Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches

Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in oncology Jg. 9; S. 1143
Hauptverfasser: de la Cruz-López, Karen G., Castro-Muñoz, Leonardo Josué, Reyes-Hernández, Diego O., García-Carrancá, Alejandro, Manzo-Merino, Joaquín
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 01.11.2019
Schlagworte:
ISSN:2234-943X, 2234-943X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.
AbstractList Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as “Warburg effect or aerobic glycolysis.” As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.
Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.
Author Castro-Muñoz, Leonardo Josué
de la Cruz-López, Karen G.
García-Carrancá, Alejandro
Reyes-Hernández, Diego O.
Manzo-Merino, Joaquín
AuthorAffiliation 6 Cátedras CONACyT-Instituto Nacional de Cancerología , Mexico City , Mexico
5 Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología , Mexico City , Mexico
2 Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico
1 Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
4 Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Maestría en Investigación Clínica Experimental, Universidad Nacional Autónoma de Mexico , Mexico City , Mexico
3 Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología , Mexico City , Mexico
AuthorAffiliation_xml – name: 2 Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City , Mexico
– name: 3 Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología , Mexico City , Mexico
– name: 1 Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
– name: 6 Cátedras CONACyT-Instituto Nacional de Cancerología , Mexico City , Mexico
– name: 5 Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología , Mexico City , Mexico
– name: 4 Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Maestría en Investigación Clínica Experimental, Universidad Nacional Autónoma de Mexico , Mexico City , Mexico
Author_xml – sequence: 1
  givenname: Karen G.
  surname: de la Cruz-López
  fullname: de la Cruz-López, Karen G.
– sequence: 2
  givenname: Leonardo Josué
  surname: Castro-Muñoz
  fullname: Castro-Muñoz, Leonardo Josué
– sequence: 3
  givenname: Diego O.
  surname: Reyes-Hernández
  fullname: Reyes-Hernández, Diego O.
– sequence: 4
  givenname: Alejandro
  surname: García-Carrancá
  fullname: García-Carrancá, Alejandro
– sequence: 5
  givenname: Joaquín
  surname: Manzo-Merino
  fullname: Manzo-Merino, Joaquín
BookMark eNp1kd1rFDEUxYNUbK199jWPvuw2nzOTF6EUq4VVQVbwLdzJ3OymzCRjZqbgf292t4IVDOSD5J4fJ_e8JmcxRSTkLWdrKRtz7VN0a8G4WTPOlXxBLoSQamWU_HH21_mcXE3TAyuj0owz-YqcS17LWtfsgnzZgJthRhoinfdIv-Fu6WEOKdLk6XYZUqafg8sJ42PIKQ4YZwqxo9s9ZhhxmYOjN-OYE7g9Tm_ISw_9hFdP-yX5fvdhe_tptfn68f72ZrNymol51XYaW8BWYc0AhOi0NgKbtqyN161qWc0couKG1y2ypjJal4nOV4x1xshLcn_idgke7JjDAPmXTRDs8SLlnYVcrPVohWqUYawV2nNV8woa4byHhkn0DlRdWO9PrHFpB-xc-WGG_hn0-UsMe7tLj7ZqpGGiKoB3T4Ccfi44zXYIk8O-h4hpmayQXGtRXBxK9am0dHSaMnrrwnxsdyGH3nJmD9HaQ7T2EK09Rlt01__o_tj7n-I3T7uofQ
CitedBy_id crossref_primary_10_1007_s10585_021_10102_1
crossref_primary_10_1016_j_molimm_2024_08_004
crossref_primary_10_3724_abbs_2025106
crossref_primary_10_1093_carcin_bgaf030
crossref_primary_10_3390_ijms25063142
crossref_primary_10_1016_j_molcel_2025_02_011
crossref_primary_10_1016_j_biopha_2022_113690
crossref_primary_10_1007_s42978_020_00074_1
crossref_primary_10_1088_1752_7163_ace647
crossref_primary_10_3390_ijms232415650
crossref_primary_10_1007_s00262_023_03382_x
crossref_primary_10_1016_j_semcancer_2022_05_003
crossref_primary_10_31083_j_fbl2903099
crossref_primary_10_3389_fimmu_2022_929677
crossref_primary_10_3390_pharmaceutics14061303
crossref_primary_10_1038_s41580_022_00538_y
crossref_primary_10_1021_jacs_2c07669
crossref_primary_10_3892_ijo_2023_5584
crossref_primary_10_1186_s13046_024_03121_9
crossref_primary_10_3389_fimmu_2022_840610
crossref_primary_10_3390_gels11040269
crossref_primary_10_1016_j_ccr_2025_216889
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1016_j_biopha_2023_114802
crossref_primary_10_3390_ijms231810479
crossref_primary_10_3389_fphar_2024_1392241
crossref_primary_10_1002_adhm_202001549
crossref_primary_10_3390_cells12172144
crossref_primary_10_3390_metabo14040217
crossref_primary_10_7554_eLife_76987
crossref_primary_10_1016_j_intimp_2021_107461
crossref_primary_10_1186_s11658_024_00682_7
crossref_primary_10_1155_2024_7484490
crossref_primary_10_1007_s00432_024_05771_w
crossref_primary_10_1016_j_heliyon_2024_e24777
crossref_primary_10_1016_j_semcancer_2020_02_007
crossref_primary_10_3389_fneur_2022_789355
crossref_primary_10_3390_cancers13184609
crossref_primary_10_1007_s11095_022_03399_4
crossref_primary_10_3390_cells10030714
crossref_primary_10_1016_j_bbadis_2023_166983
crossref_primary_10_3389_fonc_2023_1247444
crossref_primary_10_3390_cancers13236142
crossref_primary_10_3390_ph16101392
crossref_primary_10_3390_biology12020204
crossref_primary_10_1016_j_tcb_2020_10_002
crossref_primary_10_3389_fphys_2020_543564
crossref_primary_10_3390_antiox14081002
crossref_primary_10_1016_j_yexcr_2020_112282
crossref_primary_10_1097_RMR_0000000000000303
crossref_primary_10_1007_s12032_023_01997_9
crossref_primary_10_1016_j_talanta_2024_126839
crossref_primary_10_1007_s10555_025_10267_1
crossref_primary_10_1038_s41401_023_01205_4
crossref_primary_10_1007_s43440_025_00768_9
crossref_primary_10_1016_j_cell_2023_11_022
crossref_primary_10_3390_ijms242115500
crossref_primary_10_3390_ijms251910713
crossref_primary_10_1016_j_canlet_2020_12_020
crossref_primary_10_1111_cas_15699
crossref_primary_10_1093_jb_mvad066
crossref_primary_10_1002_smll_202100130
crossref_primary_10_3390_ijms22179507
crossref_primary_10_1186_s12885_021_08561_6
crossref_primary_10_1002_smtd_202201404
crossref_primary_10_1101_gad_348226_120
crossref_primary_10_3390_ijms252010894
crossref_primary_10_1038_s41590_024_01999_3
crossref_primary_10_3390_cells10040762
crossref_primary_10_1016_j_compbiomed_2023_107078
crossref_primary_10_3390_biom12111590
crossref_primary_10_2147_DDDT_S517331
crossref_primary_10_3390_molecules26237134
crossref_primary_10_1016_j_bbcan_2025_189396
crossref_primary_10_1016_j_jiec_2022_03_022
crossref_primary_10_3389_fimmu_2023_1137107
crossref_primary_10_1016_j_expneurol_2025_115318
crossref_primary_10_3389_fonc_2022_1000106
crossref_primary_10_1016_j_intimp_2024_113412
crossref_primary_10_3390_cancers14040976
crossref_primary_10_1042_BSR20230677
crossref_primary_10_1038_s41419_022_04821_w
crossref_primary_10_1093_bjro_tzae019
crossref_primary_10_1002_anie_202307706
crossref_primary_10_1016_j_coisb_2021_100381
crossref_primary_10_3892_or_2024_8839
crossref_primary_10_1038_s41416_022_02099_5
crossref_primary_10_3389_fimmu_2023_1149989
crossref_primary_10_1038_s41392_022_01245_y
crossref_primary_10_1002_smll_202404741
crossref_primary_10_1186_s12935_025_03761_7
crossref_primary_10_1016_j_jconrel_2021_07_038
crossref_primary_10_1016_j_bcp_2024_116469
crossref_primary_10_3389_fonc_2023_1264083
crossref_primary_10_3389_fphys_2022_859820
crossref_primary_10_1111_cpr_13388
crossref_primary_10_1177_10732748211041243
crossref_primary_10_1016_j_lfs_2021_119709
crossref_primary_10_1002_jcp_30570
crossref_primary_10_1186_s12885_021_09151_2
crossref_primary_10_3390_ijms252212201
crossref_primary_10_1146_annurev_cancerbio_061421_042605
crossref_primary_10_3390_cells10113093
crossref_primary_10_1038_s41598_024_76919_4
crossref_primary_10_1080_16078454_2023_2293514
crossref_primary_10_1051_epjconf_202125513002
crossref_primary_10_3390_cancers12061668
crossref_primary_10_3390_ijms241813928
crossref_primary_10_3389_fimmu_2023_894853
crossref_primary_10_1016_j_jff_2020_104143
crossref_primary_10_1371_journal_pcbi_1011374
crossref_primary_10_1186_s12935_022_02845_y
crossref_primary_10_1038_s41598_020_73721_w
crossref_primary_10_3389_fimmu_2021_786666
crossref_primary_10_1016_j_ccell_2023_01_009
crossref_primary_10_1134_S0026893324700663
crossref_primary_10_1016_j_drup_2021_100787
crossref_primary_10_3390_molecules30020393
crossref_primary_10_3724_abbs_2024111
crossref_primary_10_1038_s41571_021_00564_3
crossref_primary_10_1016_j_tranon_2025_102323
crossref_primary_10_3390_ijms241311015
crossref_primary_10_1002_advs_202406486
