang (B91) 2006; 70 Xie (B140) 2016; 59 Manerba (B181) 2017; 105 Matsumura (B168) 2005; 107 Curtis (B182) 2017; 8 Brooks (B28) 2009; 587 Anderson (B44) 2018; 9 Fantin (B14) 2006; 9 Panisova (B108) 2017; 8 Vyas (B5) 2016; 166 Marshall (B7) 1979; 40 Santidrian (B46) 2013; 123 Choi (B99) 2018; 7 Whitaker-Menezes (B122) 2011; 10 Pinheiro (B90) 2014; 14 Forero-Quintero (B112) 2019; 294 Bae (B139) 2019; 42 Updegraff (B89) 2018; 25 Liu (B130) 2016; 94 Jafary (B176) 2019; 9 Fang (B180) 2017; 8 Kurrikoff (B191) 2019; 47 San-Millán (B19) 2017; 38 Pinheiro (B95) 2009; 26 Brizel (B31) 2001; 51 Kim (B92) 2015; 46 Van Der Bliek (B40) 2017; 207 Pastorek (B106) 1994; 9 Jamali (B110) 2015; 5 Liu (B6) 2017; 50 Klier (B109) 2011; 286 Benjamin (B186) 2018; 25 Hashimoto (B49) 2008; 3 Jones (B83) 2016; 100 Ullah (B114) 2006; 281 Das (B179) 2019; 1866 Gonzalez (B129) 2018; 32 Dhup (B132) 2012; 18 Liberti (B39) 2016; 41 Intlekofer (B77) 2015; 22 Moore (B154) 2001; 19 Walenta (B32) 1997; 150 Ames (B111) 2018; 9 Wang (B152) 2000; 95 Dawson (B62) 2013; 143 Feng (B175) 2018; 7 García-Cañaveras (B103) 2019; 2019 Wykoff (B79) 2001; 240 Gallagher (B88) 2007; 67 Jiao (B9) 2017; 14 Langowski (B156) 2006; 442 Trivedi (B82) 1966; 241 Kirk (B86) 2000; 19 Pinheiro (B96) 2016; 15 Murray (B192) 2005; 1 Gan (B65) 2018; 97 Fan (B72) 2011; 31 Lee (B105) 2018; 119 Liu (B81) 2018; 9 Reitzer (B43) 1979; 254 Hui (B52) 2017; 551 Wadsak (B10) 2010; 73 Wang (B11) 2014; 8 Gerlinger (B98) 2012; 227 Husain (B138) 2013; 191 Neufeld (B25) 1965; 34 Sun (B125) 2019; 41 Linster (B76) 2013; 9 Lu (B17) 2002; 277 Payen (B97) 2017; 77 Belenky (B63) 2007; 32 Vlachostergios (B35) 2015; 15 Gu (B153) 2008; 38 Shim (B15) 1997; 94 Sonveaux (B53) 2008; 118 Kumar (B141) 2019; 116 |
| References_xml | – volume: 126 start-page: 32 year: 2006 ident: B148 article-title: Cytotoxic T cells publication-title: J Invest Dermatol doi: 10.1038/sj.jid.5700001 – volume: 8 start-page: 110426 year: 2017 ident: B164 article-title: Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop publication-title: Oncotarget doi: 10.18632/oncotarget.22786 – volume: 16 start-page: 73 year: 2017 ident: B124 article-title: Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells publication-title: Cell Cycle doi: 10.1080/15384101.2016.1252882 – volume: 27 start-page: 863 year: 2017 ident: B20 article-title: Metabolic interactions in the tumor microenvironment publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2017.06.003 – volume: 171 start-page: 358 year: 2017 ident: B56 article-title: Lactate metabolism in human lung tumors publication-title: Cell doi: 10.1016/j.cell.2017.09.019 – volume: 9 start-page: 1 year: 2019 ident: B178 article-title: A novel lactate dehydrogenase inhibitor, 1-(phenylseleno)-4-(trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death publication-title: Sci Rep doi: 10.1038/s41598-019-40617-3 – volume: 9 start-page: 72 year: 2013 ident: B76 article-title: Metabolite damage and its repair or pre-emption publication-title: Nat Chem Biol doi: 10.1038/nchembio.1141 – volume: 15 start-page: 1462 year: 2016 ident: B96 article-title: The metabolic microenvironment of melanomas: prognostic value of MCT1 and MCT4 publication-title: Cell Cycle doi: 10.1080/15384101.2016.1175258 – volume: 9 start-page: 271 year: 1991 ident: B143 article-title: The dendritic cell system and its role in immunogenicity publication-title: Annu Rev Immunol doi: 10.1146/annurev.iy.09.040191.001415 – volume: 32 start-page: 1267 year: 2018 ident: B129 article-title: Roles of the immune system in cancer: from tumor initiation to metastatic progression publication-title: Genes Dev doi: 10.1101/GAD.314617.118 – volume: 168 start-page: 670 year: 2017 ident: B166 article-title: Emerging biological principles of metastasis publication-title: Cell doi: 10.1016/j.cell.2016.11.037 – volume: 513 start-page: 559 year: 2014 ident: B163 article-title: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid publication-title: Nature doi: 10.1038/nature13490 – volume: 12 start-page: 937 year: 2016 ident: B47 article-title: Lactate metabolism is associated with mammalian mitochondria publication-title: Nat Chem Biol doi: 10.1038/nchembio.2172 – volume: 15 start-page: 110 year: 2012 ident: B58 article-title: Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells publication-title: Cell Metab doi: 10.1016/j.cmet.2011.12.009 – volume: 8 start-page: 209 year: 2001 ident: B146 article-title: Cell-mediated immune response to human papillomavirus infection publication-title: J Allergy Clin Immunol doi: 10.1128/CDLI.8.2.209-220.2001 – volume: 73 start-page: 461 year: 2010 ident: B10 article-title: Basics and principles of radiopharmaceuticals for PET/CT publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2009.12.022 – volume: 26 start-page: 877 year: 2012 ident: B131 article-title: Links between metabolism and cancer publication-title: Genes Dev doi: 10.1101/gad.189365.112 – volume: 5 start-page: 38 year: 2016 ident: B23 article-title: Lactate as a signaling molecule that regulates exercise-induced adaptations publication-title: Biology. doi: 10.3390/biology5040038 – volume: 207 start-page: 843 year: 2017 ident: B40 article-title: Cell biology of the mitochondrion publication-title: Genetics doi: 10.1534/genetics.117.300262 – volume: 37 start-page: 5609 year: 2016 ident: B70 article-title: Equating salivary lactate dehydrogenase (LDH) with LDH-5 expression in patients with oral squamous cell carcinoma: an insight into metabolic reprogramming of cancer cell as a predictor of aggressive phenotype publication-title: Tumor Biol doi: 10.1007/s13277-015-4415-x – volume: 105 start-page: 1172 year: 2013 ident: B147 article-title: MHC class i antigen processing and presenting machinery: organization, function, and defects in tumor cells publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt184 – volume: 15 start-page: 72 year: 2016 ident: B59 article-title: Lactate promotes glutamine uptake and metabolism in oxidative cancer cells publication-title: Cell Cycle doi: 10.1080/15384101.2015.1120930 – volume: 31 start-page: 4938 year: 2011 ident: B72 article-title: Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD+ redox homeostasis in cancer cells publication-title: Mol Cell Biol doi: 10.1128/mcb.06120-11 – volume: 8 start-page: 519 year: 1927 ident: B3 article-title: The metabolims of tumors in the body publication-title: J Gen Physiol doi: 10.1085/jgp.8.6.519 – volume: 27 start-page: 481 year: 1983 ident: B22 article-title: Comparison of the kinetics and utilisation of D(-)-and L(+)-sodium lactate in normal man publication-title: Ann Nutr Metab doi: 10.1159/000176723 – volume: 36 start-page: 3797 year: 2017 ident: B74 article-title: Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis publication-title: Oncogene doi: 10.1038/onc.2017.6 – volume: 8 start-page: 1720 year: 2017 ident: B180 article-title: Discovery of human lactate dehydrogenase A (LDHA) inhibitors as anticancer agents to inhibit the proliferation of MG-63 osteosarcoma cells publication-title: MedChemComm doi: 10.1039/c7md00222j – volume: 350 start-page: 219 year: 2000 ident: B115 article-title: The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells publication-title: Biochem J doi: 10.1042/bj3500219 – volume: 558 start-page: 5 year: 2004 ident: B24 article-title: Lactate metabolism: a new paradigm for the third millennium publication-title: J Physiol doi: 10.1113/jphysiol.2003.058701 – volume: 14 start-page: 760 year: 2014 ident: B13 article-title: GLUT-1 expression is largely unrelated to both hypoxia and the Warburg phenotype in squamous cell carcinomas of the vulva publication-title: BMC Cancer doi: 10.1186/1471-2407-14-760 – volume: 7 start-page: 451 year: 2016 ident: B69 article-title: Estimation of salivary sialic acid in oral premalignancy and oral squamous cell carcinoma publication-title: Contemp Clin Dent doi: 10.4103/0976-237x.194108 – volume: 70 start-page: 2108 year: 2006 ident: B91 article-title: The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma publication-title: Mol Pharmacol doi: 10.1124/mol.106.026245 – volume: 271 start-page: 32529 year: 1996 ident: B80 article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1 publication-title: J Biol Chem doi: 10.1074/jbc.271.51.32529 – volume: 104 start-page: 19345 year: 2007 ident: B41 article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0709747104 – volume: 9 start-page: 216 year: 2018 ident: B44 article-title: The emerging role and targetability of the TCA cycle in cancer metabolism publication-title: Protein Cell doi: 10.1007/s13238-017-0451-1 – volume: 260 start-page: 547 year: 1993 ident: B151 article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages publication-title: Science. doi: 10.1126/science.8097338 – volume: 69 start-page: 4918 year: 2009 ident: B51 article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4806 – volume: 36 start-page: 531.e19 year: 2018 ident: B107 article-title: Aberrant expression of membranous carbonic anhydrase IX (CAIX) is associated with unfavorable disease course in papillary and clear cell renal cell carcinoma publication-title: Urol Oncol Semin Orig Investig doi: 10.1016/j.urolonc.2018.08.015 – volume: 107 start-page: 2037 year: 2010 ident: B68 article-title: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914433107 – volume: 94 start-page: 509 year: 2016 ident: B130 article-title: Immunosuppressive cells in tumor immune escape and metastasis publication-title: J Mol Med doi: 10.1007/s00109-015-1376-x – volume: 10 start-page: 4047 year: 2011 ident: B122 article-title: Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue publication-title: Cell Cycle doi: 10.4161/cc.10.23.18151 – volume: 234 start-page: 1768 year: 2019 ident: B169 article-title: Intratumor lactate levels reflect HER2 addiction status in HER2-positive breast cancer publication-title: J Cell Physiol doi: 10.1002/jcp.27049 – volume: 67 start-page: 4182 year: 2007 ident: B88 article-title: Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-3184 – volume: 41 start-page: 211 year: 2016 ident: B39 article-title: The warburg effect : how does it benefit cancer cells? publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2015.12.001 – volume: 8 start-page: 1 year: 2018 ident: B100 article-title: Monocarboxylate transporter 4 (MCT4) knockout mice have attenuated 4NQO induced carcinogenesis; a role for MCT4 in driving oral squamous cell cancer publication-title: Front Oncol doi: 10.3389/fonc.2018.00324 – volume: 10 start-page: 1 year: 2018 ident: B42 article-title: Glutamine: metabolism and immune function, supplementation and clinical translation publication-title: Nutrients doi: 10.3390/nu10111564 – volume: 1 start-page: 371 year: 2005 ident: B192 article-title: Monocarboxylate transporter Mctl is a target for immunosuppression publication-title: Nat Chem Biol doi: 10.1038/nchembio744 – volume: 8 start-page: 57813 year: 2017 ident: B127 article-title: The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy publication-title: Oncotarget doi: 10.18632/oncotarget.18175 – volume: 7 start-page: 335 year: 2019 ident: B137 article-title: Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.cir-18-0481 – volume: 9 start-page: 495 year: 2009 ident: B135 article-title: Up on the tightrope: natural killer cell activation and inhibition publication-title: Nat Immunol doi: 10.1038/ni1581.Up – volume: 365 start-page: 68 year: 2015 ident: B184 article-title: Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells publication-title: Cancer Lett doi: 10.1016/j.canlet.2015.05.015 – volume: 42 start-page: 543 year: 2019 ident: B139 article-title: Roles of NKT cells in cancer immunotherapy publication-title: Arch Pharm Res doi: 10.1007/s12272-019-01139-8 – volume: 41 start-page: 1099 year: 2008 ident: B21 article-title: Analytical investigation: assay of d-lactate in diabetic plasma and urine publication-title: Clin Biochem doi: 10.1016/J.CLINBIOCHEM.2008.06.011 – volume: 8 start-page: 1467 year: 2019 ident: B66 article-title: Pretreatment lactate dehydrogenase may predict outcome of advanced non small-cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis publication-title: Cancer Med doi: 10.1002/cam4.2024 – volume: 191 start-page: 1486 year: 2013 ident: B138 article-title: Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells publication-title: J Immunol doi: 10.4049/jimmunol.1202702 – volume: 34 start-page: 1044 year: 2015 ident: B55 article-title: PCK2 activation mediates an adaptive response to glucose depletion in lung cancer publication-title: Oncogene doi: 10.1038/onc.2014.47 – volume: 2 start-page: 736 year: 2016 ident: B102 article-title: Nutrient exploitation within the tumor-stroma metabolic crosstalk publication-title: Trends Cancer doi: 10.1016/j.trecan.2016.11.001 – volume: 22 start-page: 125 year: 2019 ident: B36 article-title: Elevated lactate and total protein levels in stereotactic brain biopsy specimen: potential biomarkers of malignancy and poor prognosis publication-title: Arch Iran Med – volume: 191 start-page: 3090 year: 2013 ident: B150 article-title: Dendritic cell reprogramming by endogenously produced lactic acid publication-title: J Immunol doi: 10.4049/jimmunol.1300772 – volume: 129 start-page: 321 year: 2003 ident: B33 article-title: Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists? publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-003-0450-x – volume: 81 start-page: 130 year: 2006 ident: B37 article-title: Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice publication-title: Radiother Oncol doi: 10.1016/j.radonc.2006.08.012 – volume: 2019 start-page: 3276 year: 2019 ident: B103 article-title: The tumor metabolic microenvironment: lessons from lactate publication-title: Cancer Res doi: 10.1158/0008-5472.can-18-3726 – volume: 119 start-page: 622 year: 2018 ident: B105 article-title: Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo publication-title: Br J Cancer doi: 10.1038/s41416-018-0216-5 – volume: 294 start-page: 593 year: 2019 ident: B112 article-title: Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70 publication-title: J Biol Chem doi: 10.1074/jbc.RA118.005536 – volume: 8 start-page: e1124 year: 2017 ident: B133 article-title: The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy publication-title: Front Immunol doi: 10.3389/fimmu.2017.01124 – volume: 11 start-page: 450 year: 2019 ident: B160 article-title: Blockade of lactate dehydrogenase-A (LDH-A) improves efficacy of anti-programmed cell death-1 (PD-1) therapy in melanoma publication-title: Cancers. doi: 10.3390/cancers11040450 – volume: 61 start-page: 1382 year: 2018 ident: B190 article-title: The current state of peptide drug discovery: back to the future? publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b00318 – volume: 100 start-page: 57 year: 2000 ident: B1 article-title: The hallmarks of cancer publication-title: Cell doi: 10.1016/s0092-8674(00)81683-9 – volume: 177 start-page: 105 year: 2019 ident: B177 article-title: Development of novel human lactate dehydrogenase A inhibitors: high-throughput screening, synthesis, and biological evaluations publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2019.05.033 – volume: 11 start-page: 2195 year: 2012 ident: B167 article-title: Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology publication-title: Curr Med Chem doi: 10.2174/0929867043364711 – volume: 14 start-page: 671 year: 2017 ident: B9 article-title: Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic publication-title: Autophagy. doi: 10.1080/15548627.2017.1381804 – volume: 11 start-page: 257 year: 2019 ident: B57 article-title: The role of lactate metabolism in prostate cancer progression and metastases revealed by dual-agent hyperpolarized 13C MRSI publication-title: Cancers. doi: 10.3390/cancers11020257 – volume: 132 start-page: 2839 year: 2009 ident: B50 article-title: The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study publication-title: Brain doi: 10.1093/brain/awp202 – volume: 18 start-page: 1319 year: 2012 ident: B132 article-title: Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis publication-title: Curr Pharm Des doi: 10.2174/138161212799504902 – volume: 95 start-page: 3183 year: 2000 ident: B152 article-title: Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4 publication-title: Blood doi: 10.1182/blood.v95.10.3183.010k36_3183_3190 – volume: 37 start-page: 317 year: 2012 ident: B16 article-title: Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2012.04.002 – volume: 89 start-page: 216 year: 2011 ident: B134 article-title: Activating and inhibitory receptors of natural killer cells publication-title: Immunol Cell Biol doi: 10.1038/icb.2010.78 – volume: 280 start-page: 27213 year: 2005 ident: B87 article-title: Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is embigin (gp70) publication-title: J Biol Chem doi: 10.1074/jbc.M411950200 – volume: 150 start-page: 409 year: 1997 ident: B32 article-title: Correlation of high lactate levels in head and neck tumors with incidence of metastasis publication-title: Am J Pathol – volume: 3 start-page: 2915 year: 2008 ident: B49 article-title: Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles publication-title: PLoS ONE doi: 10.1371/journal.pone.0002915 – volume: 8 start-page: 77819 year: 2017 ident: B108 article-title: Lactate stimulates CA IX expression in normoxic cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.20836 – volume: 109 start-page: 3812 year: 2007 ident: B158 article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells publication-title: Blood doi: 10.1182/blood-2006-07-035972 – volume: 34 start-page: 297 year: 1965 ident: B25 article-title: Carbohydrate metabolism publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.34.070165.001501 – volume: 5 start-page: 1 year: 2015 ident: B110 article-title: Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function publication-title: Sci Rep doi: 10.1038/srep13605 – volume: 6 start-page: 63 year: 2014 ident: B128 article-title: New modalities of cancer treatment for NSCLC: focus on immunotherapy publication-title: Cancer Manag Res doi: 10.2147/CMAR.S57550 – volume: 10 start-page: 86 year: 2005 ident: B187 article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications publication-title: Cell Stress Chaperones doi: 10.1379/csc-99r.1 – volume: 37 start-page: 1971 year: 2017 ident: B119 article-title: Cancer-Associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism publication-title: Oncol Rep doi: 10.3892/or.2017.5479 – volume: 38 start-page: 1807 year: 2008 ident: B153 article-title: Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells publication-title: Eur J Immunol doi: 10.1002/eji.200838331 – volume: 18 start-page: 1 year: 2019 ident: B172 article-title: Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment publication-title: Mol Cancer doi: 10.1186/s12943-019-0992-4 – volume: 19 start-page: 3896 year: 2000 ident: B86 article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression publication-title: EMBO J doi: 10.1093/emboj/19.15.3896 – volume: 291 start-page: 25306 year: 2016 ident: B61 article-title: Exercise inducible lactate dehydrogenase B regulates mitochondrial function in skeletal muscle publication-title: J Biol Chem doi: 10.1074/jbc.M116.749424 – volume: 10 start-page: 1 year: 2015 ident: B155 article-title: Serum IL-10 predicts worse outcome in cancer patients: a meta-analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0139598 – volume: 17 start-page: 2285 year: 2018 ident: B185 article-title: Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-17-1253 – volume: 97 start-page: 1 year: 2018 ident: B64 article-title: Meta-analysis of serum lactate dehydrogenase and prognosis for osteosarcoma publication-title: Medicine. doi: 10.1097/MD.0000000000010741 – volume: 107 start-page: 379 year: 2005 ident: B168 article-title: Non-invasive quantification of lactate by proton MR spectroscopy and its clinical applications publication-title: Clin Neurol Neurosurg doi: 10.1016/j.clineuro.2004.10.009 – volume: 8 start-page: e75154 year: 2013 ident: B34 article-title: Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer publication-title: PLoS ONE doi: 10.1371/journal.pone.0075154 – volume: 1 start-page: 779 year: 1957 ident: B149 article-title: Cancer; a biological approach publication-title: Br Med J doi: 10.1136/bmj.1.5022.779 – volume: 22 start-page: 304 year: 2015 ident: B77 article-title: Hypoxia induces production of L-2-hydroxyglutarate publication-title: Cell Metab doi: 10.1016/j.cmet.2015.06.023 – volume: 419 start-page: 734 year: 2002 ident: B136 article-title: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation publication-title: Nature doi: 10.1038/nature01112 – volume: 9 start-page: 425 year: 2006 ident: B14 article-title: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.04.023 – volume: 60 start-page: 916 year: 2000 ident: B30 article-title: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers publication-title: Cancer Res – volume: 3 start-page: 768 year: 2017 ident: B45 article-title: Mitochondrial OXPHOS induced by RB1 deficiency in breast cancer: implications for anabolic metabolism, stemness, and metastasis publication-title: Trends Cancer doi: 10.1016/j.trecan.2017.09.002 – volume: 100 start-page: 454 year: 2016 ident: B83 article-title: Monocarboxylate transporters: therapeutic targets and prognostic factors in disease publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.418 – volume: 9 start-page: 2492 year: 2018 ident: B94 article-title: MCT1 regulates aggressive and metabolic phenotypes in bladder cancer publication-title: J Cancer doi: 10.7150/jca.25257 – volume: 356 start-page: 184 year: 2015 ident: B12 article-title: PKM2 contributes to cancer metabolism publication-title: Cancer Lett doi: 10.1016/j.canlet.2014.01.031 – volume: 123 start-page: 1068 year: 2013 ident: B46 article-title: Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression publication-title: J Clin Invest. doi: 10.1172/JCI64264DS1 – volume: 51 start-page: 315 year: 2018 ident: B123 article-title: Cancer-associated fibroblasts accelerate malignant progression of non-small cell lung cancer via connexin 43-formed unidirectional gap junctional intercellular communication publication-title: Cell Physiol Biochem doi: 10.1159/000495232 – volume: 21 start-page: 5 year: 2019 ident: B183 article-title: Cellular uptake of MCT1 inhibitors AR-C155858 and AZD3965 and their effects on MCT-mediated transport of L-lactate in murine 4T1 breast tumor cancer cells publication-title: AAPS J doi: 10.1208/s12248-018-0279-5 – volume: 54 start-page: 47 year: 2014 ident: B142 article-title: Role of dendritic cells in innate and adaptive immune response in human aging publication-title: Exp Gerontol doi: 10.1016/j.exger.2013.12.009 – volume: 36 start-page: 169 year: 2013 ident: B8 article-title: Correlation between biological marker expression and F-fluorodeoxyglucose uptake in cervical cancer measured by positron emission tomography publication-title: Onkologie. doi: 10.1159/000349944 – volume: 1858 start-page: 674 year: 2017 ident: B171 article-title: Drug discovery strategies in the field of tumor energy metabolism: limitations by metabolic flexibility and metabolic resistance to chemotherapy publication-title: Biochim Biophys Acta Bioenerg doi: 10.1016/j.bbabio.2017.02.005 – volume: 44 start-page: 153 year: 2019 ident: B101 article-title: Lactate: a metabolic driver in the tumour landscape publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2018.10.011 – volume: 15 start-page: 323 year: 2016 ident: B54 article-title: ERRα-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer publication-title: Cell Rep doi: 10.1016/j.celrep.2016.03.026 – volume: 143 start-page: 929 year: 2013 ident: B62 article-title: Lactic dehydrogenases: functions of the two types rates of synthesis of the two major forms can publication-title: Science. doi: 10.2307/1712825 – volume: 32 start-page: 12 year: 2007 ident: B63 article-title: NAD+ metabolism in health and disease publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2006.11.006 – volume: 277 start-page: 23111 year: 2002 ident: B17 article-title: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis publication-title: J Biol Chem doi: 10.1074/jbc.M202487200 – volume: 241 start-page: 4110 year: 1966 ident: B82 article-title: Effect of pH on the kinetics of frog muscle phosphofructokinase publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)99819-4 – volume: 25 start-page: 3047 year: 2018 ident: B186 article-title: Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells publication-title: Cell Rep doi: 10.1016/j.celrep.2018.11.043 – volume: 24 start-page: 657 year: 2016 ident: B159 article-title: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.011 – volume: 72 start-page: 5130 year: 2012 ident: B126 article-title: Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1949 – volume: 118 start-page: 3930 year: 2008 ident: B53 article-title: Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice publication-title: J Clin Invest doi: 10.1172/JCI36843 – volume: 76 start-page: 1381 year: 2016 ident: B162 article-title: Neutralization of tumor acidity improves antitumor responses to immunotherapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-1743 – volume: 17 start-page: 428 year: 2018 ident: B165 article-title: Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer publication-title: Cell Cycle doi: 10.1080/15384101.2018.1444305 – volume: 9 start-page: 1 year: 2019 ident: B176 article-title: Novel peptide inhibitors for lactate dehydrogenase A (LDHA): a survey to inhibit LDHA activity via disruption of protein-protein interaction publication-title: Sci Rep doi: 10.1038/s41598-019-38854-7 – volume: 13 start-page: 714 year: 2013 ident: B170 article-title: Cancer drug resistance: an evolving paradigm publication-title: Nat Rev Cancer doi: 10.1038/nrc3599 – volume: 105 start-page: 91 year: 2017 ident: B181 article-title: LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2017.05.015 – volume: 9 start-page: 2233 year: 2014 ident: B116 article-title: MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies publication-title: Cell Rep doi: 10.1016/j.celrep.2014.11.025 – volume: 587 start-page: 5591 year: 2009 ident: B28 article-title: Cell-cell and intracellular lactate shuttles publication-title: J Physiol doi: 10.1113/jphysiol.2009.178350 – volume: 17 start-page: 76 year: 2014 ident: B60 article-title: Comprehensive review on lactate metabolism in human health publication-title: Mitochondrion doi: 10.1016/j.mito.2014.05.007 – volume: 39 start-page: BSR20181476 year: 2019 ident: B67 article-title: LDH-A promotes malignant behavior via activation of epithelial-to-mesenchymal transition in lung adenocarcinoma publication-title: Biosci Rep doi: 10.1042/bsr20181476 – volume: 7 start-page: 1413 year: 2019 ident: B71 article-title: Overexpression of lactate dehydrogenase in the saliva and tissues of patients with head and neck squamous cell carcinoma publication-title: Rep Biochem Mol Biol doi: 10.1002/hed.21618 – volume: 8 start-page: 69219 year: 2017 ident: B182 article-title: Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitts lymphoma anti-tumor activity publication-title: Oncotarget doi: 10.18632/oncotarget.18215 – volume: 259 start-page: E677 year: 2017 ident: B26 article-title: Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans publication-title: Am J Physiol Metab doi: 10.1152/ajpendo.1990.259.5.e677 – volume: 7 start-page: 3385 year: 2018 ident: B99 article-title: Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer publication-title: Cancer Med doi: 10.1002/cam4.1587 – volume: 78 start-page: 4459 year: 2018 ident: B73 article-title: Aberrant FGFR tyrosine kinase signaling enhances the warburg effect by reprogramming LDH isoform expression and activity in prostate cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-3226 – volume: 41 start-page: 370 year: 2019 ident: B125 article-title: Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling publication-title: EBio Med doi: 10.1016/j.ebiom.2019.02.025 – volume: 60 start-page: 56 year: 1972 ident: B4 article-title: Bioenergetics and the problem of tumor growth publication-title: Am Sci – volume: 94 start-page: 6658 year: 1997 ident: B15 article-title: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.13.6658 – volume: 33 start-page: 483 year: 2018 ident: B144 article-title: Fundamental role of dendritic cells in inducing Th2 responses publication-title: Korean J Intern Med doi: 10.3904/kjim.2016.227 – volume: 2013 start-page: 540850 year: 2013 ident: B145 article-title: HPV infection: immunological aspects and their utility in future therapy publication-title: Infect Dis Obstet Gynecol doi: 10.1155/2013/540850 – volume: 2 start-page: e1600200 year: 2016 ident: B174 article-title: Fundamentals of cancer metabolism publication-title: Sci Adv doi: 10.1126/sciadv.1600200 – volume: 27 start-page: 757 year: 2018 ident: B29 article-title: The science and translation of lactate shuttle theory publication-title: Cell Metab doi: 10.1016/j.cmet.2018.03.008 – volume: 73 start-page: 1524 year: 2013 ident: B104 article-title: Acidity generated by the tumor microenvironment drives local invasion publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2796 – volume: 23 start-page: 27 year: 2016 ident: B117 article-title: Perspective The emerging hallmarks of cancer metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2015.12.006 – volume: 19 start-page: 1 year: 2018 ident: B189 article-title: Peptides as therapeutic agents for inflammatory-related diseases publication-title: Int J Mol Sci doi: 10.3390/ijms19092714 – volume: 154 start-page: 405 year: 1976 ident: B85 article-title: L-lactate transport in Ehrlich ascites-tumour cells publication-title: Biochem J doi: 10.1042/bj1540405 – volume: 14 start-page: 1 year: 2014 ident: B90 article-title: Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix publication-title: BMC Cancer doi: 10.1186/1471-2407-14-751 – volume: 72 start-page: 1102 year: 1995 ident: B38 article-title: Metabolic imaging in tumours by means of bioluminescence publication-title: Br J Cancer doi: 10.1038/bjc.1995.472 – volume: 7 start-page: 6124 year: 2018 ident: B175 article-title: Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy publication-title: Cancer Med doi: 10.1002/cam4.1820 – volume: 15 start-page: 725 year: 2015 ident: B35 article-title: Elevated lactic acid is a negative prognostic factor in metastatic lung cancer publication-title: Cancer Biomarkers doi: 10.3233/CBM-150514 – volume: 8 start-page: 1461 year: 2014 ident: B11 article-title: Article hexokinase 2-mediated warburg effect is required for PTEN - and p53 - deficiency-driven prostate cancer growth publication-title: Cell Rep doi: 10.1016/j.celrep.2014.07.053 – volume: 290 start-page: E1237 year: 2006 ident: B48 article-title: Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex publication-title: Am J Physiol Metab doi: 10.1152/ajpendo.00594.2005 – volume: 97 start-page: e13151 year: 2018 ident: B65 article-title: Prognostic value of pretreatment serum lactate dehydrogenase level in pancreatic cancer patients publication-title: Medicine. doi: 10.1097/md.0000000000013151 – volume: 286 start-page: 27781 year: 2011 ident: B109 article-title: Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II publication-title: J Biol Chem doi: 10.1074/jbc.M111.255331 – volume: 76 start-page: 865 year: 1994 ident: B84 article-title: Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle publication-title: Cell doi: 10.1016/0092-8674(94)90361-1 – volume: 51 start-page: 349 year: 2001 ident: B31 article-title: Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(01)01630-3 – volume: 19 start-page: 683 year: 2001 ident: B154 article-title: I Nterleukin−10 and the I Nterleukin−10 R eceptor publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.19.1.683 – volume: 9 start-page: 4429 year: 2018 ident: B81 article-title: Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth publication-title: Nat Commun doi: 10.1038/s41467-018-06841-7 – volume: 227 start-page: 146 year: 2012 ident: B98 article-title: Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as a Warburg effect metabolic target publication-title: J Pathol doi: 10.1002/path.4006 – volume: 13 start-page: 494 year: 2017 ident: B78 article-title: L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH publication-title: Nat Chem Biol doi: 10.1038/nchembio.2307 – volume: 47 start-page: 27 year: 2019 ident: B191 article-title: The future of peptides in cancer treatment publication-title: Curr Opin Pharmacol doi: 10.1016/j.coph.2019.01.008 – volume: 10 start-page: 2504 year: 2011 ident: B120 article-title: Cancer cells metabolically fertilize the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors publication-title: Cell Cycle doi: 10.4161/cc.10.15.16585 – volume: 254 start-page: 2669 year: 1979 ident: B43 article-title: Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)30124-2 – volume: 116 start-page: 7439 year: 2019 ident: B141 article-title: Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1901376116 – volume: 180 start-page: 7175 year: 2008 ident: B157 article-title: Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway publication-title: J Immunol doi: 10.4049/jimmunol.180.11.7175 – volume: 28 start-page: 848 year: 2018 ident: B173 article-title: Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies publication-title: Cell Metab doi: 10.1016/j.cmet.2018.08.006 – volume: 9 start-page: 27940 year: 2018 ident: B111 article-title: The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.25371 – volume: 240 start-page: 212 year: 2001 ident: B79 article-title: The HIF pathway: implications for patterns of gene expression in cancer publication-title: Novartis Found Symp doi: 10.1002/0470868716.ch15 – volume: 330 start-page: 1340 year: 2010 ident: B18 article-title: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes publication-title: Science. doi: 10.1126/science.1193494 – volume: 144 start-page: 646 year: 2011 ident: B2 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 442 start-page: 461 year: 2006 ident: B156 article-title: IL-23 promotes tumour incidence and growth publication-title: Nature doi: 10.1038/nature04808 – volume-title: Lactate: Glycolytic end Product and Oxidative Substrate During Sustained Exercise in Mammals—The ‘Lactate Shuttle’ ident: B27 – volume: 26 start-page: 97 year: 2009 ident: B95 article-title: Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma publication-title: Dis Markers doi: 10.3233/DMA-2009-0596 – volume: 1866 start-page: 1004 year: 2019 ident: B179 article-title: Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer publication-title: Biochim Biophys Acta Mol Cell Res doi: 10.1016/j.bbamcr.2019.03.004 – volume: 40 start-page: 380 year: 1979 ident: B7 article-title: Isoenzymes of hexokinase, 6-phosphogluconate dehydrogenase, phosphoglucomutase and lactate dehydrogenase in uterine cancer publication-title: Br J Cancer doi: 10.1038/bjc.1979.192 – volume: 77 start-page: 5591 year: 2017 ident: B97 article-title: Monocarboxylate transporter MCT1 promotes tumor metastasis independently of its activity as a lactate transporter publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0764 – volume: 50 start-page: 2011 year: 2017 ident: B6 article-title: Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth publication-title: Int J Oncol. doi: 10.3892/ijo.2017.3979 – volume: 551 start-page: 115 year: 2017 ident: B52 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature doi: 10.1038/nature24057 – volume: 15 start-page: 544 year: 2019 ident: B75 article-title: Cyclin G2 inhibits the warburg effect and tumour progression by suppressing LDHA phosphorylation in glioma publication-title: Int J Biol Sci doi: 10.7150/ijbs.30297 – volume: 25 start-page: 1037 year: 2017 ident: B121 article-title: Autophagy and tumor metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2017.04.004 – volume: 38 start-page: 119 year: 2017 ident: B19 article-title: Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect publication-title: Carcinogenesis doi: 10.1093/carcin/bgw127 – volume: 281 start-page: 9030 year: 2006 ident: B114 article-title: The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism publication-title: J Biol Chem doi: 10.1074/jbc.M511397200 – volume: 9 start-page: 3506 year: 2010 ident: B118 article-title: Ketones and lactate fuel tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism publication-title: Cell Cycle doi: 10.4161/cc.9.17.12731 – volume: 166 start-page: 555 year: 2016 ident: B5 article-title: Mitochondria and cancer publication-title: Cell doi: 10.1016/j.cell.2016.07.002 – volume: 9 start-page: 2877 year: 1994 ident: B106 article-title: Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment publication-title: Oncogene – volume: 164 start-page: 681 year: 2016 ident: B113 article-title: Metabolic heterogeneity in human lung tumors publication-title: Cell doi: 10.1016/j.cell.2015.12.034 – volume: 59 start-page: 1290 year: 2016 ident: B140 article-title: Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling publication-title: Sci China Life Sci doi: 10.1007/s11427-016-0348-7 – volume: 25 start-page: 2223 year: 2018 ident: B89 article-title: Transmembrane protease TMPRSS11B promotes lung cancer growth by enhancing lactate export and glycolytic metabolism publication-title: Cell Rep doi: 10.1016/j.celrep.2018.10.100 – volume: 12 start-page: 1371 year: 2013 ident: B93 article-title: Cancer metabolism, stemness and tumor recurrence : MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer publication-title: Cell Cycle doi: 10.4161/cc.24092 – volume: 72 start-page: 2746 year: 2012 ident: B161 article-title: Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-1272 – volume: 28 start-page: 3689 year: 2009 ident: B188 article-title: Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth publication-title: Oncogene doi: 10.1038/onc.2009.229 – volume: 46 start-page: 104 year: 2015 ident: B92 article-title: Expression of lactate/H+ symporters MCT1 and MCT4 and their chaperone CD147 predicts tumor progression in clear cell renal cell carcinoma: immunohistochemical and the Cancer Genome Atlas data analyses publication-title: Hum Pathol doi: 10.1016/j.humpath.2014.09.013 |
| SSID | ssj0000650103 |
| Score | 2.6683345 |
| SecondaryResourceType | review_article |
| Snippet | Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1143 |
| SubjectTerms | acidification immune response lactate Oncology therapy tumor microenvironment (TME) |
| Title | Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches |
| URI | https://www.proquest.com/docview/2315528496 https://pubmed.ncbi.nlm.nih.gov/PMC6839026 https://doaj.org/article/2484900b25f14716a82cffa803efca47 |
| Volume | 9 |
| WOSCitedRecordID | wos000497397800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwEB5xCJ2uQTwO3fKSka6gWchm7cQpAYEo2BVCe2g7y3Y8YqUjQfug5LczkwTYFIiGIi4SR3HGE_v7Ys83AH9jwtSEQrFrWeROIv9oSnMqlOwh5glGlYDp_U06HOrxOLtdSvXFe8JqeeDacKex1DKLIhcr7NFAmlgde0Sro35Ab2UVR06oZ4lM1WOw4gQGtZYPsbDsFMuCFQt72QlTgH5rGqrU-lsQs71BcmnGudqA9QYqirO6iZuwEoot-DloFsO3YXhjPUNFMSkEwThxV6eVJ0OLEsVo8VhOxYD32y0Fswlb5GL0EXMlzhpN8TD7Df-uLkcX190mPULXqyied12ugrPByZBG1sZxTuQgDtpRqVE56ehrpilQMiNzgahLphQdwSOBnJxwyQ6sFmUR_oBIe6i9TnzutZchsxn2E6JCLsGUxkLEDpy8Wcv4RjucU1j8N8Qh2LyGzWvYvKYybweO3294qmUzPq96zuZ_r8Z619UJ8gLTeIH5ygs6cPTWeYa-D170sEUoFzND-FUpmoOzpANpq1dbT2xfKSYPldJ2QvCRSOrudzRxD37xS9dxjPuwOp8uwgGs-ef5ZDY9hB_pWB9WTkzl4OXyFb0O-E8 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lactate+in+the+Regulation+of+Tumor+Microenvironment+and+Therapeutic+Approaches&rft.jtitle=Frontiers+in+oncology&rft.au=de+la+Cruz-L%C3%B3pez%2C+Karen+G.&rft.au=Castro-Mu%C3%B1oz%2C+Leonardo+Josu%C3%A9&rft.au=Reyes-Hern%C3%A1ndez%2C+Diego+O.&rft.au=Garc%C3%ADa-Carranc%C3%A1%2C+Alejandro&rft.date=2019-11-01&rft.pub=Frontiers+Media+S.A&rft.eissn=2234-943X&rft.volume=9&rft_id=info:doi/10.3389%2Ffonc.2019.01143&rft_id=info%3Apmid%2F31737570&rft.externalDocID=PMC6839026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |