To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems

Explainability for artificial intelligence (AI) in medicine is a hotly debated topic. Our paper presents a review of the key arguments in favor and against explainability for AI-powered Clinical Decision Support System (CDSS) applied to a concrete use case, namely an AI-powered CDSS currently used i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLOS digital health Jg. 1; H. 2; S. e0000016
Hauptverfasser: Amann, Julia, Vetter, Dennis, Blomberg, Stig Nikolaj, Christensen, Helle Collatz, Coffee, Megan, Gerke, Sara, Gilbert, Thomas K., Hagendorff, Thilo, Holm, Sune, Livne, Michelle, Spezzatti, Andy, Strümke, Inga, Zicari, Roberto V., Madai, Vince Istvan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.02.2022
Public Library of Science (PLoS)
Schlagworte:
ISSN:2767-3170, 2767-3170
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Explainability for artificial intelligence (AI) in medicine is a hotly debated topic. Our paper presents a review of the key arguments in favor and against explainability for AI-powered Clinical Decision Support System (CDSS) applied to a concrete use case, namely an AI-powered CDSS currently used in the emergency call setting to identify patients with life-threatening cardiac arrest. More specifically, we performed a normative analysis using socio-technical scenarios to provide a nuanced account of the role of explainability for CDSSs for the concrete use case, allowing for abstractions to a more general level. Our analysis focused on three layers: technical considerations, human factors, and the designated system role in decision-making. Our findings suggest that whether explainability can provide added value to CDSS depends on several key questions: technical feasibility, the level of validation in case of explainable algorithms, the characteristics of the context in which the system is implemented, the designated role in the decision-making process, and the key user group(s). Thus, each CDSS will require an individualized assessment of explainability needs and we provide an example of how such an assessment could look like in practice.
AbstractList Explainability for artificial intelligence (AI) in medicine is a hotly debated topic. Our paper presents a review of the key arguments in favor and against explainability for AI-powered Clinical Decision Support System (CDSS) applied to a concrete use case, namely an AI-powered CDSS currently used in the emergency call setting to identify patients with life-threatening cardiac arrest. More specifically, we performed a normative analysis using socio-technical scenarios to provide a nuanced account of the role of explainability for CDSSs for the concrete use case, allowing for abstractions to a more general level. Our analysis focused on three layers: technical considerations, human factors, and the designated system role in decision-making. Our findings suggest that whether explainability can provide added value to CDSS depends on several key questions: technical feasibility, the level of validation in case of explainable algorithms, the characteristics of the context in which the system is implemented, the designated role in the decision-making process, and the key user group(s). Thus, each CDSS will require an individualized assessment of explainability needs and we provide an example of how such an assessment could look like in practice.
Explainability for artificial intelligence (AI) in medicine is a hotly debated topic. Our paper presents a review of the key arguments in favor and against explainability for AI-powered Clinical Decision Support System (CDSS) applied to a concrete use case, namely an AI-powered CDSS currently used in the emergency call setting to identify patients with life-threatening cardiac arrest. More specifically, we performed a normative analysis using socio-technical scenarios to provide a nuanced account of the role of explainability for CDSSs for the concrete use case, allowing for abstractions to a more general level. Our analysis focused on three layers: technical considerations, human factors, and the designated system role in decision-making. Our findings suggest that whether explainability can provide added value to CDSS depends on several key questions: technical feasibility, the level of validation in case of explainable algorithms, the characteristics of the context in which the system is implemented, the designated role in the decision-making process, and the key user group(s). Thus, each CDSS will require an individualized assessment of explainability needs and we provide an example of how such an assessment could look like in practice.Explainability for artificial intelligence (AI) in medicine is a hotly debated topic. Our paper presents a review of the key arguments in favor and against explainability for AI-powered Clinical Decision Support System (CDSS) applied to a concrete use case, namely an AI-powered CDSS currently used in the emergency call setting to identify patients with life-threatening cardiac arrest. More specifically, we performed a normative analysis using socio-technical scenarios to provide a nuanced account of the role of explainability for CDSSs for the concrete use case, allowing for abstractions to a more general level. Our analysis focused on three layers: technical considerations, human factors, and the designated system role in decision-making. Our findings suggest that whether explainability can provide added value to CDSS depends on several key questions: technical feasibility, the level of validation in case of explainable algorithms, the characteristics of the context in which the system is implemented, the designated role in the decision-making process, and the key user group(s). Thus, each CDSS will require an individualized assessment of explainability needs and we provide an example of how such an assessment could look like in practice.
Author Spezzatti, Andy
Strümke, Inga
Hagendorff, Thilo
Gerke, Sara
Holm, Sune
Blomberg, Stig Nikolaj
Gilbert, Thomas K.
Vetter, Dennis
Madai, Vince Istvan
Christensen, Helle Collatz
Zicari, Roberto V.
Livne, Michelle
Amann, Julia
Coffee, Megan
AuthorAffiliation 14 Yrkeshögskolan Arcada, Helsinki, Finland
7 Digital Life Initiative, Cornell Tech, New York, NY, United States of America
1 Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
National Yang Ming Chiao Tung University, TAIWAN
6 Penn State Dickinson Law, Carlisle, PA, United States of America
12 Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
15 Data Science Graduate School, Seoul National University, Seoul, South Korea
9 Department of Food and Resource Economics, Faculty of Science University of Copenhagen, Denmark
11 Industrial Engineering & Operations Research Department, University of California, Berkeley, United States of America
13 Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
3 Computational Vision and Artificial Intelligence, Goethe University Frankfurt am Main, Germany
16 QUEST Center for Responsible Research, Berlin Institute
AuthorAffiliation_xml – name: 11 Industrial Engineering & Operations Research Department, University of California, Berkeley, United States of America
– name: 2 Frankfurt Big Data Lab, Goethe University Frankfurt am Main, Germany
– name: 9 Department of Food and Resource Economics, Faculty of Science University of Copenhagen, Denmark
– name: National Yang Ming Chiao Tung University, TAIWAN
– name: 14 Yrkeshögskolan Arcada, Helsinki, Finland
– name: 1 Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
– name: 12 Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
– name: 10 Google Health Research, London, United Kingdom
– name: 13 Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
– name: 17 CLAIM—Charité Lab for Artificial Intelligence in Medicine, Charité Universitätsmedizin Berlin, Germany
– name: 3 Computational Vision and Artificial Intelligence, Goethe University Frankfurt am Main, Germany
– name: 8 Cluster of Excellence "Machine Learning: New Perspectives for Science"—Ethics & Philosophy Lab University of Tuebingen, Germany
– name: 6 Penn State Dickinson Law, Carlisle, PA, United States of America
– name: 7 Digital Life Initiative, Cornell Tech, New York, NY, United States of America
– name: 5 Department of Medicine and Division of Infectious Diseases and Immunology, NYU Grossman School of Medicine, New York, United States of America
– name: 18 School of Computing and Digital Technology, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, United Kingdom
– name: 4 University of Copenhagen, Copenhagen Emergency medical Services, Denmark
– name: 15 Data Science Graduate School, Seoul National University, Seoul, South Korea
– name: 16 QUEST Center for Responsible Research, Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, Germany
Author_xml – sequence: 1
  givenname: Julia
  orcidid: 0000-0003-2155-5286
  surname: Amann
  fullname: Amann, Julia
– sequence: 2
  givenname: Dennis
  orcidid: 0000-0002-5977-5535
  surname: Vetter
  fullname: Vetter, Dennis
– sequence: 3
  givenname: Stig Nikolaj
  surname: Blomberg
  fullname: Blomberg, Stig Nikolaj
– sequence: 4
  givenname: Helle Collatz
  surname: Christensen
  fullname: Christensen, Helle Collatz
– sequence: 5
  givenname: Megan
  orcidid: 0000-0002-4581-111X
  surname: Coffee
  fullname: Coffee, Megan
– sequence: 6
  givenname: Sara
  orcidid: 0000-0002-5718-3982
  surname: Gerke
  fullname: Gerke, Sara
– sequence: 7
  givenname: Thomas K.
  orcidid: 0000-0003-1029-4535
  surname: Gilbert
  fullname: Gilbert, Thomas K.
– sequence: 8
  givenname: Thilo
  surname: Hagendorff
  fullname: Hagendorff, Thilo
– sequence: 9
  givenname: Sune
  orcidid: 0000-0002-3812-7942
  surname: Holm
  fullname: Holm, Sune
– sequence: 10
  givenname: Michelle
  orcidid: 0000-0002-8277-4733
  surname: Livne
  fullname: Livne, Michelle
– sequence: 11
  givenname: Andy
  orcidid: 0000-0001-7685-0448
  surname: Spezzatti
  fullname: Spezzatti, Andy
– sequence: 12
  givenname: Inga
  orcidid: 0000-0003-1820-6544
  surname: Strümke
  fullname: Strümke, Inga
– sequence: 13
  givenname: Roberto V.
  orcidid: 0000-0003-2792-9162
  surname: Zicari
  fullname: Zicari, Roberto V.
– sequence: 14
  givenname: Vince Istvan
  orcidid: 0000-0002-8552-6954
  surname: Madai
  fullname: Madai, Vince Istvan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36812545$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEUQC1UREvoHyA0Ehs2CX6MxzMsQFXFo1IlNmVt3fEjODj2YDuI7PgIvpAvwSFJ1XaBF7Zln3t07XufopMQg0HoOcELwgR5vYqbFMAvJu2WC7wbpHuEzqjoxJwRgU_u7E_Rec6ritCeYDGQJ-iUdT2hvOVn6NtNbMzPyYMLTUxNiKUptyfv_vz6fZGKs0458I0LxXjvliYoc0RgdN6Vbb1rlHfBqcppo1x2MTR5M00xlSZvczHr_Aw9tuCzOT-sM_Tlw_uby0_z688fry4vrueKY1rmI-edElYA74kC2vWgVWtNN5p-ZIJhay2BUVuuwVgt7ECUVoxqTXtBBPRshq72Xh1hJafk1pC2MoKT_w5iWkqor1LeSIoxKCVoxzhrqxkM7vRAKB4p52Nrquvt3jVtxrXRyoSSwN-T3r8J7qtcxh9yGBhhXVsFrw6CFL9vTC5y7bKq_wjBxE2WVIiBtYOo9Ay9fIAeypwlwz3v-t1cqRd3M7pN5VjTCrzZAyrFnJOxUrkCpRakJui8JFjueugol7sekoceqsHtg-Cj_79hfwFh0NNc
CitedBy_id crossref_primary_10_1080_00207543_2024_2432463
crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_1177_17562848251321915
crossref_primary_10_1186_s12889_025_22705_4
crossref_primary_10_1186_s12910_024_01079_z
crossref_primary_10_3390_info15110725
crossref_primary_10_3390_make5010017
crossref_primary_10_2196_55766
crossref_primary_10_1007_s10676_023_09709_7
crossref_primary_10_1145_3733837
crossref_primary_10_1016_j_clsr_2024_105986
crossref_primary_10_3390_healthcare12040481
crossref_primary_10_1097_AS9_0000000000000423
crossref_primary_10_1016_j_chbah_2024_100066
crossref_primary_10_33457_ijhsrp_1649066
crossref_primary_10_1016_j_inffus_2023_101896
crossref_primary_10_1016_j_compbiomed_2025_110944
crossref_primary_10_1016_j_genrep_2025_102314
crossref_primary_10_3390_sym17091385
crossref_primary_10_1007_s13347_022_00598_0
crossref_primary_10_17721_2706_9699_2023_2_02
crossref_primary_10_1016_j_compbiomed_2022_106072
crossref_primary_10_1080_15265161_2025_2457716
crossref_primary_10_2196_63548
crossref_primary_10_1038_s41746_024_01270_x
crossref_primary_10_2196_63733
crossref_primary_10_1016_j_apsb_2025_07_030
crossref_primary_10_38124_ijisrt_25jul620
crossref_primary_10_1080_08874417_2022_2089773
crossref_primary_10_1053_j_gastro_2025_03_005
crossref_primary_10_2196_57899
crossref_primary_10_3389_fmed_2022_894430
crossref_primary_10_1016_j_cpcardiol_2024_102454
crossref_primary_10_1016_j_fhj_2024_100171
crossref_primary_10_1007_s10462_025_11214_w
crossref_primary_10_1186_s44263_024_00108_8
crossref_primary_10_1016_j_cmpb_2023_107550
crossref_primary_10_1017_S0266462324000308
crossref_primary_10_1111_jebm_12549
crossref_primary_10_1016_j_clinthera_2024_02_010
crossref_primary_10_1080_10447318_2023_2176985
crossref_primary_10_1038_s41746_025_01621_2
crossref_primary_10_1177_15553434251338433
crossref_primary_10_3389_frai_2023_1278529
crossref_primary_10_1371_journal_pdig_0000189
crossref_primary_10_3390_healthcare10101923
crossref_primary_10_1038_s41746_024_01123_7
crossref_primary_10_1007_s00146_023_01825_8
crossref_primary_10_1097_MS9_0000000000003602
crossref_primary_10_3390_geriatrics8050099
crossref_primary_10_1080_07853890_2023_2286336
crossref_primary_10_1097_TP_0000000000004627
crossref_primary_10_1136_bmjebm_2024_112919
crossref_primary_10_1016_j_pec_2025_108680
crossref_primary_10_3390_bioengineering12040375
crossref_primary_10_1016_j_artmed_2024_102815
crossref_primary_10_1016_j_eswa_2022_119296
crossref_primary_10_1088_1741_2552_acad2b
crossref_primary_10_1016_j_ijmedinf_2024_105758
crossref_primary_10_1038_s41746_023_00837_4
crossref_primary_10_2196_75866
crossref_primary_10_1371_journal_pdig_0000170
crossref_primary_10_32604_cmc_2024_048408
crossref_primary_10_1038_s44259_025_00084_5
crossref_primary_10_1002_der2_241
crossref_primary_10_1093_jamia_ocae188
crossref_primary_10_3389_fdgth_2025_1555042
crossref_primary_10_3389_fmed_2023_1190429
crossref_primary_10_3390_diagnostics15172204
crossref_primary_10_1007_s11547_023_01634_5
crossref_primary_10_7759_cureus_75181
crossref_primary_10_1016_j_bulcan_2022_10_009
crossref_primary_10_1161_CIRCRESAHA_123_321765
crossref_primary_10_1016_j_techfore_2023_122768
crossref_primary_10_1097_MCC_0000000000001304
crossref_primary_10_1515_labmed_2023_0037
crossref_primary_10_1016_j_ibneur_2025_02_002
crossref_primary_10_1038_s41746_024_01006_x
crossref_primary_10_1016_j_csbj_2025_05_015
crossref_primary_10_3390_diagnostics15141830
crossref_primary_10_1007_s44206_023_00063_1
crossref_primary_10_1007_s43681_024_00634_z
crossref_primary_10_1016_j_ijmedinf_2024_105747
crossref_primary_10_1038_s41390_025_03980_8
crossref_primary_10_1080_14787210_2025_2484284
crossref_primary_10_1016_j_inffus_2023_101821
crossref_primary_10_2196_69333
crossref_primary_10_1007_s10620_024_08659_4
crossref_primary_10_1109_ACCESS_2025_3555543
crossref_primary_10_1002_cam4_70304
crossref_primary_10_1109_ACCESS_2025_3570643
crossref_primary_10_1080_1120009X_2025_2492960
crossref_primary_10_3389_froh_2025_1592428
crossref_primary_10_7759_cureus_59507
crossref_primary_10_1007_s43681_025_00776_8
crossref_primary_10_1016_j_eswa_2023_121186
Cites_doi 10.1007/978-3-319-99713-1
10.1038/s42256-019-0088-2
10.1016/j.jaad.2015.12.038
10.1056/NEJM199402243300807
10.1016/S2589-7500(19)30123-2
10.1145/3287560.3287569
10.1145/3375627.3375830
10.6028/NIST.IR.8312-draft
10.1002/hast.973
10.1161/CIR.0000000000000144
10.1145/3351095.3375624
10.1186/s12911-020-01332-6
10.1016/j.jbi.2020.103655
10.1007/s11023-018-9481-6
10.1016/j.artmed.2020.101901
10.1145/3313831.3376718
10.1001/jama.2018.17163
10.1016/j.artint.2021.103473
10.1001/jamanetworkopen.2020.32320
10.1145/3290605.3300831
10.1016/j.artint.2018.07.007
10.1186/s13049-015-0093-3
10.1038/s41591-020-1034-x
10.1145/3411764.3445315
10.1038/s41591-020-0942-0
10.1145/3233231
10.1002/widm.1312
10.1098/rsif.2017.0387
10.1007/s13218-020-00636-z
10.1007/978-1-4471-4474-8_22
10.1109/TTS.2021.3066209
10.1136/jamia.2010.005637
10.1109/ACCESS.2018.2870052
10.1007/s11023-019-09509-3
10.1038/s42256-019-0048-x
10.1016/j.resuscitation.2019.01.015
10.1145/3359206
10.1126/science.abg1834
10.1145/2939672.2939778
10.3389/fhumd.2021.673104
10.1145/3351095.3372827
10.1145/3375627.3375833
10.1145/3287560.3287574
10.1145/3290605.3300468
10.1038/s41591-018-0107-6
10.1145/3351095.3372850
10.1016/j.inffus.2019.12.012
10.1093/bib/bbx044
ContentType Journal Article
Copyright Copyright: © 2022 Amann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2022 Amann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Amann et al 2022 Amann et al
Copyright_xml – notice: Copyright: © 2022 Amann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2022 Amann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Amann et al 2022 Amann et al
CorporateAuthor on behalf of the Z-Inspection initiative
Z-Inspection initiative
CorporateAuthor_xml – name: on behalf of the Z-Inspection initiative
– name: Z-Inspection initiative
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1371/journal.pdig.0000016
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Artificial intelligence explainability in clinical decision support systems
EISSN 2767-3170
ExternalDocumentID oai_doaj_org_article_200acc72635340ffae06d9120b255b4e
PMC9931364
36812545
10_1371_journal_pdig_0000016
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: H2020-SC1-PHE-CORONAVIRUS-2020-2-RTD
– fundername: ;
  grantid: 777107
– fundername: ;
  grantid: 101016233
– fundername: ;
  grantid: INEA/CEF/ICT/A2020/2276680, 2020-EU-IA-0098
GroupedDBID 53G
7X7
8C1
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABUWG
ACCTH
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EIHBH
FPL
FYUFA
GROUPED_DOAJ
HMCUK
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c502t-b556c7f7a581ca268adc4fe6be8b3730fff1abdf5daefd7f91cdc32dd28717a83
IEDL.DBID DOA
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001413701700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2767-3170
IngestDate Mon Nov 10 04:28:55 EST 2025
Tue Nov 04 02:06:41 EST 2025
Fri Sep 05 12:45:13 EDT 2025
Tue Oct 07 07:16:59 EDT 2025
Wed Feb 19 02:25:08 EST 2025
Sat Nov 29 01:54:15 EST 2025
Tue Nov 18 21:45:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright: © 2022 Amann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-b556c7f7a581ca268adc4fe6be8b3730fff1abdf5daefd7f91cdc32dd28717a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
VIM reported receiving personal fees from ai4medicine outside the submitted work. There is no connection, commercial exploitation, transfer or association between the projects of ai4medicine and the results presented in this work.
ORCID 0000-0003-1820-6544
0000-0003-2792-9162
0000-0003-2155-5286
0000-0001-7685-0448
0000-0002-4581-111X
0000-0002-8552-6954
0000-0002-8277-4733
0000-0002-3812-7942
0000-0002-5977-5535
0000-0002-5718-3982
0000-0003-1029-4535
OpenAccessLink https://doaj.org/article/200acc72635340ffae06d9120b255b4e
PMID 36812545
PQID 3085683085
PQPubID 6980581
ParticipantIDs doaj_primary_oai_doaj_org_article_200acc72635340ffae06d9120b255b4e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9931364
proquest_miscellaneous_2779349731
proquest_journals_3085683085
pubmed_primary_36812545
crossref_citationtrail_10_1371_journal_pdig_0000016
crossref_primary_10_1371_journal_pdig_0000016
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLOS digital health
PublicationTitleAlternate PLOS Digit Health
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pdig.0000016.ref070
B Babic (pdig.0000016.ref076) 2021; 373
AM Alaa (pdig.0000016.ref051) 2019; 32
X Liu (pdig.0000016.ref063) 2020; 26
pdig.0000016.ref074
pdig.0000016.ref073
pdig.0000016.ref072
pdig.0000016.ref071
SN Blomberg (pdig.0000016.ref057) 2019; 138
JM Durán (pdig.0000016.ref039) 2021; 47
H Kittler (pdig.0000016.ref041) 2016; 74
pdig.0000016.ref034
pdig.0000016.ref033
pdig.0000016.ref077
pdig.0000016.ref075
pdig.0000016.ref037
A Holzinger (pdig.0000016.ref048) 2019; 9
pdig.0000016.ref036
pdig.0000016.ref035
SN Blomberg (pdig.0000016.ref058) 2021; 4
EH Shortliffe (pdig.0000016.ref011) 2018; 320
T Ploug (pdig.0000016.ref023) 2020; 107
AJ London (pdig.0000016.ref029) 2019; 49
A Barredo Arrieta (pdig.0000016.ref025) 2020; 58
B-T Karsh (pdig.0000016.ref006) 2010; 17
S Wachter (pdig.0000016.ref047) 2018; 31
T. Miller (pdig.0000016.ref020) 2019; 267
AF Markus (pdig.0000016.ref017) 2021; 113
pdig.0000016.ref067
pdig.0000016.ref022
RV Zicari (pdig.0000016.ref031) 2021; 3
pdig.0000016.ref066
pdig.0000016.ref021
SM Lundberg (pdig.0000016.ref032) 2017; 30
pdig.0000016.ref065
pdig.0000016.ref064
MA Musen (pdig.0000016.ref008) 2014
A Adadi (pdig.0000016.ref014) 2018; 6
pdig.0000016.ref069
pdig.0000016.ref024
pdig.0000016.ref068
C Rudin (pdig.0000016.ref050) 2019; 1
pdig.0000016.ref052
JD Fauw (pdig.0000016.ref002) 2018; 24
P Kubben (pdig.0000016.ref001) 2019
A Jobin (pdig.0000016.ref012) 2019; 1
GD Perkins (pdig.0000016.ref061) 2015; 132
C. Rudin (pdig.0000016.ref045) 2019; 1
RV Zicari (pdig.0000016.ref056) 2021; 2
DJ Murphy (pdig.0000016.ref062) 1994; 330
B Goodman (pdig.0000016.ref026) 2017; 38
pdig.0000016.ref019
S. Robbins (pdig.0000016.ref030) 2019; 29
pdig.0000016.ref055
pdig.0000016.ref010
pdig.0000016.ref054
pdig.0000016.ref053
pdig.0000016.ref015
pdig.0000016.ref013
the Precise4Q consortium (pdig.0000016.ref018) 2020; 20
X Liu (pdig.0000016.ref003) 2019; 1
ZC Lipton (pdig.0000016.ref028) 2018; 61
P Tschandl (pdig.0000016.ref038) 2020; 26
J Wnent (pdig.0000016.ref060) 2015; 23
HP Olsen (pdig.0000016.ref027) 2019
M Langer (pdig.0000016.ref059) 2021; 296
pdig.0000016.ref009
JM Durán (pdig.0000016.ref040) 2018; 28
A Holzinger (pdig.0000016.ref049) 2020; 34
T Ching (pdig.0000016.ref005) 2018; 15
R Guidotti (pdig.0000016.ref016) 2018; 51
R Miotto (pdig.0000016.ref007) 2018; 19
pdig.0000016.ref044
pdig.0000016.ref043
pdig.0000016.ref042
pdig.0000016.ref004
pdig.0000016.ref046
References_xml – volume-title: Fundamentals of Clinical Data Science
  year: 2019
  ident: pdig.0000016.ref001
  doi: 10.1007/978-3-319-99713-1
– volume: 1
  start-page: 389
  issue: 9
  year: 2019
  ident: pdig.0000016.ref012
  article-title: The global landscape of AI ethics guidelines.
  publication-title: Nat Mach Intell.
  doi: 10.1038/s42256-019-0088-2
– volume: 74
  start-page: 1093
  issue: 6
  year: 2016
  ident: pdig.0000016.ref041
  article-title: Standardization of terminology in dermoscopy/dermatoscopy: Results of the third consensus conference of the International Society of Dermoscopy
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2015.12.038
– volume: 330
  start-page: 545
  issue: 8
  year: 1994
  ident: pdig.0000016.ref062
  article-title: The Influence of the Probability of Survival on Patients’ Preferences Regarding Cardiopulmonary Resuscitation
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199402243300807
– volume: 1
  start-page: e271
  issue: 6
  year: 2019
  ident: pdig.0000016.ref003
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30123-2
– ident: pdig.0000016.ref054
  doi: 10.1145/3287560.3287569
– ident: pdig.0000016.ref010
– year: 2019
  ident: pdig.0000016.ref027
  article-title: What’s in the Box? The Legal Requirement of Explainability in Computationally Aided Decision-Making in Public Administration
  publication-title: SSRN Electron J
– ident: pdig.0000016.ref043
  doi: 10.1145/3375627.3375830
– ident: pdig.0000016.ref022
  doi: 10.6028/NIST.IR.8312-draft
– volume: 38
  start-page: 50
  issue: 3
  year: 2017
  ident: pdig.0000016.ref026
  article-title: European Union Regulations on Algorithmic Decision-Making and a “Right to Explanation.”
  publication-title: AI Mag
– volume: 49
  start-page: 15
  issue: 1
  year: 2019
  ident: pdig.0000016.ref029
  article-title: Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability
  publication-title: Hastings Cent Rep
  doi: 10.1002/hast.973
– ident: pdig.0000016.ref066
– ident: pdig.0000016.ref072
– volume: 132
  start-page: 1286
  issue: 13
  year: 2015
  ident: pdig.0000016.ref061
  article-title: Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000144
– ident: pdig.0000016.ref034
  doi: 10.1145/3351095.3375624
– volume: 20
  start-page: 310
  issue: 1
  year: 2020
  ident: pdig.0000016.ref018
  article-title: Explainability for artificial intelligence in healthcare: a multidisciplinary perspective
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-020-01332-6
– volume: 113
  start-page: 103655
  year: 2021
  ident: pdig.0000016.ref017
  article-title: The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103655
– volume: 28
  start-page: 645
  issue: 4
  year: 2018
  ident: pdig.0000016.ref040
  article-title: Grounds for Trust: Essential Epistemic Opacity and Computational Reliabilism
  publication-title: Minds Mach
  doi: 10.1007/s11023-018-9481-6
– volume: 107
  start-page: 101901
  year: 2020
  ident: pdig.0000016.ref023
  article-title: The four dimensions of contestable AI diagnostics—A patient-centric approach to explainable AI
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101901
– ident: pdig.0000016.ref004
  doi: 10.1145/3313831.3376718
– volume: 320
  start-page: 2199
  issue: 21
  year: 2018
  ident: pdig.0000016.ref011
  article-title: Clinical Decision Support in the Era of Artificial Intelligence
  publication-title: JAMA
  doi: 10.1001/jama.2018.17163
– volume: 1
  issue: 2
  year: 2019
  ident: pdig.0000016.ref050
  article-title: Why Are We Using Black Box Models in AI When We Don’t Need To? A Lesson From An Explainable AI Competition
  publication-title: Harv Data Sci Rev
– ident: pdig.0000016.ref067
– volume: 296
  start-page: 103473
  year: 2021
  ident: pdig.0000016.ref059
  article-title: What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research
  publication-title: Artif Intell.
  doi: 10.1016/j.artint.2021.103473
– volume: 4
  start-page: e2032320
  issue: 1
  year: 2021
  ident: pdig.0000016.ref058
  article-title: Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services: A Randomized Clinical Trial
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2020.32320
– ident: pdig.0000016.ref021
– ident: pdig.0000016.ref071
  doi: 10.1145/3290605.3300831
– ident: pdig.0000016.ref077
– volume: 267
  start-page: 1
  year: 2019
  ident: pdig.0000016.ref020
  article-title: Explanation in artificial intelligence: Insights from the social sciences
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.07.007
– ident: pdig.0000016.ref052
– volume: 23
  start-page: 7
  issue: 1
  year: 2015
  ident: pdig.0000016.ref060
  article-title: EuReCa ONE– 27 Nations, ONE Europe, ONE Registry: a prospective observational analysis over one month in 27 resuscitation registries in Europe–the EuReCa ONE study protocol
  publication-title: Scand J Trauma Resusc Emerg Med
  doi: 10.1186/s13049-015-0093-3
– volume: 26
  start-page: 1364
  issue: 9
  year: 2020
  ident: pdig.0000016.ref063
  article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1034-x
– ident: pdig.0000016.ref036
  doi: 10.1145/3411764.3445315
– volume: 26
  start-page: 1229
  issue: 8
  year: 2020
  ident: pdig.0000016.ref038
  article-title: Human–computer collaboration for skin cancer recognition
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0942-0
– volume: 61
  start-page: 36
  issue: 10
  year: 2018
  ident: pdig.0000016.ref028
  article-title: The mythos of model interpretability
  publication-title: Commun ACM
  doi: 10.1145/3233231
– volume: 9
  start-page: e1312
  issue: 4
  year: 2019
  ident: pdig.0000016.ref048
  article-title: Causability and explainability of artificial intelligence in medicine
  publication-title: WIREs Data Min Knowl Discov
  doi: 10.1002/widm.1312
– volume: 32
  start-page: 11304
  year: 2019
  ident: pdig.0000016.ref051
  article-title: Demystifying Black-box Models with Symbolic Metamodels
  publication-title: Adv Neural Inf Process Syst
– ident: pdig.0000016.ref073
– volume: 15
  start-page: 20170387
  issue: 141
  year: 2018
  ident: pdig.0000016.ref005
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0387
– ident: pdig.0000016.ref035
– volume: 47
  start-page: 329
  issue: 5
  year: 2021
  ident: pdig.0000016.ref039
  article-title: Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.
  publication-title: J Med Ethics
– volume: 34
  start-page: 193
  issue: 2
  year: 2020
  ident: pdig.0000016.ref049
  article-title: Measuring the Quality of Explanations: The System Causability Scale (SCS): Comparing Human and Machine Explanations
  publication-title: KI—Künstl Intell.
  doi: 10.1007/s13218-020-00636-z
– start-page: 643
  volume-title: Biomedical Informatics
  year: 2014
  ident: pdig.0000016.ref008
  doi: 10.1007/978-1-4471-4474-8_22
– volume: 2
  start-page: 83
  issue: 2
  year: 2021
  ident: pdig.0000016.ref056
  article-title: Z-Inspection®: A Process to Assess Trustworthy AI
  publication-title: IEEE Trans Technol Soc
  doi: 10.1109/TTS.2021.3066209
– ident: pdig.0000016.ref068
– volume: 17
  start-page: 617
  issue: 6
  year: 2010
  ident: pdig.0000016.ref006
  article-title: Health information technology: fallacies and sober realities
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2010.005637
– ident: pdig.0000016.ref064
– volume: 6
  start-page: 52138
  year: 2018
  ident: pdig.0000016.ref014
  article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI).
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 29
  start-page: 495
  issue: 4
  year: 2019
  ident: pdig.0000016.ref030
  article-title: A Misdirected Principle with a Catch: Explicability for AI.
  publication-title: Minds Mach
  doi: 10.1007/s11023-019-09509-3
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  ident: pdig.0000016.ref045
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– ident: pdig.0000016.ref015
– volume: 138
  start-page: 322
  year: 2019
  ident: pdig.0000016.ref057
  article-title: Machine learning as a supportive tool to recognize cardiac arrest in emergency calls
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2019.01.015
– ident: pdig.0000016.ref019
– ident: pdig.0000016.ref075
  doi: 10.1145/3359206
– ident: pdig.0000016.ref070
– ident: pdig.0000016.ref055
– ident: pdig.0000016.ref074
– volume: 373
  start-page: 284
  issue: 6552
  year: 2021
  ident: pdig.0000016.ref076
  article-title: Beware explanations from AI in health care
  publication-title: Science
  doi: 10.1126/science.abg1834
– ident: pdig.0000016.ref033
  doi: 10.1145/2939672.2939778
– ident: pdig.0000016.ref013
– volume: 3
  start-page: 30
  year: 2021
  ident: pdig.0000016.ref031
  article-title: On Assessing Trustworthy AI in Healthcare. Machine Learning as a Supportive Tool to Recognize Cardiac Arrest in Emergency Calls
  publication-title: Front Hum Dyn.
  doi: 10.3389/fhumd.2021.673104
– ident: pdig.0000016.ref024
  doi: 10.1145/3351095.3372827
– ident: pdig.0000016.ref065
– ident: pdig.0000016.ref042
  doi: 10.1145/3375627.3375833
– ident: pdig.0000016.ref044
– volume: 51
  start-page: 93:1
  issue: 5
  year: 2018
  ident: pdig.0000016.ref016
  article-title: A Survey of Methods for Explaining Black Box Models
  publication-title: ACM Comput Surv
– ident: pdig.0000016.ref069
– ident: pdig.0000016.ref046
  doi: 10.1145/3287560.3287574
– ident: pdig.0000016.ref009
  doi: 10.1145/3290605.3300468
– volume: 24
  start-page: 1342
  issue: 9
  year: 2018
  ident: pdig.0000016.ref002
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– volume: 31
  start-page: 841
  issue: 2
  year: 2018
  ident: pdig.0000016.ref047
  article-title: Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
  publication-title: Harv J Law Technol Harv JOLT. 2017
– ident: pdig.0000016.ref053
  doi: 10.1145/3351095.3372850
– volume: 58
  start-page: 82
  year: 2020
  ident: pdig.0000016.ref025
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 30
  start-page: 4765
  year: 2017
  ident: pdig.0000016.ref032
  article-title: A Unified Approach to Interpreting Model Predictions.
  publication-title: Adv Neural Inf Process Syst
– ident: pdig.0000016.ref037
– volume: 19
  start-page: 1236
  issue: 6
  year: 2018
  ident: pdig.0000016.ref007
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx044
SSID ssj0002810791
Score 2.5519989
Snippet Explainability for artificial intelligence (AI) in medicine is a hotly debated topic. Our paper presents a review of the key arguments in favor and against...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0000016
SubjectTerms Algorithms
Artificial intelligence
Biology and Life Sciences
Clinical decision making
Clinical outcomes
Computer and Information Sciences
Coronaviruses
Decision making
Decision support systems
Funding
Human factors
Machine learning
Marginalized groups
Medicine and Health Sciences
Physical Sciences
Research and Analysis Methods
Social Sciences
Terminology
Trust
SummonAdditionalLinks – databaseName: Public Health Database
  dbid: 8C1
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEC1BQIgL-2IIqJG4mkwvdtunCCIiLkQcgpSb1WuwiGwz9iC48RF8IV9Cl902MwjBgYsPvchlV1d1VS_vATz31tk8RG2pLXVIUJzhqQ6BeSokz4URSmXOj2QT8uSkODsr38UFtz4eq5x94uiobWtwjfyAh9ggL_B52H1KkTUKd1cjhcZluELZSqBhFkd0WWNhRUhuShpvzHFJD6KCXnS2Pp-gC5HofGtGGoH7_xRt_n5ocmsWOr75v_Lfghsx_iQvpwFzGy655g5cext32O_Cx9OWuC_dhaob0q5J0w5kWEoOf3z7jj0n1AlSb8F5zk0m2O-voY7Mly6JjTw-pN90GO6TCT66vwfvj1-fHr1JIyFDarIVG1KdZbmRXqqsoEaxvFDWCO9y7QrNg6vw3lOlrc-sct5KX1JjDWfWYlomVcHvw17TNu4hEOpzqWx4Ml0IzVZaltIpl4eExUntRQJ8VkplIlo5kmZcVOMWnAxZy_TDKlRlFVWZQLr06ia0jn-0f4X6Xtoi1vZY0K7Pq2i6SNSpjJGI2sNF-EblVrktw3jTIR3TwiWwP2t8fklf_VJ3As-W6mC6uB-jGtdu-orJ4BwFcocl8GAaXIskHHHhQnSbgNwZdjui7tY09YcRHjxEnDQY2qO_i_UYrjO8yTEeQN-HvWG9cU_gqvk81P366WhHPwEQEC96
  priority: 102
  providerName: ProQuest
Title To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
URI https://www.ncbi.nlm.nih.gov/pubmed/36812545
https://www.proquest.com/docview/3085683085
https://www.proquest.com/docview/2779349731
https://pubmed.ncbi.nlm.nih.gov/PMC9931364
https://doaj.org/article/200acc72635340ffae06d9120b255b4e
Volume 1
WOSCitedRecordID wos001413701700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: 7X7
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: BENPR
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: 8C1
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: PIMPY
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: PLoS Journals
  customDbUrl:
  eissn: 2767-3170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810791
  issn: 2767-3170
  databaseCode: FPL
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0ivgiftZoe6zgazTJJtnkSWzpUcEeQSqcT2E_NaUkxyVX6n_vbDYJORH64ss87AfZ7MxsfpPd_Q3Ae6O0ShG1-SoXGKBoSX2BwNyPGU1jGXOeaNMnm2CrVbZe58Us1Zc9E-bogd3EYXAecCmZ5UyhcWAM10Gq8jAKBIJhEWu7-iLqmQVTV_0vIwxr8nC4K0dZ-HFQzYeNqn460kKb4nz2Leop-_-FM_8-Ljn7_iyfwpMBOJLPbsDP4J6un8Oji2Fr_AVUlw3Rt5trjPRJsyV105FuKvnk236OLIJUMxbOsYFj6_6NdWS8K0nUkH6HtLuNRenEsT63L-H78uzy9Nwf8ij4MgmizhdJkkpmGE-yUPIozbiSsdGp0Jmg6OHGmJALZRLFtVHM5KFUkkZK2WiK8Yy-goO6qfVrIKFJGVcoI5HFApXAcqa5TjHO0EyY2AM6zmgpB5Jxm-viuux3zhgGG266SquHctCDB_7Ua-NINu5of2KVNbW1FNl9ARpOORhOeZfheHA0qnp8SFtSRKBpZqUH76Zq9Di7jcJr3ezaMmK4psU25ZcHh84yppFQS-eGoNQDtmcze0Pdr6mrXz2rNwLFEP3jzf94t7fwOLLXNPrT5Udw0G13-hgeypuuarcLuM_WrJcZyuw0XMCDk7NV8W3ROxHKZfEVy4ovF8WPP-aZJk0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQEb3pRAASPBMu3ETuJkgSpeVau2IxaDNLvgZ4laJWEyA3THR_AdfBRfwnVezCAEqy7YZBE7iZ0c39xrX58D8NRqo2P02nydSgxQjGK-RMfcDzmLQxUKERnbiE3w8TiZTtO3a_C93wvj0ip7m9gYal0qN0e-zdA3iBN33Kk--k41yq2u9hIaLSwOzNlnDNnq5_uv8fs-o3T3zeTVnt-pCvgqGtG5L6MoVtxyESWBEjROhFahNbE0iWSId2ttIKS2kRbGam7TQGnFqNYutuAiYXjfC3AR7Th3KWR8yoc5HZpgMJUG3Q49xoPtDhBblc6PW6pEJ6y-9AdshAL-5N3-nqS59Nfbvf6_va8bcK3zr8mLdkDchDVT3ILLR10GwW04mZTEfKlORV6QckaKck7mw5mdH1-_uStbVg2SL9GV9lVaWvMzLCP9plKiO50iUi8qF86Qlh67vgPvzqWrd2G9KAtzD0hgYy40HqlMQklHkqfcCBNjQGa4tKEHrAdBpjo2dicKcpo1S4wco7L2hWUOOlkHHQ_84aqqZSP5R_2XDl9DXccl3pwoZ8dZZ5qcEKlQijtWIhZiH4UZxToNsM0YbsrQeLDZI6x_SJ39gpcHT4ZiNE1uvUkUplzUGeVo_EOnjebBRgvmoSXM8d6h9-4BX4H5SlNXS4r8Q0N_jh51gIbk_t-b9Riu7E2ODrPD_fHBA7hK3a6VJtl-E9bns4V5CJfUp3lezx41Y5jA-_MeBD8BDnaRfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=To+explain+or+not+to+explain%3F-Artificial+intelligence+explainability+in+clinical+decision+support+systems&rft.jtitle=PLOS+digital+health&rft.au=Amann%2C+Julia&rft.au=Vetter%2C+Dennis&rft.au=Blomberg%2C+Stig+Nikolaj&rft.au=Christensen%2C+Helle+Collatz&rft.date=2022-02-01&rft.eissn=2767-3170&rft.volume=1&rft.issue=2&rft.spage=e0000016&rft_id=info:doi/10.1371%2Fjournal.pdig.0000016&rft_id=info%3Apmid%2F36812545&rft.externalDocID=36812545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-3170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-3170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-3170&client=summon