crossref_primary_10_3390_cancers16162817
crossref_primary_10_1155_2021_5529484
crossref_primary_10_3390_cells9041053
crossref_primary_10_3390_ph16020153
crossref_primary_10_1016_j_canlet_2024_217243
crossref_primary_10_1016_j_micres_2024_127857
crossref_primary_10_3390_cancers12061558
crossref_primary_10_3390_s22155480
crossref_primary_10_1158_0008_5472_CAN_23_0519
crossref_primary_10_3390_ijms24010024
crossref_primary_10_1093_noajnl_vdaf078
crossref_primary_10_3390_molecules30081763
crossref_primary_10_1016_j_coviro_2024_101424
crossref_primary_10_1158_0008_5472_CAN_22_0887
crossref_primary_10_3389_fcell_2021_739392
crossref_primary_10_3389_fonc_2022_1042196
crossref_primary_10_3390_metabo13070872
crossref_primary_10_1111_cpr_13478
crossref_primary_10_1016_j_apmt_2024_102277
crossref_primary_10_1016_j_micromeso_2024_113182
crossref_primary_10_1002_adfm_202516400
crossref_primary_10_1007_s12672_025_02822_7
crossref_primary_10_1007_s12094_022_03000_9
crossref_primary_10_3389_fphys_2021_710420
crossref_primary_10_3389_fonc_2022_816504
crossref_primary_10_3389_fimmu_2021_691134
crossref_primary_10_3892_ijo_2023_5532
crossref_primary_10_1016_j_bbcan_2025_189353
crossref_primary_10_1038_s41420_025_02415_x
crossref_primary_10_3389_fimmu_2025_1513806
crossref_primary_10_1186_s12885_025_14393_5
crossref_primary_10_1016_j_ab_2025_115885
crossref_primary_10_1089_cbr_2020_3564
crossref_primary_10_2147_CMAR_S262075
crossref_primary_10_1007_s10565_025_10068_w
crossref_primary_10_1016_j_critrevonc_2024_104438
crossref_primary_10_1038_s41392_020_00298_1
crossref_primary_10_1002_cam4_6623
crossref_primary_10_3390_biomedicines12081801
crossref_primary_10_1111_imr_13316
crossref_primary_10_3390_biom14101202
crossref_primary_10_3390_cancers17010155
crossref_primary_10_1186_s12951_025_03524_6
crossref_primary_10_3390_ijms23010157
crossref_primary_10_3390_ijms241512222
crossref_primary_10_1186_s12935_023_02852_7
crossref_primary_10_1002_smtd_202001207
crossref_primary_10_1016_j_cej_2023_144563
crossref_primary_10_1002_smll_202311101
crossref_primary_10_3389_fonc_2022_908695
crossref_primary_10_3389_fonc_2023_1106667
crossref_primary_10_1371_journal_pone_0271818
crossref_primary_10_15252_embj_2022112067
crossref_primary_10_1016_j_jconrel_2022_06_022
crossref_primary_10_3389_fimmu_2024_1513047
crossref_primary_10_1016_j_semcancer_2022_11_007
crossref_primary_10_3390_ijms26167947
crossref_primary_10_3390_ijms25189896
crossref_primary_10_3389_fonc_2021_757323
crossref_primary_10_1038_s41568_021_00348_y
crossref_primary_10_3389_fonc_2020_00231
crossref_primary_10_3389_froh_2021_686337
crossref_primary_10_3390_cancers14143528
crossref_primary_10_3390_cancers14194552
crossref_primary_10_1016_j_bmc_2020_115870
crossref_primary_10_1111_1759_7714_14235
crossref_primary_10_1038_s41467_024_51207_x
crossref_primary_10_1186_s13045_024_01600_2
crossref_primary_10_1002_adma_202304296
crossref_primary_10_3389_fimmu_2024_1434118
crossref_primary_10_3389_fnut_2022_924192
crossref_primary_10_1016_j_dld_2022_11_012
crossref_primary_10_1371_journal_pone_0309700
crossref_primary_10_3390_ijms232415831
crossref_primary_10_3390_nu16244338
crossref_primary_10_3389_fonc_2022_897703
crossref_primary_10_1097_CM9_0000000000002989
crossref_primary_10_3389_fonc_2022_967342
crossref_primary_10_3390_cancers13163999
crossref_primary_10_1016_j_apsb_2025_04_002
crossref_primary_10_3389_pore_2021_1609951
crossref_primary_10_1136_bmjopen_2023_080377
crossref_primary_10_1016_j_biopha_2024_117509
crossref_primary_10_3390_cancers15010196
crossref_primary_10_1038_s41598_024_77628_8
crossref_primary_10_1002_ange_202307706
crossref_primary_10_1002_ange_202104304
crossref_primary_10_1038_s41419_021_04391_3
crossref_primary_10_1186_s12935_023_03007_4
crossref_primary_10_1038_s41467_023_41139_3
crossref_primary_10_1177_10732748221148912
crossref_primary_10_3390_cancers14143500
crossref_primary_10_3892_ol_2024_14726
crossref_primary_10_1007_s10620_021_07057_4
crossref_primary_10_1016_j_compbiomed_2025_111000
crossref_primary_10_1016_j_molmet_2021_101389
crossref_primary_10_3389_fimmu_2022_901111
crossref_primary_10_1016_j_cell_2021_08_023
crossref_primary_10_1016_j_mad_2022_111742
crossref_primary_10_3390_pharmaceutics15082166
crossref_primary_10_1016_j_cej_2024_152574
crossref_primary_10_3390_metabo12020154
crossref_primary_10_3390_antiox13070801
crossref_primary_10_3389_fimmu_2024_1360291
crossref_primary_10_1016_j_ccell_2023_05_015
crossref_primary_10_1002_1878_0261_70083
crossref_primary_10_1016_j_ymben_2021_11_006
crossref_primary_10_3390_biom14091195
crossref_primary_10_3390_ijms222413311
crossref_primary_10_3390_cancers13225817
crossref_primary_10_1007_s10753_022_01680_7
crossref_primary_10_1016_j_biopha_2022_113801
crossref_primary_10_1210_endrev_bnae005
crossref_primary_10_1186_s12885_023_11631_6
crossref_primary_10_3389_fphar_2022_928419
crossref_primary_10_1016_j_aca_2025_344049
crossref_primary_10_1016_j_bbcan_2023_189062
crossref_primary_10_5306_wjco_v16_i8_107208
crossref_primary_10_1016_j_ejmech_2024_116598
crossref_primary_10_3389_fcell_2021_701672
crossref_primary_10_3390_v14010103
crossref_primary_10_3389_fonc_2020_00317
crossref_primary_10_1002_advs_202102595
crossref_primary_10_1002_tox_23497
crossref_primary_10_3390_ijms252211994
crossref_primary_10_1016_j_intimp_2025_114871
crossref_primary_10_3390_metabo15030201
crossref_primary_10_1055_a_1308_3476
crossref_primary_10_1002_hed_27161
crossref_primary_10_1016_j_semcancer_2022_10_001
crossref_primary_10_3390_nu15061514
crossref_primary_10_1111_jog_15791
crossref_primary_10_3389_fphar_2022_1004383
crossref_primary_10_1016_j_biochi_2023_09_021
crossref_primary_10_1021_acscentsci_3c00702
crossref_primary_10_3390_biom15071010
crossref_primary_10_4049_jimmunol_2300339
crossref_primary_10_1186_s12859_022_04967_6
crossref_primary_10_1016_j_omto_2020_07_006
crossref_primary_10_1016_j_intimp_2024_113470
crossref_primary_10_1016_j_bcp_2025_117337
crossref_primary_10_1186_s40170_021_00247_8
crossref_primary_10_1016_j_addr_2021_114003
crossref_primary_10_1016_j_omtn_2023_01_017
crossref_primary_10_1080_08830185_2022_2095374
crossref_primary_10_1016_j_mehy_2021_110520
crossref_primary_10_1089_ars_2022_0190
crossref_primary_10_1016_j_matbio_2024_07_003
crossref_primary_10_3390_antiox12020220
crossref_primary_10_3390_biom10071068
crossref_primary_10_1002_ijc_34766
crossref_primary_10_1186_s12943_022_01503_1
crossref_primary_10_1128_mbio_03595_24
crossref_primary_10_3389_fimmu_2024_1409238
crossref_primary_10_3390_cancers14092306
crossref_primary_10_3389_fimmu_2025_1563303
crossref_primary_10_1371_journal_pbio_3001197
crossref_primary_10_3389_fonc_2023_1141851
crossref_primary_10_1016_j_jconrel_2022_12_003
crossref_primary_10_1016_j_cmet_2021_08_012
crossref_primary_10_1186_s13578_024_01231_7
crossref_primary_10_7554_eLife_92511
crossref_primary_10_1002_cac2_12182
crossref_primary_10_3390_antiox12112012
crossref_primary_10_7759_cureus_48100
crossref_primary_10_3390_cells13181533
crossref_primary_10_1016_j_mtchem_2023_101894
crossref_primary_10_3390_genes12050777
crossref_primary_10_3390_biom13030465
crossref_primary_10_3389_fmolb_2023_1229760
crossref_primary_10_3390_cancers16244132
crossref_primary_10_1007_s10147_024_02664_3
crossref_primary_10_3390_cells10071715
crossref_primary_10_3389_fonc_2023_1183474
crossref_primary_10_1177_23993693241297380
crossref_primary_10_1016_j_heliyon_2024_e27465
crossref_primary_10_1158_2326_6066_CIR_20_0741
crossref_primary_10_1186_s41181_024_00267_x
crossref_primary_10_1002_adtp_202000248
crossref_primary_10_1002_adhm_202500655
crossref_primary_10_1016_j_biocel_2020_105752
crossref_primary_10_1158_1535_7163_MCT_24_0266
crossref_primary_10_1016_j_canlet_2021_02_019
crossref_primary_10_1002_smtd_202300945
crossref_primary_10_3389_fonc_2022_979154
crossref_primary_10_7717_peerj_14930
crossref_primary_10_1016_j_ejmcr_2024_100131
crossref_primary_10_1007_s12274_022_4620_z
crossref_primary_10_1186_s12929_022_00855_6
crossref_primary_10_1016_j_isci_2023_107898
crossref_primary_10_3390_ph17020195
crossref_primary_10_3389_fvets_2021_700669
crossref_primary_10_3390_ijms252413242
crossref_primary_10_3892_or_2023_8642
crossref_primary_10_1016_j_bbadis_2020_166016
crossref_primary_10_3390_ijms242417422
crossref_primary_10_1007_s12026_023_09376_2
crossref_primary_10_1002_mrm_28976
crossref_primary_10_1016_j_prp_2025_156151
crossref_primary_10_1136_bjo_2024_326495
crossref_primary_10_3389_fimmu_2020_616188
crossref_primary_10_1080_13543776_2022_2067478
crossref_primary_10_3390_ijms26178231
crossref_primary_10_1038_s41598_022_10143_w
crossref_primary_10_3390_cancers13195028
crossref_primary_10_2147_OTT_S253485
crossref_primary_10_3390_foods14101713
crossref_primary_10_1002_cbin_12097
crossref_primary_10_1158_0008_5472_CAN_22_3551
crossref_primary_10_3389_fonc_2022_1101503
crossref_primary_10_3390_metabo13030345
crossref_primary_10_1007_s00432_023_05483_7
crossref_primary_10_1186_s12943_024_02205_6
crossref_primary_10_1016_j_ajps_2025_101059
crossref_primary_10_3389_fimmu_2022_979116
crossref_primary_10_3389_fonc_2022_1022716
crossref_primary_10_1155_2023_2830306
crossref_primary_10_22456_1679_9216_125067
crossref_primary_10_26508_lsa_202302200
crossref_primary_10_1007_s10439_022_02904_5
crossref_primary_10_1016_j_bbadis_2024_167563
crossref_primary_10_1186_s12935_021_02217_y
crossref_primary_10_1016_j_pbiomolbio_2021_08_005
crossref_primary_10_1186_s12964_022_00951_y
crossref_primary_10_1038_s41467_020_17402_2
crossref_primary_10_3892_or_2023_8548
crossref_primary_10_1016_j_cnsns_2021_105783
crossref_primary_10_1038_s44319_024_00288_2
crossref_primary_10_3390_cancers13050996
crossref_primary_10_3390_ijms242015369
crossref_primary_10_1002_EXP_20230037
crossref_primary_10_1007_s00262_022_03215_3
crossref_primary_10_3389_fphar_2022_868695
crossref_primary_10_3390_cancers14020437
crossref_primary_10_1007_s43440_023_00504_1
crossref_primary_10_3390_cancers17091457
crossref_primary_10_1016_j_bbcan_2020_188442
crossref_primary_10_3390_biom12091182
crossref_primary_10_3748_wjg_v29_i29_4499
crossref_primary_10_1016_j_metabol_2022_155371
crossref_primary_10_1186_s12885_022_10364_2
crossref_primary_10_1007_s11010_025_05312_0
crossref_primary_10_1016_j_phrs_2025_107841
crossref_primary_10_1242_dmm_048934
crossref_primary_10_3390_cancers16213671
crossref_primary_10_3390_antiox10060966
crossref_primary_10_3390_cancers14246214
crossref_primary_10_1002_med_21874
crossref_primary_10_3390_ijms25126328
crossref_primary_10_1038_s41467_023_41016_z
crossref_primary_10_3389_fphys_2023_1114231
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_1111_tra_12933
crossref_primary_10_26508_lsa_202000903
crossref_primary_10_3390_ijms21155487
crossref_primary_10_1016_j_mbs_2023_109044
crossref_primary_10_1186_s12951_022_01752_8
crossref_primary_10_1158_0008_5472_CAN_22_3015
crossref_primary_10_3390_pharmaceutics14112331
crossref_primary_10_1371_journal_pcbi_1011944
crossref_primary_10_1111_imm_13574
crossref_primary_10_1038_s42005_025_02133_x
crossref_primary_10_1007_s00432_022_04501_4
crossref_primary_10_1016_j_molcel_2020_05_034
crossref_primary_10_1016_j_drudis_2021_07_014
crossref_primary_10_3390_molecules25225355
crossref_primary_10_3389_fonc_2025_1599183
crossref_primary_10_3390_ijms24065141
crossref_primary_10_1007_s10957_023_02271_8
crossref_primary_10_1007_s12672_025_02873_w
crossref_primary_10_3389_fendo_2022_1044670
crossref_primary_10_3390_ijms24119137
crossref_primary_10_3390_md22090391
crossref_primary_10_1007_s12015_024_10833_0
crossref_primary_10_1016_j_bbagen_2025_130801
crossref_primary_10_1186_s13046_022_02447_6
crossref_primary_10_1007_s12149_023_01892_3
crossref_primary_10_1016_j_bbcan_2022_188705
crossref_primary_10_1016_j_cej_2025_161370
crossref_primary_10_1038_s41418_023_01157_6
crossref_primary_10_1016_j_tim_2020_01_001
crossref_primary_10_2174_1874467214666211006123728
crossref_primary_10_1002_nbm_4599
crossref_primary_10_3389_fimmu_2021_729209
crossref_primary_10_1002_elps_202100217
crossref_primary_10_3390_biomedicines10040806
crossref_primary_10_1016_j_coi_2020_08_001
crossref_primary_10_3390_cancers13174281
crossref_primary_10_1038_s41419_023_06187_z
crossref_primary_10_1017_erm_2024_9
crossref_primary_10_3390_pharmaceutics15061612
crossref_primary_10_1039_D2BM00650B
crossref_primary_10_1126_scitranslmed_add2712
crossref_primary_10_1186_s40170_024_00362_2
crossref_primary_10_3390_cancers13071488
crossref_primary_10_1038_s41598_022_15562_3
crossref_primary_10_1002_mc_23436
crossref_primary_10_1016_j_ejmech_2024_116179
crossref_primary_10_1002_cbin_12172
crossref_primary_10_1016_j_bbcan_2021_188553
crossref_primary_10_1038_s41419_023_05998_4
crossref_primary_10_3390_ijms232214360
crossref_primary_10_3390_ijms22189910
crossref_primary_10_1186_s13046_022_02302_8
crossref_primary_10_3390_cells10102617
crossref_primary_10_3390_biology14091213
crossref_primary_10_3390_ijms22115703
crossref_primary_10_3390_ijms25052630
crossref_primary_10_3389_fphar_2022_1052922
crossref_primary_10_1111_cas_14603
crossref_primary_10_3390_cells12060939
crossref_primary_10_1016_j_colsurfb_2025_114844
crossref_primary_10_3390_ijms24032020
crossref_primary_10_1007_s12672_025_02663_4
crossref_primary_10_1038_s41416_023_02282_2
crossref_primary_10_3389_fonc_2021_628359
crossref_primary_10_1016_j_bcp_2023_115528
crossref_primary_10_1158_0008_5472_CAN_22_3481
crossref_primary_10_3892_ijo_2024_5628
crossref_primary_10_3389_fonc_2020_575037
crossref_primary_10_1002_jcp_30661
crossref_primary_10_1186_s10020_024_00879_8
crossref_primary_10_3389_fphar_2025_1586973
crossref_primary_10_3389_fonc_2022_831079
crossref_primary_10_3389_fonc_2020_589434
crossref_primary_10_3390_cancers14215468
crossref_primary_10_1016_j_cclet_2024_110314
crossref_primary_10_1007_s11010_024_05041_w
crossref_primary_10_1016_j_colsurfb_2022_112832
crossref_primary_10_3389_fnut_2025_1591508
crossref_primary_10_1186_s12958_021_00770_9
crossref_primary_10_1002_jcb_30381
crossref_primary_10_1002_1878_0261_13261
crossref_primary_10_1155_jimr_6573891
crossref_primary_10_3390_cells14090673
crossref_primary_10_1002_adma_202203915
crossref_primary_10_4155_fmc_2021_0205
crossref_primary_10_1016_j_taap_2023_116378
crossref_primary_10_1038_s41417_024_00864_7
crossref_primary_10_1016_j_toxrep_2025_101902
crossref_primary_10_3389_fonc_2021_672339
crossref_primary_10_1002_jcp_30536
crossref_primary_10_1016_j_bbrc_2024_149741
crossref_primary_10_1016_j_phanu_2023_100340
crossref_primary_10_1111_cas_16133
crossref_primary_10_3389_fonc_2021_696402
crossref_primary_10_3390_nu15010003
crossref_primary_10_7759_cureus_70700
crossref_primary_10_1016_j_jddst_2024_105938
crossref_primary_10_3389_fonc_2022_796311
crossref_primary_10_1016_j_mito_2023_02_007
crossref_primary_10_3390_ph15101257
crossref_primary_10_1002_2211_5463_13452
crossref_primary_10_1002_adma_202404901
crossref_primary_10_1039_D5TB00509D
crossref_primary_10_3389_fonc_2022_1077053
crossref_primary_10_3390_cancers12051232
crossref_primary_10_1016_j_abb_2020_108659
crossref_primary_10_3390_cells11111854
crossref_primary_10_1007_s12672_025_02238_3
crossref_primary_10_1002_wnan_1842
crossref_primary_10_1038_s41598_024_71140_9
crossref_primary_10_1016_j_cbi_2021_109602
crossref_primary_10_1007_s12094_025_03894_1
crossref_primary_10_1016_j_tranon_2023_101758
crossref_primary_10_1039_D0BM01153C
crossref_primary_10_1172_JCI177606
crossref_primary_10_3389_fimmu_2020_587913
crossref_primary_10_1021_acsomega_5c00052
crossref_primary_10_1111_imm_13871
crossref_primary_10_3390_cells12162048
crossref_primary_10_7554_eLife_92511_3
crossref_primary_10_1038_s41418_024_01436_w
crossref_primary_10_1002_ijc_35139
crossref_primary_10_3390_cells12060857
crossref_primary_10_3390_molecules26195900
crossref_primary_10_1002_jbio_202000301
crossref_primary_10_1007_s40279_024_02031_2
crossref_primary_10_1021_acscentsci_3c01250
crossref_primary_10_3390_foods13172687
crossref_primary_10_3389_fonc_2020_615472
crossref_primary_10_1016_j_adcanc_2022_100058
crossref_primary_10_1134_S002209302206028X
crossref_primary_10_1007_s10822_024_00568_y
crossref_primary_10_1002_advs_202305662
crossref_primary_10_1002_agt2_533
crossref_primary_10_1016_j_devcel_2020_06_018
crossref_primary_10_1038_s41388_024_03054_9
crossref_primary_10_1515_nanoph_2021_0171
crossref_primary_10_1016_j_inoche_2025_114313
crossref_primary_10_1007_s11033_021_06149_8
crossref_primary_10_1016_j_bspc_2023_105169
crossref_primary_10_1002_nbm_4650
crossref_primary_10_1038_s44222_022_00004_6
crossref_primary_10_3389_fimmu_2024_1492050
crossref_primary_10_3389_fphys_2022_951390
crossref_primary_10_1186_s12885_022_09956_9
crossref_primary_10_1186_s40170_021_00252_x
crossref_primary_10_2147_OTT_S338826
crossref_primary_10_26599_NR_2025_94907420
crossref_primary_10_1002_adtp_202100224
crossref_primary_10_1016_j_tem_2022_07_004
crossref_primary_10_1002_adfm_202400929
crossref_primary_10_1016_j_cej_2022_140730
crossref_primary_10_1186_s12964_023_01253_7
crossref_primary_10_1016_j_talanta_2023_125582
crossref_primary_10_1002_biof_1799
crossref_primary_10_1016_j_trac_2022_116640
crossref_primary_10_1016_j_semcancer_2020_12_002
crossref_primary_10_1016_j_mtnano_2024_100509
crossref_primary_10_1038_s41556_022_01002_x
crossref_primary_10_3390_cancers15133473
crossref_primary_10_3390_ijms242417628
crossref_primary_10_1016_j_heliyon_2025_e42098
crossref_primary_10_1016_j_jddst_2025_107050
crossref_primary_10_3390_cancers12020310
crossref_primary_10_3389_fmolb_2023_1143073
crossref_primary_10_1002_cnr2_2116
crossref_primary_10_1016_j_tibs_2020_07_005
crossref_primary_10_1002_anie_202104304
crossref_primary_10_3389_fsurg_2022_923427
crossref_primary_10_1016_j_heliyon_2024_e32914
crossref_primary_10_3389_fimmu_2021_683381
crossref_primary_10_3390_cancers15082195
crossref_primary_10_1007_s12032_023_02115_5
crossref_primary_10_1186_s12943_024_02216_3
crossref_primary_10_2174_0929867330666230607104441
crossref_primary_10_1093_nar_gkaa1179
crossref_primary_10_1016_j_semcancer_2023_01_007
crossref_primary_10_1002_advs_202507820
crossref_primary_10_3390_ijms22031258
crossref_primary_10_1007_s11060_024_04862_5
crossref_primary_10_1016_j_biomaterials_2025_123203
crossref_primary_10_1007_s00726_024_03438_x
crossref_primary_10_3389_fsurg_2023_1118403
crossref_primary_10_1186_s10020_021_00300_8
crossref_primary_10_31083_j_fbl2905178
crossref_primary_10_3389_fonc_2020_591342
crossref_primary_10_1369_00221554221101662
crossref_primary_10_1155_2021_8859181
crossref_primary_10_3390_nu14091722
crossref_primary_10_1016_j_mcpro_2025_100944
crossref_primary_10_3389_fonc_2022_1036477
crossref_primary_10_3390_cancers17111793
crossref_primary_10_3390_molecules26123494
crossref_primary_10_1016_j_pharmthera_2021_107986
crossref_primary_10_3390_ijms23031353
crossref_primary_10_1016_j_cmet_2023_07_005
crossref_primary_10_3389_fimmu_2025_1576283
crossref_primary_10_3390_cancers12082087
crossref_primary_10_1016_j_semcancer_2022_09_007
crossref_primary_10_1109_TIM_2023_3296819
crossref_primary_10_3390_metabo11110777
crossref_primary_10_1186_s12885_020_06885_3
crossref_primary_10_3390_cells9122598
crossref_primary_10_3389_fphar_2022_1091779
crossref_primary_10_1039_D0BM01196G
crossref_primary_10_3390_biology11020270
crossref_primary_10_1111_cns_70121
crossref_primary_10_3390_cancers14133237
crossref_primary_10_3389_fonc_2022_790916
crossref_primary_10_3389_fcell_2022_873029
crossref_primary_10_3389_fphar_2024_1383274
crossref_primary_10_3390_biomedicines9060698
crossref_primary_10_1007_s12272_023_01431_8
crossref_primary_10_1016_j_cmet_2025_01_002
crossref_primary_10_3390_vaccines8040562
Cites_doi 10.1038/sj.jid.5700001
10.18632/oncotarget.22786
10.1080/15384101.2016.1252882
10.1016/j.tcb.2017.06.003
10.1016/j.cell.2017.09.019
10.1038/s41598-019-40617-3
10.1038/nchembio.1141
10.1080/15384101.2016.1175258
10.1146/annurev.iy.09.040191.001415
10.1101/GAD.314617.118
10.1016/j.cell.2016.11.037
10.1038/nature13490
10.1038/nchembio.2172
10.1016/j.cmet.2011.12.009
10.1128/CDLI.8.2.209-220.2001
10.1016/j.ejrad.2009.12.022
10.1101/gad.189365.112
10.3390/biology5040038
10.1534/genetics.117.300262
10.1007/s13277-015-4415-x
10.1093/jnci/djt184
10.1080/15384101.2015.1120930
10.1128/mcb.06120-11
10.1085/jgp.8.6.519
10.1159/000176723
10.1038/onc.2017.6
10.1039/c7md00222j
10.1042/bj3500219
10.1113/jphysiol.2003.058701
10.1186/1471-2407-14-760
10.4103/0976-237x.194108
10.1124/mol.106.026245
10.1074/jbc.271.51.32529
10.1073/pnas.0709747104
10.1007/s13238-017-0451-1
10.1126/science.8097338
10.1158/0008-5472.CAN-08-4806
10.1016/j.urolonc.2018.08.015
10.1073/pnas.0914433107
10.1007/s00109-015-1376-x
10.4161/cc.10.23.18151
10.1002/jcp.27049
10.1158/0008-5472.CAN-06-3184
10.1016/j.tibs.2015.12.001
10.3389/fonc.2018.00324
10.3390/nu10111564
10.1038/nchembio744
10.18632/oncotarget.18175
10.1158/2326-6066.cir-18-0481
10.1038/ni1581.Up
10.1016/j.canlet.2015.05.015
10.1007/s12272-019-01139-8
10.1016/J.CLINBIOCHEM.2008.06.011
10.1002/cam4.2024
10.4049/jimmunol.1202702
10.1038/onc.2014.47
10.1016/j.trecan.2016.11.001
10.4049/jimmunol.1300772
10.1007/s00432-003-0450-x
10.1016/j.radonc.2006.08.012
10.1158/0008-5472.can-18-3726
10.1038/s41416-018-0216-5
10.1074/jbc.RA118.005536
10.3389/fimmu.2017.01124
10.3390/cancers11040450
10.1021/acs.jmedchem.7b00318
10.1016/s0092-8674(00)81683-9
10.1016/j.ejmech.2019.05.033
10.2174/0929867043364711
10.1080/15548627.2017.1381804
10.3390/cancers11020257
10.1093/brain/awp202
10.2174/138161212799504902
10.1182/blood.v95.10.3183.010k36_3183_3190
10.1016/j.tibs.2012.04.002
10.1038/icb.2010.78
10.1074/jbc.M411950200
10.1371/journal.pone.0002915
10.18632/oncotarget.20836
10.1182/blood-2006-07-035972
10.1146/annurev.bi.34.070165.001501
10.1038/srep13605
10.2147/CMAR.S57550
10.1379/csc-99r.1
10.3892/or.2017.5479
10.1002/eji.200838331
10.1186/s12943-019-0992-4
10.1093/emboj/19.15.3896
10.1074/jbc.M116.749424
10.1371/journal.pone.0139598
10.1158/1535-7163.MCT-17-1253
10.1097/MD.0000000000010741
10.1016/j.clineuro.2004.10.009
10.1371/journal.pone.0075154
10.1136/bmj.1.5022.779
10.1016/j.cmet.2015.06.023
10.1038/nature01112
10.1016/j.ccr.2006.04.023
10.1016/j.trecan.2017.09.002
10.1002/cpt.418
10.7150/jca.25257
10.1016/j.canlet.2014.01.031
10.1172/JCI64264DS1
10.1159/000495232
10.1208/s12248-018-0279-5
10.1016/j.exger.2013.12.009
10.1159/000349944
10.1016/j.bbabio.2017.02.005
10.1016/j.tibs.2018.10.011
10.1016/j.celrep.2016.03.026
10.2307/1712825
10.1016/j.tibs.2006.11.006
10.1074/jbc.M202487200
10.1016/S0021-9258(18)99819-4
10.1016/j.celrep.2018.11.043
10.1016/j.cmet.2016.08.011
10.1158/0008-5472.CAN-12-1949
10.1172/JCI36843
10.1158/0008-5472.CAN-15-1743
10.1080/15384101.2018.1444305
10.1038/s41598-019-38854-7
10.1038/nrc3599
10.1016/j.ejps.2017.05.015
10.1016/j.celrep.2014.11.025
10.1113/jphysiol.2009.178350
10.1016/j.mito.2014.05.007
10.1042/bsr20181476
10.1002/hed.21618
10.18632/oncotarget.18215
10.1152/ajpendo.1990.259.5.e677
10.1002/cam4.1587
10.1158/0008-5472.CAN-17-3226
10.1016/j.ebiom.2019.02.025
10.1073/pnas.94.13.6658
10.3904/kjim.2016.227
10.1155/2013/540850
10.1126/sciadv.1600200
10.1016/j.cmet.2018.03.008
10.1158/0008-5472.CAN-12-2796
10.1016/j.cmet.2015.12.006
10.3390/ijms19092714
10.1042/bj1540405
10.1186/1471-2407-14-751
10.1038/bjc.1995.472
10.1002/cam4.1820
10.3233/CBM-150514
10.1016/j.celrep.2014.07.053
10.1152/ajpendo.00594.2005
10.1097/md.0000000000013151
10.1074/jbc.M111.255331
10.1016/0092-8674(94)90361-1
10.1016/S0360-3016(01)01630-3
10.1146/annurev.immunol.19.1.683
10.1038/s41467-018-06841-7
10.1002/path.4006
10.1038/nchembio.2307
10.1016/j.coph.2019.01.008
10.4161/cc.10.15.16585
10.1016/S0021-9258(17)30124-2
10.1073/pnas.1901376116
10.4049/jimmunol.180.11.7175
10.1016/j.cmet.2018.08.006
10.18632/oncotarget.25371
10.1002/0470868716.ch15
10.1126/science.1193494
10.1016/j.cell.2011.02.013
10.1038/nature04808
10.3233/DMA-2009-0596
10.1016/j.bbamcr.2019.03.004
10.1038/bjc.1979.192
10.1158/0008-5472.CAN-17-0764
10.3892/ijo.2017.3979
10.1038/nature24057
10.7150/ijbs.30297
10.1016/j.cmet.2017.04.004
10.1093/carcin/bgw127
10.1074/jbc.M511397200
10.4161/cc.9.17.12731
10.1016/j.cell.2016.07.002
10.1016/j.cell.2015.12.034
10.1007/s11427-016-0348-7
10.1016/j.celrep.2018.10.100
10.4161/cc.24092
10.1158/0008-5472.CAN-11-1272
10.1038/onc.2009.229
10.1016/j.humpath.2014.09.013
ContentType Journal Article
Copyright Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino.
Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino. 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino
Copyright_xml – notice: Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino.
– notice: Copyright © 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino. 2019 de la Cruz-López, Castro-Muñoz, Reyes-Hernández, García-Carrancá and Manzo-Merino
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fonc.2019.01143
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_2484900b25f14716a82cffa803efca47
PMC6839026
10_3389_fonc_2019_01143
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c502t-bd5ebaeb4e70aa22d5592e8b5928f5b4b070cee41917be086955695ecf600d993
IEDL.DBID DOA
ISICitedReferencesCount 703
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497397800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-943X
IngestDate Fri Oct 03 12:52:15 EDT 2025
Thu Aug 21 18:42:22 EDT 2025
Fri Sep 05 12:18:42 EDT 2025
Tue Nov 18 22:41:42 EST 2025
Sat Nov 29 01:49:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-bd5ebaeb4e70aa22d5592e8b5928f5b4b070cee41917be086955695ecf600d993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Nadia Judith Jacobo-Herrera, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico
This article was submitted to Cancer Metabolism, a section of the journal Frontiers in Oncology
Reviewed by: Michael P. Lisanti, University of Salford, United Kingdom; Liwei Lang, Augusta University, United States
OpenAccessLink https://doaj.org/article/2484900b25f14716a82cffa803efca47
PMID 31737570
PQID 2315528496
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2484900b25f14716a82cffa803efca47
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839026
proquest_miscellaneous_2315528496
crossref_citationtrail_10_3389_fonc_2019_01143
crossref_primary_10_3389_fonc_2019_01143
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Frontiers in oncology
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Park (B8) 2013; 36
Daneshmandi (B160) 2019; 11
Pérez-Escuredo (B59) 2016; 15
Baek (B116) 2014; 9
Bonuccelli (B118) 2010; 9
Fiaschi (B126) 2012; 72
Quennet (B37) 2006; 81
Consoli (B26) 2017; 259
Zhao (B188) 2009; 28
Le (B68) 2010; 107
Park (B54) 2016; 15
Pavlova (B117) 2016; 23
Andersen (B148) 2006; 126
Walenta (B33) 2003; 129
Liang (B61) 2016; 291
Curry (B93) 2013; 12
Steinman (B143) 1991; 9
Hou (B67) 2019; 39
Gupta (B142) 2014; 54
Fu (B127) 2017; 8
Nikoobakht (B36) 2019; 22
Racker (B4) 1972; 60
Dang (B131) 2012; 26
La Manna (B189) 2018; 19
Chen (B47) 2016; 12
Lambert (B166) 2017; 168
Leithner (B55) 2015; 34
Mayer (B13) 2014; 14
Brooks (B29) 2018; 27
Leone (B147) 2013; 105
Ippolito (B101) 2019; 44
Saluja (B70) 2016; 37
Bisetto (B100) 2018; 8
Dimmer (B115) 2000; 350
Calcinotto (B161) 2012; 72
Nalbandian (B23) 2016; 5
Estrella (B104) 2013; 73
Morandi (B102) 2016; 2
Scott (B146) 2001; 8
Levine (B18) 2010; 330
Groh (B136) 2002; 419
Lyssiotis (B20) 2017; 27
DeBerardinis (B41) 2007; 104
Zhang (B94) 2018; 9
Holohan (B170) 2013; 13
Brand (B159) 2016; 24
Hsieh (B151) 1993; 260
Hanahan (B2) 2011; 144
Hashimoto (B48) 2006; 290
Mohajertehran (B71) 2019; 7
Johnson (B16) 2012; 37
Martinez-Outschoorn (B120) 2011; 10
Davies (B128) 2014; 6
Burnet (B149) 1957; 1
Kennedy (B34) 2013; 8
Deligeoroglou (B145) 2013; 2013
Mu (B165) 2018; 17
Walenta (B30) 2000; 60
Warburg (B3) 1927; 8
Spencer (B85) 1976; 154
Kim (B178) 2019; 9
Henninot (B190) 2018; 61
Gladden (B24) 2004; 558
Kimmelman (B121) 2017; 25
Zhou (B177) 2019; 177
Hensley (B113) 2016; 164
Gallagher (B50) 2009; 132
Wong (B12) 2015; 356
Shime (B157) 2008; 180
Jin (B74) 2017; 36
Paul (B133) 2017; 8
Apicella (B173) 2018; 28
Colegio (B163) 2014; 513
Nasi (B150) 2013; 191
Brooks (B27)
Fu (B64) 2018; 97
Lin (B164) 2017; 8
Guan (B183) 2019; 21
Faubert (B56) 2017; 171
Talasniemi (B21) 2008; 41
Intlekofer (B78) 2017; 13
Pilon-Thomas (B162) 2016; 76
Kim (B144) 2018; 33
DeBerardinis (B174) 2016; 2
Semenza (B80) 1996; 271
Fischer (B158) 2007; 109
Bok (B57) 2019; 11
Li (B75) 2019; 15
Adeva-Andany (B60) 2014; 17
Zhou (B124) 2017; 16
Zhang (B66) 2019; 8
Shan (B119) 2017; 37
Connor (B22) 1983; 27
Tamulevicius (B38) 1995; 72
Wilson (B87) 2005; 280
Hirayama (B51) 2009; 69
Lanier (B135) 2009; 9
Zhao (B155) 2015; 10
Liu (B73) 2018; 78
Garcia (B84) 1994; 76
Harmon (B137) 2019; 7
Büscheck (B107) 2018; 36
Cruzat (B42) 2018; 10
Pegram (B134) 2011; 89
Amorim (B184) 2015; 365
Castagnoli (B169) 2019; 234
Qu (B172) 2019; 18
Hanahan (B1) 2000; 100
Zacksenhaus (B45) 2017; 3
Quanz (B185) 2018; 17
Walenta (B167) 2012; 11
Chaudhari (B69) 2016; 7
Luo (B123) 2018; 51
Ciocca (B187) 2005; 10
Amoedo (B171) 2017; 1858
Le (B58) 2012; 15
Fang (B91) 2006; 70
Xie (B140) 2016; 59
Manerba (B181) 2017; 105
Matsumura (B168) 2005; 107
Curtis (B182) 2017; 8
Brooks (B28) 2009; 587
Anderson (B44) 2018; 9
Fantin (B14) 2006; 9
Panisova (B108) 2017; 8
Vyas (B5) 2016; 166
Marshall (B7) 1979; 40
Santidrian (B46) 2013; 123
Choi (B99) 2018; 7
Whitaker-Menezes (B122) 2011; 10
Pinheiro (B90) 2014; 14
Forero-Quintero (B112) 2019; 294
Bae (B139) 2019; 42
Updegraff (B89) 2018; 25
Liu (B130) 2016; 94
Jafary (B176) 2019; 9
Fang (B180) 2017; 8
Kurrikoff (B191) 2019; 47
San-Millán (B19) 2017; 38
Pinheiro (B95) 2009; 26
Brizel (B31) 2001; 51
Kim (B92) 2015; 46
Van Der Bliek (B40) 2017; 207
Pastorek (B106) 1994; 9
Jamali (B110) 2015; 5
Liu (B6) 2017; 50
Klier (B109) 2011; 286
Benjamin (B186) 2018; 25
Hashimoto (B49) 2008; 3
Jones (B83) 2016; 100
Ullah (B114) 2006; 281
Das (B179) 2019; 1866
Gonzalez (B129) 2018; 32
Dhup (B132) 2012; 18
Liberti (B39) 2016; 41
Intlekofer (B77) 2015; 22
Moore (B154) 2001; 19
Walenta (B32) 1997; 150
Ames (B111) 2018; 9
Wang (B152) 2000; 95
Dawson (B62) 2013; 143
Feng (B175) 2018; 7
García-Cañaveras (B103) 2019; 2019
Wykoff (B79) 2001; 240
Gallagher (B88) 2007; 67
Jiao (B9) 2017; 14
Langowski (B156) 2006; 442
Trivedi (B82) 1966; 241
Kirk (B86) 2000; 19
Pinheiro (B96) 2016; 15
Murray (B192) 2005; 1
Gan (B65) 2018; 97
Fan (B72) 2011; 31
Lee (B105) 2018; 119
Liu (B81) 2018; 9
Reitzer (B43) 1979; 254
Hui (B52) 2017; 551
Wadsak (B10) 2010; 73
Wang (B11) 2014; 8
Gerlinger (B98) 2012; 227
Husain (B138) 2013; 191
Neufeld (B25) 1965; 34
Sun (B125) 2019; 41
Linster (B76) 2013; 9
Lu (B17) 2002; 277
Payen (B97) 2017; 77
Belenky (B63) 2007; 32
Vlachostergios (B35) 2015; 15
Gu (B153) 2008; 38
Shim (B15) 1997; 94
Sonveaux (B53) 2008; 118
Kumar (B141) 2019; 116
References_xml – volume: 126
  start-page: 32
  year: 2006
  ident: B148
  article-title: Cytotoxic T cells
  publication-title: J Invest Dermatol
  doi: 10.1038/sj.jid.5700001
– volume: 8
  start-page: 110426
  year: 2017
  ident: B164
  article-title: Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22786
– volume: 16
  start-page: 73
  year: 2017
  ident: B124
  article-title: Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2016.1252882
– volume: 27
  start-page: 863
  year: 2017
  ident: B20
  article-title: Metabolic interactions in the tumor microenvironment
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2017.06.003
– volume: 171
  start-page: 358
  year: 2017
  ident: B56
  article-title: Lactate metabolism in human lung tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.019
– volume: 9
  start-page: 1
  year: 2019
  ident: B178
  article-title: A novel lactate dehydrogenase inhibitor, 1-(phenylseleno)-4-(trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40617-3
– volume: 9
  start-page: 72
  year: 2013
  ident: B76
  article-title: Metabolite damage and its repair or pre-emption
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1141
– volume: 15
  start-page: 1462
  year: 2016
  ident: B96
  article-title: The metabolic microenvironment of melanomas: prognostic value of MCT1 and MCT4
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2016.1175258
– volume: 9
  start-page: 271
  year: 1991
  ident: B143
  article-title: The dendritic cell system and its role in immunogenicity
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.iy.09.040191.001415
– volume: 32
  start-page: 1267
  year: 2018
  ident: B129
  article-title: Roles of the immune system in cancer: from tumor initiation to metastatic progression
  publication-title: Genes Dev
  doi: 10.1101/GAD.314617.118
– volume: 168
  start-page: 670
  year: 2017
  ident: B166
  article-title: Emerging biological principles of metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.037
– volume: 513
  start-page: 559
  year: 2014
  ident: B163
  article-title: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
  publication-title: Nature
  doi: 10.1038/nature13490
– volume: 12
  start-page: 937
  year: 2016
  ident: B47
  article-title: Lactate metabolism is associated with mammalian mitochondria
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2172
– volume: 15
  start-page: 110
  year: 2012
  ident: B58
  article-title: Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.12.009
– volume: 8
  start-page: 209
  year: 2001
  ident: B146
  article-title: Cell-mediated immune response to human papillomavirus infection
  publication-title: J Allergy Clin Immunol
  doi: 10.1128/CDLI.8.2.209-220.2001
– volume: 73
  start-page: 461
  year: 2010
  ident: B10
  article-title: Basics and principles of radiopharmaceuticals for PET/CT
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2009.12.022
– volume: 26
  start-page: 877
  year: 2012
  ident: B131
  article-title: Links between metabolism and cancer
  publication-title: Genes Dev
  doi: 10.1101/gad.189365.112
– volume: 5
  start-page: 38
  year: 2016
  ident: B23
  article-title: Lactate as a signaling molecule that regulates exercise-induced adaptations
  publication-title: Biology.
  doi: 10.3390/biology5040038
– volume: 207
  start-page: 843
  year: 2017
  ident: B40
  article-title: Cell biology of the mitochondrion
  publication-title: Genetics
  doi: 10.1534/genetics.117.300262
– volume: 37
  start-page: 5609
  year: 2016
  ident: B70
  article-title: Equating salivary lactate dehydrogenase (LDH) with LDH-5 expression in patients with oral squamous cell carcinoma: an insight into metabolic reprogramming of cancer cell as a predictor of aggressive phenotype
  publication-title: Tumor Biol
  doi: 10.1007/s13277-015-4415-x
– volume: 105
  start-page: 1172
  year: 2013
  ident: B147
  article-title: MHC class i antigen processing and presenting machinery: organization, function, and defects in tumor cells
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djt184
– volume: 15
  start-page: 72
  year: 2016
  ident: B59
  article-title: Lactate promotes glutamine uptake and metabolism in oxidative cancer cells
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1120930
– volume: 31
  start-page: 4938
  year: 2011
  ident: B72
  article-title: Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD+ redox homeostasis in cancer cells
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.06120-11
– volume: 8
  start-page: 519
  year: 1927
  ident: B3
  article-title: The metabolims of tumors in the body
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.8.6.519
– volume: 27
  start-page: 481
  year: 1983
  ident: B22
  article-title: Comparison of the kinetics and utilisation of D(-)-and L(+)-sodium lactate in normal man
  publication-title: Ann Nutr Metab
  doi: 10.1159/000176723
– volume: 36
  start-page: 3797
  year: 2017
  ident: B74
  article-title: Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis
  publication-title: Oncogene
  doi: 10.1038/onc.2017.6
– volume: 8
  start-page: 1720
  year: 2017
  ident: B180
  article-title: Discovery of human lactate dehydrogenase A (LDHA) inhibitors as anticancer agents to inhibit the proliferation of MG-63 osteosarcoma cells
  publication-title: MedChemComm
  doi: 10.1039/c7md00222j
– volume: 350
  start-page: 219
  year: 2000
  ident: B115
  article-title: The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
  publication-title: Biochem J
  doi: 10.1042/bj3500219
– volume: 558
  start-page: 5
  year: 2004
  ident: B24
  article-title: Lactate metabolism: a new paradigm for the third millennium
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.058701
– volume: 14
  start-page: 760
  year: 2014
  ident: B13
  article-title: GLUT-1 expression is largely unrelated to both hypoxia and the Warburg phenotype in squamous cell carcinomas of the vulva
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-760
– volume: 7
  start-page: 451
  year: 2016
  ident: B69
  article-title: Estimation of salivary sialic acid in oral premalignancy and oral squamous cell carcinoma
  publication-title: Contemp Clin Dent
  doi: 10.4103/0976-237x.194108
– volume: 70
  start-page: 2108
  year: 2006
  ident: B91
  article-title: The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.106.026245
– volume: 271
  start-page: 32529
  year: 1996
  ident: B80
  article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.51.32529
– volume: 104
  start-page: 19345
  year: 2007
  ident: B41
  article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0709747104
– volume: 9
  start-page: 216
  year: 2018
  ident: B44
  article-title: The emerging role and targetability of the TCA cycle in cancer metabolism
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0451-1
– volume: 260
  start-page: 547
  year: 1993
  ident: B151
  article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages
  publication-title: Science.
  doi: 10.1126/science.8097338
– volume: 69
  start-page: 4918
  year: 2009
  ident: B51
  article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-4806
– volume: 36
  start-page: 531.e19
  year: 2018
  ident: B107
  article-title: Aberrant expression of membranous carbonic anhydrase IX (CAIX) is associated with unfavorable disease course in papillary and clear cell renal cell carcinoma
  publication-title: Urol Oncol Semin Orig Investig
  doi: 10.1016/j.urolonc.2018.08.015
– volume: 107
  start-page: 2037
  year: 2010
  ident: B68
  article-title: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914433107
– volume: 94
  start-page: 509
  year: 2016
  ident: B130
  article-title: Immunosuppressive cells in tumor immune escape and metastasis
  publication-title: J Mol Med
  doi: 10.1007/s00109-015-1376-x
– volume: 10
  start-page: 4047
  year: 2011
  ident: B122
  article-title: Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.23.18151
– volume: 234
  start-page: 1768
  year: 2019
  ident: B169
  article-title: Intratumor lactate levels reflect HER2 addiction status in HER2-positive breast cancer
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.27049
– volume: 67
  start-page: 4182
  year: 2007
  ident: B88
  article-title: Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-3184
– volume: 41
  start-page: 211
  year: 2016
  ident: B39
  article-title: The warburg effect : how does it benefit cancer cells?
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2015.12.001
– volume: 8
  start-page: 1
  year: 2018
  ident: B100
  article-title: Monocarboxylate transporter 4 (MCT4) knockout mice have attenuated 4NQO induced carcinogenesis; a role for MCT4 in driving oral squamous cell cancer
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00324
– volume: 10
  start-page: 1
  year: 2018
  ident: B42
  article-title: Glutamine: metabolism and immune function, supplementation and clinical translation
  publication-title: Nutrients
  doi: 10.3390/nu10111564
– volume: 1
  start-page: 371
  year: 2005
  ident: B192
  article-title: Monocarboxylate transporter Mctl is a target for immunosuppression
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio744
– volume: 8
  start-page: 57813
  year: 2017
  ident: B127
  article-title: The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18175
– volume: 7
  start-page: 335
  year: 2019
  ident: B137
  article-title: Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.cir-18-0481
– volume: 9
  start-page: 495
  year: 2009
  ident: B135
  article-title: Up on the tightrope: natural killer cell activation and inhibition
  publication-title: Nat Immunol
  doi: 10.1038/ni1581.Up
– volume: 365
  start-page: 68
  year: 2015
  ident: B184
  article-title: Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2015.05.015
– volume: 42
  start-page: 543
  year: 2019
  ident: B139
  article-title: Roles of NKT cells in cancer immunotherapy
  publication-title: Arch Pharm Res
  doi: 10.1007/s12272-019-01139-8
– volume: 41
  start-page: 1099
  year: 2008
  ident: B21
  article-title: Analytical investigation: assay of d-lactate in diabetic plasma and urine
  publication-title: Clin Biochem
  doi: 10.1016/J.CLINBIOCHEM.2008.06.011
– volume: 8
  start-page: 1467
  year: 2019
  ident: B66
  article-title: Pretreatment lactate dehydrogenase may predict outcome of advanced non small-cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis
  publication-title: Cancer Med
  doi: 10.1002/cam4.2024
– volume: 191
  start-page: 1486
  year: 2013
  ident: B138
  article-title: Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1202702
– volume: 34
  start-page: 1044
  year: 2015
  ident: B55
  article-title: PCK2 activation mediates an adaptive response to glucose depletion in lung cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2014.47
– volume: 2
  start-page: 736
  year: 2016
  ident: B102
  article-title: Nutrient exploitation within the tumor-stroma metabolic crosstalk
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2016.11.001
– volume: 22
  start-page: 125
  year: 2019
  ident: B36
  article-title: Elevated lactate and total protein levels in stereotactic brain biopsy specimen: potential biomarkers of malignancy and poor prognosis
  publication-title: Arch Iran Med
– volume: 191
  start-page: 3090
  year: 2013
  ident: B150
  article-title: Dendritic cell reprogramming by endogenously produced lactic acid
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300772
– volume: 129
  start-page: 321
  year: 2003
  ident: B33
  article-title: Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists?
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-003-0450-x
– volume: 81
  start-page: 130
  year: 2006
  ident: B37
  article-title: Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2006.08.012
– volume: 2019
  start-page: 3276
  year: 2019
  ident: B103
  article-title: The tumor metabolic microenvironment: lessons from lactate
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.can-18-3726
– volume: 119
  start-page: 622
  year: 2018
  ident: B105
  article-title: Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0216-5
– volume: 294
  start-page: 593
  year: 2019
  ident: B112
  article-title: Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.005536
– volume: 8
  start-page: e1124
  year: 2017
  ident: B133
  article-title: The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.01124
– volume: 11
  start-page: 450
  year: 2019
  ident: B160
  article-title: Blockade of lactate dehydrogenase-A (LDH-A) improves efficacy of anti-programmed cell death-1 (PD-1) therapy in melanoma
  publication-title: Cancers.
  doi: 10.3390/cancers11040450
– volume: 61
  start-page: 1382
  year: 2018
  ident: B190
  article-title: The current state of peptide drug discovery: back to the future?
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b00318
– volume: 100
  start-page: 57
  year: 2000
  ident: B1
  article-title: The hallmarks of cancer
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81683-9
– volume: 177
  start-page: 105
  year: 2019
  ident: B177
  article-title: Development of novel human lactate dehydrogenase A inhibitors: high-throughput screening, synthesis, and biological evaluations
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2019.05.033
– volume: 11
  start-page: 2195
  year: 2012
  ident: B167
  article-title: Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology
  publication-title: Curr Med Chem
  doi: 10.2174/0929867043364711
– volume: 14
  start-page: 671
  year: 2017
  ident: B9
  article-title: Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic
  publication-title: Autophagy.
  doi: 10.1080/15548627.2017.1381804
– volume: 11
  start-page: 257
  year: 2019
  ident: B57
  article-title: The role of lactate metabolism in prostate cancer progression and metastases revealed by dual-agent hyperpolarized 13C MRSI
  publication-title: Cancers.
  doi: 10.3390/cancers11020257
– volume: 132
  start-page: 2839
  year: 2009
  ident: B50
  article-title: The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study
  publication-title: Brain
  doi: 10.1093/brain/awp202
– volume: 18
  start-page: 1319
  year: 2012
  ident: B132
  article-title: Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis
  publication-title: Curr Pharm Des
  doi: 10.2174/138161212799504902
– volume: 95
  start-page: 3183
  year: 2000
  ident: B152
  article-title: Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4
  publication-title: Blood
  doi: 10.1182/blood.v95.10.3183.010k36_3183_3190
– volume: 37
  start-page: 317
  year: 2012
  ident: B16
  article-title: Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2012.04.002
– volume: 89
  start-page: 216
  year: 2011
  ident: B134
  article-title: Activating and inhibitory receptors of natural killer cells
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2010.78
– volume: 280
  start-page: 27213
  year: 2005
  ident: B87
  article-title: Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is embigin (gp70)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M411950200
– volume: 150
  start-page: 409
  year: 1997
  ident: B32
  article-title: Correlation of high lactate levels in head and neck tumors with incidence of metastasis
  publication-title: Am J Pathol
– volume: 3
  start-page: 2915
  year: 2008
  ident: B49
  article-title: Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002915
– volume: 8
  start-page: 77819
  year: 2017
  ident: B108
  article-title: Lactate stimulates CA IX expression in normoxic cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20836
– volume: 109
  start-page: 3812
  year: 2007
  ident: B158
  article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells
  publication-title: Blood
  doi: 10.1182/blood-2006-07-035972
– volume: 34
  start-page: 297
  year: 1965
  ident: B25
  article-title: Carbohydrate metabolism
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.34.070165.001501
– volume: 5
  start-page: 1
  year: 2015
  ident: B110
  article-title: Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function
  publication-title: Sci Rep
  doi: 10.1038/srep13605
– volume: 6
  start-page: 63
  year: 2014
  ident: B128
  article-title: New modalities of cancer treatment for NSCLC: focus on immunotherapy
  publication-title: Cancer Manag Res
  doi: 10.2147/CMAR.S57550
– volume: 10
  start-page: 86
  year: 2005
  ident: B187
  article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications
  publication-title: Cell Stress Chaperones
  doi: 10.1379/csc-99r.1
– volume: 37
  start-page: 1971
  year: 2017
  ident: B119
  article-title: Cancer-Associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism
  publication-title: Oncol Rep
  doi: 10.3892/or.2017.5479
– volume: 38
  start-page: 1807
  year: 2008
  ident: B153
  article-title: Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200838331
– volume: 18
  start-page: 1
  year: 2019
  ident: B172
  article-title: Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-0992-4
– volume: 19
  start-page: 3896
  year: 2000
  ident: B86
  article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression
  publication-title: EMBO J
  doi: 10.1093/emboj/19.15.3896
– volume: 291
  start-page: 25306
  year: 2016
  ident: B61
  article-title: Exercise inducible lactate dehydrogenase B regulates mitochondrial function in skeletal muscle
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.749424
– volume: 10
  start-page: 1
  year: 2015
  ident: B155
  article-title: Serum IL-10 predicts worse outcome in cancer patients: a meta-analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0139598
– volume: 17
  start-page: 2285
  year: 2018
  ident: B185
  article-title: Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-17-1253
– volume: 97
  start-page: 1
  year: 2018
  ident: B64
  article-title: Meta-analysis of serum lactate dehydrogenase and prognosis for osteosarcoma
  publication-title: Medicine.
  doi: 10.1097/MD.0000000000010741
– volume: 107
  start-page: 379
  year: 2005
  ident: B168
  article-title: Non-invasive quantification of lactate by proton MR spectroscopy and its clinical applications
  publication-title: Clin Neurol Neurosurg
  doi: 10.1016/j.clineuro.2004.10.009
– volume: 8
  start-page: e75154
  year: 2013
  ident: B34
  article-title: Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0075154
– volume: 1
  start-page: 779
  year: 1957
  ident: B149
  article-title: Cancer; a biological approach
  publication-title: Br Med J
  doi: 10.1136/bmj.1.5022.779
– volume: 22
  start-page: 304
  year: 2015
  ident: B77
  article-title: Hypoxia induces production of L-2-hydroxyglutarate
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.06.023
– volume: 419
  start-page: 734
  year: 2002
  ident: B136
  article-title: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation
  publication-title: Nature
  doi: 10.1038/nature01112
– volume: 9
  start-page: 425
  year: 2006
  ident: B14
  article-title: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.04.023
– volume: 60
  start-page: 916
  year: 2000
  ident: B30
  article-title: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers
  publication-title: Cancer Res
– volume: 3
  start-page: 768
  year: 2017
  ident: B45
  article-title: Mitochondrial OXPHOS induced by RB1 deficiency in breast cancer: implications for anabolic metabolism, stemness, and metastasis
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2017.09.002
– volume: 100
  start-page: 454
  year: 2016
  ident: B83
  article-title: Monocarboxylate transporters: therapeutic targets and prognostic factors in disease
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.418
– volume: 9
  start-page: 2492
  year: 2018
  ident: B94
  article-title: MCT1 regulates aggressive and metabolic phenotypes in bladder cancer
  publication-title: J Cancer
  doi: 10.7150/jca.25257
– volume: 356
  start-page: 184
  year: 2015
  ident: B12
  article-title: PKM2 contributes to cancer metabolism
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2014.01.031
– volume: 123
  start-page: 1068
  year: 2013
  ident: B46
  article-title: Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression
  publication-title: J Clin Invest.
  doi: 10.1172/JCI64264DS1
– volume: 51
  start-page: 315
  year: 2018
  ident: B123
  article-title: Cancer-associated fibroblasts accelerate malignant progression of non-small cell lung cancer via connexin 43-formed unidirectional gap junctional intercellular communication
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000495232
– volume: 21
  start-page: 5
  year: 2019
  ident: B183
  article-title: Cellular uptake of MCT1 inhibitors AR-C155858 and AZD3965 and their effects on MCT-mediated transport of L-lactate in murine 4T1 breast tumor cancer cells
  publication-title: AAPS J
  doi: 10.1208/s12248-018-0279-5
– volume: 54
  start-page: 47
  year: 2014
  ident: B142
  article-title: Role of dendritic cells in innate and adaptive immune response in human aging
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2013.12.009
– volume: 36
  start-page: 169
  year: 2013
  ident: B8
  article-title: Correlation between biological marker expression and F-fluorodeoxyglucose uptake in cervical cancer measured by positron emission tomography
  publication-title: Onkologie.
  doi: 10.1159/000349944
– volume: 1858
  start-page: 674
  year: 2017
  ident: B171
  article-title: Drug discovery strategies in the field of tumor energy metabolism: limitations by metabolic flexibility and metabolic resistance to chemotherapy
  publication-title: Biochim Biophys Acta Bioenerg
  doi: 10.1016/j.bbabio.2017.02.005
– volume: 44
  start-page: 153
  year: 2019
  ident: B101
  article-title: Lactate: a metabolic driver in the tumour landscape
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2018.10.011
– volume: 15
  start-page: 323
  year: 2016
  ident: B54
  article-title: ERRα-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.03.026
– volume: 143
  start-page: 929
  year: 2013
  ident: B62
  article-title: Lactic dehydrogenases: functions of the two types rates of synthesis of the two major forms can
  publication-title: Science.
  doi: 10.2307/1712825
– volume: 32
  start-page: 12
  year: 2007
  ident: B63
  article-title: NAD+ metabolism in health and disease
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2006.11.006
– volume: 277
  start-page: 23111
  year: 2002
  ident: B17
  article-title: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M202487200
– volume: 241
  start-page: 4110
  year: 1966
  ident: B82
  article-title: Effect of pH on the kinetics of frog muscle phosphofructokinase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)99819-4
– volume: 25
  start-page: 3047
  year: 2018
  ident: B186
  article-title: Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.11.043
– volume: 24
  start-page: 657
  year: 2016
  ident: B159
  article-title: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.011
– volume: 72
  start-page: 5130
  year: 2012
  ident: B126
  article-title: Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1949
– volume: 118
  start-page: 3930
  year: 2008
  ident: B53
  article-title: Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI36843
– volume: 76
  start-page: 1381
  year: 2016
  ident: B162
  article-title: Neutralization of tumor acidity improves antitumor responses to immunotherapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-1743
– volume: 17
  start-page: 428
  year: 2018
  ident: B165
  article-title: Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2018.1444305
– volume: 9
  start-page: 1
  year: 2019
  ident: B176
  article-title: Novel peptide inhibitors for lactate dehydrogenase A (LDHA): a survey to inhibit LDHA activity via disruption of protein-protein interaction
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-38854-7
– volume: 13
  start-page: 714
  year: 2013
  ident: B170
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3599
– volume: 105
  start-page: 91
  year: 2017
  ident: B181
  article-title: LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2017.05.015
– volume: 9
  start-page: 2233
  year: 2014
  ident: B116
  article-title: MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.11.025
– volume: 587
  start-page: 5591
  year: 2009
  ident: B28
  article-title: Cell-cell and intracellular lactate shuttles
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2009.178350
– volume: 17
  start-page: 76
  year: 2014
  ident: B60
  article-title: Comprehensive review on lactate metabolism in human health
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2014.05.007
– volume: 39
  start-page: BSR20181476
  year: 2019
  ident: B67
  article-title: LDH-A promotes malignant behavior via activation of epithelial-to-mesenchymal transition in lung adenocarcinoma
  publication-title: Biosci Rep
  doi: 10.1042/bsr20181476
– volume: 7
  start-page: 1413
  year: 2019
  ident: B71
  article-title: Overexpression of lactate dehydrogenase in the saliva and tissues of patients with head and neck squamous cell carcinoma
  publication-title: Rep Biochem Mol Biol
  doi: 10.1002/hed.21618
– volume: 8
  start-page: 69219
  year: 2017
  ident: B182
  article-title: Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitts lymphoma anti-tumor activity
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18215
– volume: 259
  start-page: E677
  year: 2017
  ident: B26
  article-title: Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans
  publication-title: Am J Physiol Metab
  doi: 10.1152/ajpendo.1990.259.5.e677
– volume: 7
  start-page: 3385
  year: 2018
  ident: B99
  article-title: Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer
  publication-title: Cancer Med
  doi: 10.1002/cam4.1587
– volume: 78
  start-page: 4459
  year: 2018
  ident: B73
  article-title: Aberrant FGFR tyrosine kinase signaling enhances the warburg effect by reprogramming LDH isoform expression and activity in prostate cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-3226
– volume: 41
  start-page: 370
  year: 2019
  ident: B125
  article-title: Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling
  publication-title: EBio Med
  doi: 10.1016/j.ebiom.2019.02.025
– volume: 60
  start-page: 56
  year: 1972
  ident: B4
  article-title: Bioenergetics and the problem of tumor growth
  publication-title: Am Sci
– volume: 94
  start-page: 6658
  year: 1997
  ident: B15
  article-title: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.13.6658
– volume: 33
  start-page: 483
  year: 2018
  ident: B144
  article-title: Fundamental role of dendritic cells in inducing Th2 responses
  publication-title: Korean J Intern Med
  doi: 10.3904/kjim.2016.227
– volume: 2013
  start-page: 540850
  year: 2013
  ident: B145
  article-title: HPV infection: immunological aspects and their utility in future therapy
  publication-title: Infect Dis Obstet Gynecol
  doi: 10.1155/2013/540850
– volume: 2
  start-page: e1600200
  year: 2016
  ident: B174
  article-title: Fundamentals of cancer metabolism
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1600200
– volume: 27
  start-page: 757
  year: 2018
  ident: B29
  article-title: The science and translation of lactate shuttle theory
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.03.008
– volume: 73
  start-page: 1524
  year: 2013
  ident: B104
  article-title: Acidity generated by the tumor microenvironment drives local invasion
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2796
– volume: 23
  start-page: 27
  year: 2016
  ident: B117
  article-title: Perspective The emerging hallmarks of cancer metabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.12.006
– volume: 19
  start-page: 1
  year: 2018
  ident: B189
  article-title: Peptides as therapeutic agents for inflammatory-related diseases
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19092714
– volume: 154
  start-page: 405
  year: 1976
  ident: B85
  article-title: L-lactate transport in Ehrlich ascites-tumour cells
  publication-title: Biochem J
  doi: 10.1042/bj1540405
– volume: 14
  start-page: 1
  year: 2014
  ident: B90
  article-title: Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-751
– volume: 72
  start-page: 1102
  year: 1995
  ident: B38
  article-title: Metabolic imaging in tumours by means of bioluminescence
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1995.472
– volume: 7
  start-page: 6124
  year: 2018
  ident: B175
  article-title: Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy
  publication-title: Cancer Med
  doi: 10.1002/cam4.1820
– volume: 15
  start-page: 725
  year: 2015
  ident: B35
  article-title: Elevated lactic acid is a negative prognostic factor in metastatic lung cancer
  publication-title: Cancer Biomarkers
  doi: 10.3233/CBM-150514
– volume: 8
  start-page: 1461
  year: 2014
  ident: B11
  article-title: Article hexokinase 2-mediated warburg effect is required for PTEN - and p53 - deficiency-driven prostate cancer growth
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.07.053
– volume: 290
  start-page: E1237
  year: 2006
  ident: B48
  article-title: Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex
  publication-title: Am J Physiol Metab
  doi: 10.1152/ajpendo.00594.2005
– volume: 97
  start-page: e13151
  year: 2018
  ident: B65
  article-title: Prognostic value of pretreatment serum lactate dehydrogenase level in pancreatic cancer patients
  publication-title: Medicine.
  doi: 10.1097/md.0000000000013151
– volume: 286
  start-page: 27781
  year: 2011
  ident: B109
  article-title: Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.255331
– volume: 76
  start-page: 865
  year: 1994
  ident: B84
  article-title: Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90361-1
– volume: 51
  start-page: 349
  year: 2001
  ident: B31
  article-title: Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(01)01630-3
– volume: 19
  start-page: 683
  year: 2001
  ident: B154
  article-title: I Nterleukin−10 and the I Nterleukin−10 R eceptor
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.19.1.683
– volume: 9
  start-page: 4429
  year: 2018
  ident: B81
  article-title: Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06841-7
– volume: 227
  start-page: 146
  year: 2012
  ident: B98
  article-title: Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as a Warburg effect metabolic target
  publication-title: J Pathol
  doi: 10.1002/path.4006
– volume: 13
  start-page: 494
  year: 2017
  ident: B78
  article-title: L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2307
– volume: 47
  start-page: 27
  year: 2019
  ident: B191
  article-title: The future of peptides in cancer treatment
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/j.coph.2019.01.008
– volume: 10
  start-page: 2504
  year: 2011
  ident: B120
  article-title: Cancer cells metabolically fertilize the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.15.16585
– volume: 254
  start-page: 2669
  year: 1979
  ident: B43
  article-title: Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)30124-2
– volume: 116
  start-page: 7439
  year: 2019
  ident: B141
  article-title: Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1901376116
– volume: 180
  start-page: 7175
  year: 2008
  ident: B157
  article-title: Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.11.7175
– volume: 28
  start-page: 848
  year: 2018
  ident: B173
  article-title: Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.08.006
– volume: 9
  start-page: 27940
  year: 2018
  ident: B111
  article-title: The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25371
– volume: 240
  start-page: 212
  year: 2001
  ident: B79
  article-title: The HIF pathway: implications for patterns of gene expression in cancer
  publication-title: Novartis Found Symp
  doi: 10.1002/0470868716.ch15
– volume: 330
  start-page: 1340
  year: 2010
  ident: B18
  article-title: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
  publication-title: Science.
  doi: 10.1126/science.1193494
– volume: 144
  start-page: 646
  year: 2011
  ident: B2
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 442
  start-page: 461
  year: 2006
  ident: B156
  article-title: IL-23 promotes tumour incidence and growth
  publication-title: Nature
  doi: 10.1038/nature04808
– volume-title: Lactate: Glycolytic end Product and Oxidative Substrate During Sustained Exercise in Mammals—The ‘Lactate Shuttle’
  ident: B27
– volume: 26
  start-page: 97
  year: 2009
  ident: B95
  article-title: Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma
  publication-title: Dis Markers
  doi: 10.3233/DMA-2009-0596
– volume: 1866
  start-page: 1004
  year: 2019
  ident: B179
  article-title: Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer
  publication-title: Biochim Biophys Acta Mol Cell Res
  doi: 10.1016/j.bbamcr.2019.03.004
– volume: 40
  start-page: 380
  year: 1979
  ident: B7
  article-title: Isoenzymes of hexokinase, 6-phosphogluconate dehydrogenase, phosphoglucomutase and lactate dehydrogenase in uterine cancer
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1979.192
– volume: 77
  start-page: 5591
  year: 2017
  ident: B97
  article-title: Monocarboxylate transporter MCT1 promotes tumor metastasis independently of its activity as a lactate transporter
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0764
– volume: 50
  start-page: 2011
  year: 2017
  ident: B6
  article-title: Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth
  publication-title: Int J Oncol.
  doi: 10.3892/ijo.2017.3979
– volume: 551
  start-page: 115
  year: 2017
  ident: B52
  article-title: Glucose feeds the TCA cycle via circulating lactate
  publication-title: Nature
  doi: 10.1038/nature24057
– volume: 15
  start-page: 544
  year: 2019
  ident: B75
  article-title: Cyclin G2 inhibits the warburg effect and tumour progression by suppressing LDHA phosphorylation in glioma
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.30297
– volume: 25
  start-page: 1037
  year: 2017
  ident: B121
  article-title: Autophagy and tumor metabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2017.04.004
– volume: 38
  start-page: 119
  year: 2017
  ident: B19
  article-title: Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgw127
– volume: 281
  start-page: 9030
  year: 2006
  ident: B114
  article-title: The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M511397200
– volume: 9
  start-page: 3506
  year: 2010
  ident: B118
  article-title: Ketones and lactate fuel tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.17.12731
– volume: 166
  start-page: 555
  year: 2016
  ident: B5
  article-title: Mitochondria and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.002
– volume: 9
  start-page: 2877
  year: 1994
  ident: B106
  article-title: Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment
  publication-title: Oncogene
– volume: 164
  start-page: 681
  year: 2016
  ident: B113
  article-title: Metabolic heterogeneity in human lung tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.034
– volume: 59
  start-page: 1290
  year: 2016
  ident: B140
  article-title: Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-016-0348-7
– volume: 25
  start-page: 2223
  year: 2018
  ident: B89
  article-title: Transmembrane protease TMPRSS11B promotes lung cancer growth by enhancing lactate export and glycolytic metabolism
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.10.100
– volume: 12
  start-page: 1371
  year: 2013
  ident: B93
  article-title: Cancer metabolism, stemness and tumor recurrence : MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer
  publication-title: Cell Cycle
  doi: 10.4161/cc.24092
– volume: 72
  start-page: 2746
  year: 2012
  ident: B161
  article-title: Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-1272
– volume: 28
  start-page: 3689
  year: 2009
  ident: B188
  article-title: Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth
  publication-title: Oncogene
  doi: 10.1038/onc.2009.229
– volume: 46
  start-page: 104
  year: 2015
  ident: B92
  article-title: Expression of lactate/H+ symporters MCT1 and MCT4 and their chaperone CD147 predicts tumor progression in clear cell renal cell carcinoma: immunohistochemical and the Cancer Genome Atlas data analyses
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2014.09.013
SSID ssj0000650103
Score 2.6683345
SecondaryResourceType review_article
Snippet Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1143
SubjectTerms acidification
immune response
lactate
Oncology
therapy
tumor microenvironment (TME)
Title Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches
URI https://www.proquest.com/docview/2315528496
https://pubmed.ncbi.nlm.nih.gov/PMC6839026
https://doaj.org/article/2484900b25f14716a82cffa803efca47
Volume 9
WOSCitedRecordID wos000497397800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwEB5xCJ2uQTwO3fKSka6gWchm7cQpAYEo2BVCe2g7y3Y8YqUjQfug5LczkwTYFIiGIi4SR3HGE_v7Ys83AH9jwtSEQrFrWeROIv9oSnMqlOwh5glGlYDp_U06HOrxOLtdSvXFe8JqeeDacKex1DKLIhcr7NFAmlgde0Sro35Ab2UVR06oZ4lM1WOw4gQGtZYPsbDsFMuCFQt72QlTgH5rGqrU-lsQs71BcmnGudqA9QYqirO6iZuwEoot-DloFsO3YXhjPUNFMSkEwThxV6eVJ0OLEsVo8VhOxYD32y0Fswlb5GL0EXMlzhpN8TD7Df-uLkcX190mPULXqyied12ugrPByZBG1sZxTuQgDtpRqVE56ehrpilQMiNzgahLphQdwSOBnJxwyQ6sFmUR_oBIe6i9TnzutZchsxn2E6JCLsGUxkLEDpy8Wcv4RjucU1j8N8Qh2LyGzWvYvKYybweO3294qmUzPq96zuZ_r8Z619UJ8gLTeIH5ygs6cPTWeYa-D170sEUoFzND-FUpmoOzpANpq1dbT2xfKSYPldJ2QvCRSOrudzRxD37xS9dxjPuwOp8uwgGs-ef5ZDY9hB_pWB9WTkzl4OXyFb0O-E8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lactate+in+the+Regulation+of+Tumor+Microenvironment+and+Therapeutic+Approaches&rft.jtitle=Frontiers+in+oncology&rft.au=de+la+Cruz-L%C3%B3pez%2C+Karen+G.&rft.au=Castro-Mu%C3%B1oz%2C+Leonardo+Josu%C3%A9&rft.au=Reyes-Hern%C3%A1ndez%2C+Diego+O.&rft.au=Garc%C3%ADa-Carranc%C3%A1%2C+Alejandro&rft.date=2019-11-01&rft.pub=Frontiers+Media+S.A&rft.eissn=2234-943X&rft.volume=9&rft_id=info:doi/10.3389%2Ffonc.2019.01143&rft_id=info%3Apmid%2F31737570&rft.externalDocID=PMC6839026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon