A bi-subpopulation coevolutionary immune algorithm for multi-objective combinatorial optimization in multi-UAV task allocation
With the development of Unmanned Aerial Vehicle (UAV) technology towards multi-UAV and UAV swarm, multi-UAV cooperative task allocation has more and more influence on the success or failure of UAV missions. From the operational research point of view, such problems belong to high-dimensional combina...
Saved in:
| Published in: | Complex & intelligent systems Vol. 11; no. 2; pp. 149 - 19 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.02.2025
Springer Nature B.V Springer |
| Subjects: | |
| ISSN: | 2199-4536, 2198-6053 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the development of Unmanned Aerial Vehicle (UAV) technology towards multi-UAV and UAV swarm, multi-UAV cooperative task allocation has more and more influence on the success or failure of UAV missions. From the operational research point of view, such problems belong to high-dimensional combinatorial optimization problems, which makes the solving process face many challenges. One is that the discrete and high-dimensional decision variables make the quality of the solution obtained with acceptable time not guaranteed. Second, the desired solution of real missions often needs to satisfy multiple objective functions, or a set of solutions for decision-making. Therefore, this paper constructs a Multi-objective Combinatorial Optimization in Multi-UAV Task Allocation Problem (MCOTAP) model, and proposes a Bi-subpopulation Coevolutionary Immune Algorithm (BCIA). The two coevolutionary mechanisms improve the lower limit of population diversity, and the evolutionary strategy pool integrating multiple strategies and the adaptive strategy selection mechanism enhance the local search ability in the late evolution. In the experiments, BCIA competes fairly with the mainstream multi-objective evolutionary algorithms (MOEAs), multi-objective immune algorithms (MOIAs) and the recently proposed multi-UAV mission planning algorithms. The experimental results on different test problems (including several multi-objective combinatorial optimization benchmark problems and the proposed MCOTAP model) show that BCIA has superior performance in solving multi-objective combinatorial optimization problems (MCOPs). At the same time, the effectiveness of each design component of BCIA has been comprehensively verified in the ablation study. |
|---|---|
| AbstractList | With the development of Unmanned Aerial Vehicle (UAV) technology towards multi-UAV and UAV swarm, multi-UAV cooperative task allocation has more and more influence on the success or failure of UAV missions. From the operational research point of view, such problems belong to high-dimensional combinatorial optimization problems, which makes the solving process face many challenges. One is that the discrete and high-dimensional decision variables make the quality of the solution obtained with acceptable time not guaranteed. Second, the desired solution of real missions often needs to satisfy multiple objective functions, or a set of solutions for decision-making. Therefore, this paper constructs a Multi-objective Combinatorial Optimization in Multi-UAV Task Allocation Problem (MCOTAP) model, and proposes a Bi-subpopulation Coevolutionary Immune Algorithm (BCIA). The two coevolutionary mechanisms improve the lower limit of population diversity, and the evolutionary strategy pool integrating multiple strategies and the adaptive strategy selection mechanism enhance the local search ability in the late evolution. In the experiments, BCIA competes fairly with the mainstream multi-objective evolutionary algorithms (MOEAs), multi-objective immune algorithms (MOIAs) and the recently proposed multi-UAV mission planning algorithms. The experimental results on different test problems (including several multi-objective combinatorial optimization benchmark problems and the proposed MCOTAP model) show that BCIA has superior performance in solving multi-objective combinatorial optimization problems (MCOPs). At the same time, the effectiveness of each design component of BCIA has been comprehensively verified in the ablation study. Abstract With the development of Unmanned Aerial Vehicle (UAV) technology towards multi-UAV and UAV swarm, multi-UAV cooperative task allocation has more and more influence on the success or failure of UAV missions. From the operational research point of view, such problems belong to high-dimensional combinatorial optimization problems, which makes the solving process face many challenges. One is that the discrete and high-dimensional decision variables make the quality of the solution obtained with acceptable time not guaranteed. Second, the desired solution of real missions often needs to satisfy multiple objective functions, or a set of solutions for decision-making. Therefore, this paper constructs a Multi-objective Combinatorial Optimization in Multi-UAV Task Allocation Problem (MCOTAP) model, and proposes a Bi-subpopulation Coevolutionary Immune Algorithm (BCIA). The two coevolutionary mechanisms improve the lower limit of population diversity, and the evolutionary strategy pool integrating multiple strategies and the adaptive strategy selection mechanism enhance the local search ability in the late evolution. In the experiments, BCIA competes fairly with the mainstream multi-objective evolutionary algorithms (MOEAs), multi-objective immune algorithms (MOIAs) and the recently proposed multi-UAV mission planning algorithms. The experimental results on different test problems (including several multi-objective combinatorial optimization benchmark problems and the proposed MCOTAP model) show that BCIA has superior performance in solving multi-objective combinatorial optimization problems (MCOPs). At the same time, the effectiveness of each design component of BCIA has been comprehensively verified in the ablation study. |
| ArticleNumber | 149 |
| Author | Chen, Xi Ruan, Yirun Wan, Yu Qi, Jingtao Tang, Jun Zhao, Zipeng |
| Author_xml | – sequence: 1 givenname: Xi surname: Chen fullname: Chen, Xi organization: Laboratory for Big Data and Decision, National University of Defense Technology – sequence: 2 givenname: Yu surname: Wan fullname: Wan, Yu organization: Laboratory for Big Data and Decision, National University of Defense Technology – sequence: 3 givenname: Jingtao surname: Qi fullname: Qi, Jingtao organization: Laboratory for Big Data and Decision, National University of Defense Technology – sequence: 4 givenname: Zipeng surname: Zhao fullname: Zhao, Zipeng organization: Laboratory for Big Data and Decision, National University of Defense Technology – sequence: 5 givenname: Yirun surname: Ruan fullname: Ruan, Yirun organization: Laboratory for Big Data and Decision, National University of Defense Technology – sequence: 6 givenname: Jun orcidid: 0000-0001-5524-9565 surname: Tang fullname: Tang, Jun email: tangjun06@nudt.edu.cn organization: Laboratory for Big Data and Decision, National University of Defense Technology |
| BookMark | eNp9kUtv1TAQhSNUJErpH2AVibVh4kfsLK8qHpUqsaFsLb9y8cWJg-1UggW_Hd-kAolFVx55zndm7POyuZjj7JrmdQdvOwD-LlPglCPAFEHHMaDhWXOJu0GgHhi52OoBUUb6F811zieAKuOCAL5sfh9a7VFe9RKXNaji49ya6B5iWM-1Sj9bP03r7FoVjjH58m1qx5jaaQ3Fo6hPzhT_4CozaT-rUiUqtHEpfvK_djs_P6rvD1_bovL3ahWi2ZqvmuejCtldP55Xzf2H919uPqG7zx9vbw53yDDABWlGBHPGYI5HY6xVQCjX_Tg4MhBmACvaWTMIbZx1FvdcaSXoaJnmoxZiIFfN7e5rozrJJfmpvkxG5eV2EdNRqlS8CU72tILasBG0oqSzWljKMOWcAu2ZpdXrze61pPhjdbnIU1zTXNeXpGNMCOD4PBHvKpNizsmNf6d2IM-xyT02WWOTW2zyDIn_IOPL9lElKR-eRsmO5jpnPrr0b6snqD9eH7HZ |
| CitedBy_id | crossref_primary_10_3390_drones9080575 crossref_primary_10_3390_drones9070509 crossref_primary_10_1016_j_asoc_2025_113075 |
| Cites_doi | 10.1109/TEVC.2007.892759 10.1177/09544070211072665 10.1109/TEVC.2008.925798 10.1109/JIOT.2019.2914414 10.1007/11881223_49 10.1109/LWC.2018.2880467 10.1162/106365600568202 10.1109/TAES.2022.3224694 10.1007/s00202-006-0056-9 10.1109/TEVC.2010.2041667 10.1016/j.tplants.2018.11.007 10.1109/TASE.2013.2279544 10.1109/TAES.2022.3195478 10.1016/j.cor.2015.04.003 10.1016/j.ast.2015.12.021 10.3390/jmse11040781 10.1016/j.trc.2021.103172 10.1007/3-540-45356-3_83 10.1145/1276958.1277179 10.1177/15485129211031668 10.1145/1276958.1277115 10.1016/j.ins.2017.11.030 10.1007/s00500-014-1346-1 10.1016/j.cie.2015.12.007 10.1109/ICUAS.2014.6842265 10.1109/WCNC.2018.8377077 10.1162/evco.1994.2.3.221 10.1109/MCI.2017.2742868 10.1007/3-540-36970-8_21 10.2514/6.2018-1859 10.1162/evco.2008.16.2.225 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/s40747-024-01720-9 |
| DatabaseName | Springer Nature Link CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 2198-6053 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_644fdbc5f0ba431db8d45247740465d4 10_1007_s40747_024_01720_9 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62073330 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c502t-b5385ecc272fccdda0347b6f9e3935c02a41dc98bceded267aba84fd5b7fb8893 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001396861500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4536 |
| IngestDate | Tue Oct 14 19:09:03 EDT 2025 Wed Oct 08 14:21:06 EDT 2025 Tue Nov 18 22:54:47 EST 2025 Sat Nov 29 05:49:05 EST 2025 Fri Feb 21 02:37:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Multi-UAV Multi-objective immune algorithm Coevolutionary algorithm Task allocation problem Multi-objective combinatorial optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-b5385ecc272fccdda0347b6f9e3935c02a41dc98bceded267aba84fd5b7fb8893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5524-9565 |
| OpenAccessLink | https://doaj.org/article/644fdbc5f0ba431db8d45247740465d4 |
| PQID | 3155880729 |
| PQPubID | 2044308 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_644fdbc5f0ba431db8d45247740465d4 proquest_journals_3155880729 crossref_primary_10_1007_s40747_024_01720_9 crossref_citationtrail_10_1007_s40747_024_01720_9 springer_journals_10_1007_s40747_024_01720_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Complex & intelligent systems |
| PublicationTitleAbbrev | Complex Intell. Syst |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | C Mu (1720_CR29) 2015; 19 Q Lin (1720_CR23) 2018; 430 X Liu (1720_CR1) 2018; 8 K Braekers (1720_CR8) 2016; 99 W Xu (1720_CR21) 2022; 236 F Wang (1720_CR14) 2021; 44 B Han (1720_CR13) 2017; 45 M Gong (1720_CR25) 2008; 16 E Zitzler (1720_CR31) 2000; 8 M Radmanesh (1720_CR10) 2016; 50 Y Ma (1720_CR22) 2023; 11 J Tang (1720_CR26) 2023; 59 M Hollander (1720_CR36) 2013 K Guney (1720_CR24) 2007; 90 1720_CR20 K Sundar (1720_CR9) 2013; 11 F Wang (1720_CR15) 2023; 49 WH Maes (1720_CR3) 2019; 24 H Li (1720_CR28) 2008; 13 Y Tian (1720_CR34) 2017; 12 K Deb (1720_CR38) 2010; 14 1720_CR17 1720_CR18 Y Huo (1720_CR5) 2019; 6 Q Lin (1720_CR27) 2015; 62 Q Zhang (1720_CR19) 2007; 11 1720_CR30 N Srinivas (1720_CR16) 1994; 2 1720_CR35 1720_CR4 1720_CR37 1720_CR2 Z Luo (1720_CR7) 2021; 128 1720_CR32 1720_CR11 1720_CR33 1720_CR6 1720_CR12 |
| References_xml | – volume: 11 start-page: 712 year: 2007 ident: 1720_CR19 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 236 start-page: 3106 year: 2022 ident: 1720_CR21 publication-title: Proc Inst Mech Eng Part D J Automob Eng doi: 10.1177/09544070211072665 – volume: 13 start-page: 284 year: 2008 ident: 1720_CR28 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.925798 – volume: 49 start-page: 399 year: 2023 ident: 1720_CR15 publication-title: Acta Automatica Sinica – volume: 6 start-page: 7103 year: 2019 ident: 1720_CR5 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2914414 – ident: 1720_CR35 doi: 10.1007/11881223_49 – volume: 8 start-page: 580 year: 2018 ident: 1720_CR1 publication-title: IEEE Wirel Commun Lett doi: 10.1109/LWC.2018.2880467 – volume: 8 start-page: 173 year: 2000 ident: 1720_CR31 publication-title: Evol Comput doi: 10.1162/106365600568202 – ident: 1720_CR11 doi: 10.1109/TAES.2022.3224694 – volume: 90 start-page: 147 year: 2007 ident: 1720_CR24 publication-title: Electr Eng doi: 10.1007/s00202-006-0056-9 – volume: 14 start-page: 821 year: 2010 ident: 1720_CR38 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2010.2041667 – volume: 24 start-page: 152 year: 2019 ident: 1720_CR3 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2018.11.007 – volume: 11 start-page: 287 year: 2013 ident: 1720_CR9 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2013.2279544 – ident: 1720_CR37 – volume: 44 start-page: 1967 year: 2021 ident: 1720_CR14 publication-title: Chin J Comput – volume: 59 start-page: 1139 year: 2023 ident: 1720_CR26 publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2022.3195478 – volume: 62 start-page: 95 year: 2015 ident: 1720_CR27 publication-title: Comput Oper Res doi: 10.1016/j.cor.2015.04.003 – volume: 50 start-page: 149 year: 2016 ident: 1720_CR10 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2015.12.021 – ident: 1720_CR18 – volume: 45 start-page: 1856 year: 2017 ident: 1720_CR13 publication-title: Acta Electron Sin – volume: 11 start-page: 781 year: 2023 ident: 1720_CR22 publication-title: J Marine Sci Eng doi: 10.3390/jmse11040781 – volume: 128 year: 2021 ident: 1720_CR7 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2021.103172 – ident: 1720_CR17 doi: 10.1007/3-540-45356-3_83 – ident: 1720_CR20 – ident: 1720_CR30 doi: 10.1145/1276958.1277179 – ident: 1720_CR6 doi: 10.1177/15485129211031668 – ident: 1720_CR32 doi: 10.1145/1276958.1277115 – volume: 430 start-page: 46 year: 2018 ident: 1720_CR23 publication-title: Inf Sci doi: 10.1016/j.ins.2017.11.030 – volume: 19 start-page: 1329 year: 2015 ident: 1720_CR29 publication-title: Soft Comput doi: 10.1007/s00500-014-1346-1 – volume: 99 start-page: 300 year: 2016 ident: 1720_CR8 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2015.12.007 – volume-title: Nonparametric statistical methods year: 2013 ident: 1720_CR36 – ident: 1720_CR2 doi: 10.1109/ICUAS.2014.6842265 – ident: 1720_CR4 doi: 10.1109/WCNC.2018.8377077 – volume: 2 start-page: 221 year: 1994 ident: 1720_CR16 publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 – volume: 12 start-page: 73 year: 2017 ident: 1720_CR34 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – ident: 1720_CR33 doi: 10.1007/3-540-36970-8_21 – ident: 1720_CR12 doi: 10.2514/6.2018-1859 – volume: 16 start-page: 225 year: 2008 ident: 1720_CR25 publication-title: Evol Comput doi: 10.1162/evco.2008.16.2.225 |
| SSID | ssj0001778302 ssib044733412 ssib045327741 |
| Score | 2.3021345 |
| Snippet | With the development of Unmanned Aerial Vehicle (UAV) technology towards multi-UAV and UAV swarm, multi-UAV cooperative task allocation has more and more... Abstract With the development of Unmanned Aerial Vehicle (UAV) technology towards multi-UAV and UAV swarm, multi-UAV cooperative task allocation has more and... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 149 |
| SubjectTerms | Ablation Algorithms Coevolutionary algorithm Combinatorial analysis Complexity Computational Intelligence Data Structures and Information Theory Design optimization Engineering Evolutionary algorithms Mission planning Missions Multi-objective combinatorial optimization Multi-objective immune algorithm Multi-UAV Multiple objective analysis Optimization Original Article Real variables Strategy Task allocation problem Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: ProQuest Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgy4EeeKNuH8gHbmA1cZx1fEJb1AokWu2BonKy_CwL3c2ySStx4bczdpysikRPXHJInJf8-ZuxPfMNQq-tLhTYJUU8OBeEOaFJ5ZwjgonCGCBN46PO7Cd-dlZdXIhZSo9uUlhlz4mRqDu15xC3DSR8aGsTVswPCzCDgDzwDN-tfpJQQyrstaaCGvfRVhDeykZoa_bxdPa1xxdjvCjYxpyzsqC8rzwT12Q4D3JYoR5dLgRhcWdzd8i2Y0FsnoBRI2HilBFxy5ZFyf9bfupfW6vRYp08_r__-gQ9Sp4rnnZQe4ruueUztH06yL42z9HvKdZz0lzr1VAWDJva3SR4q_UvPA_5KA6rq0t4RfttgcFpxjGqkdT6e8e-cM8CJuxhOQBGB66B1RYpXRTPl6n1-fQLblXzA4fIgW7d8QU6Pzn-_P4DSQUeiCkz2hINbFsChiin3hhrVVYwrideuJAwbDKqWG6NqLRx1lk64Uqrinlbau51BZ7WSzRa1ku3g3AxKS3MfiiFhzE1ybWyugJKMbmHQ1WOUd53lTRJ_TwU4biSg25z7F4J3Stj90oxRm-Ge1ad9sedrY8CAoaWQbc7nqjXlzLRgATv01ttSp_pMETgGy0rKQMUZgz-gI3Rfo8ImcikkRsAjNHbHlOby__-pN27n7aHHtJQzTjGoO-jUbu-dgfogblp5836VRo8fwA2AyW4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4UAPvFG3LZUP3MBS4jib-LitWnGgFQeKerP8LIHupkrSSlz47Yy9TtoiFQkukZLYlh_jedgz3wC8s7pQKJcU9ahcUO6EprVzjgouCmOQaRofcWY_VScn9dmZ-JyCwvrR2328koycegp24wHrnaJMocFuyah4CI8CnFhw5Dq4wRznvCoKnoR2PGmpqgByFbLM5UJQHu8rt-9v9o6EikD-d7TPPy5Moxw6evZ_I3gOT5PeSRZrQnkBD9zqJWzeQiPEt-MJwrV_Bb8WRDe0v9KXU4ovYlp3nUhVdT9JE2JLHFEX523XDN-WBBVgEj0Uaau_rzkp1lmi8R1Me6R00iKHWqbQT9KsUunTxVcyqP4HCV4A6zPE13B6dPjl4CNNyRqoKTM2UI2cs0R6YBXzxlirsoJXeu6FC8G_JmOK59aIWhtnnWXzSmlVc29LXXldo9b0BjZW7cptASnmpUVLhjFsjKt5rpXVNbIHk3t81OUM8nGBpElI5iGhxoWcMJjjTEucaRlnWooZvJ_qXK5xPP5aej-s-1QyYHDHD213LtOWlqhJeqtN6TMdyB37aHnJOOrTGccR8BnsjlQjE2PoZYH6G7JMNGlm8GGkkpvf93dp-9-K78ATFjIVR__yXdgYuiv3Fh6b66Hpu724YX4DCHQPFw priority: 102 providerName: Springer Nature |
| Title | A bi-subpopulation coevolutionary immune algorithm for multi-objective combinatorial optimization in multi-UAV task allocation |
| URI | https://link.springer.com/article/10.1007/s40747-024-01720-9 https://www.proquest.com/docview/3155880729 https://doaj.org/article/644fdbc5f0ba431db8d45247740465d4 |
| Volume | 11 |
| WOSCitedRecordID | wos001396861500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4QAHxFNsW1Y-cAOLxLHX8XFbtQKJriJEUeES-RUIdDfVJq3UC7-dsZNNWyTgwiWH2ImcfON52J5vAF46k2m0S5pW6FxQ7pWhufeeKq4ya1Fp2iryzL6Xi0V-cqKKa6W-wpmwnh64_3Fv0F5XzlhRJSa81JncccE4ei0Y2QkXmUATqa4FUyhJnMss41eGm4uMyU2Nmbj6ImUgvgqV51KlKI97mNtjXh0PtPIUzRcNIVJC1Q2rFcn9b3ikv22iRtt0-BAeDE4lmfcf8whu-dVjuH80MrK2T-DnnJiatufmbKzYRWzjLwbJ0-tLUodUEU_06ddmXXfflgT9WRIPHNLGfO8VIz6zxFg6ROoouKRBhbMcMjlJvRp6H88_kU63P0jY1O-XBJ_C8eHBx_23dKi9QK1IWEcNKkKB8DLJKmud00nGpZlVyodcXpswzVNnVW6sd96xmdRG54iUMLIyOTpBz2Br1az8cyAZwoSBCWP4Mq5nqdEIIs52m1Z4ycUE0s2_Le1ATB7qY5yWI6VyxKNEPMqIR6km8Gp85qyn5fhr770A2dgzUGrHGyho5SBo5b8EbQK7G8DLYZ63ZYbuGGpAjFAm8HojBFfNfx7S9v8Y0g7cY6EccTxEvgtb3frcv4C79qKr2_UU7uwdLIoPU7i9z_g0zg-8FuILthTvjorPvwCCsQ9u |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAGB1VKRJwYEekFJgDnGCEPR7HngNCYakaNYlyaFE5DbO5pG3sELtFvfCT-I18M16iItFbD1x8sMfW2H7fMsv3HkIvjYokxCVJMkguCLNckdRaSzjjkdbgNHXmeWbHyXSaHh7y2Qb63dbCuG2VrU_0jtoU2s2Rv40g8AHWIBd8v_xBnGqUW11tJTRqWOzZi58wZCvfjT7B_31F6c7n_Y-7pFEVIDoOaEUUmHgMHacJzbQ2RgYRS9Qg49ZVqeqAShYazVOlrbGGDhKpZMoyE6skU2nqyJfA5W8yAHvQQ5uz0WT2tUUwY0kUsXXCwOKIJq22jZ_1SRJHuOUU70LOCfNrp1tdPR9zdPYEwiZxQ7OA8EvR0osKXMqE_1q89TFx5-7_9jXvoTtN9o2HtbncRxs2f4BuTzrq2vIh-jXEak7KM7XspM2wLux5Y6JydYHnrqbGYnl6BK9UfV9gSPyx35lJCnVcRxC4Z6HmuZvSAAvHBXjmRVPyiud50_pg-AVXsjzBbvdDPXf6CB1cywd4jHp5kdsnCEeD2MAIjlJ4GJODUEmjUnCLOszgkMZ9FLZgELphcHdCIqei4572ABIAIOEBJHgfve7uWdb8JVe2_uAw1rV03OP-RLE6Eo0rE5BBZ0bpOAuUM3Poo2ExZYDzgMEbsD7abjEnGodYijXg-uhNi9r15X93aevqp71AN3f3J2MxHk33nqJb1Kkz-z3126hXrc7sM3RDn1fzcvW8MVWMvl03nv8ArON66w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIASH8hbbFvCBG1hNHGcTH5e2KxBl1QNFvVl-lkA3WSVpJS78dsaON22RioS4RIpjW7Yznoc98w1Cb4zKJMglSRwoF4RZrkhprSWc8UxrYJraBZzZw2KxKE9O-NGVKP7g7b6-khxiGjxKU93vrozbHQPfmMd9JyBfiLdhEsJvoztQVni63rvEH2esyDIWBXg4dSkKD3jlM86lnBMW7i63bu72mrQKoP7XNNE_Lk-DTJo__P_ZPEKbUR_Fs4GAHqNbtn6CHlxBKYS3zyO0a_cU_ZphVZHuXK3G1F9YN_YikrBsf-LKx5xYLM9Om7bqvy0xKMY4eC6SRn0fOCy0WYJR7k1-2AG4Ac61jCGhuKpj7ePZV9zL7gf23gHD2eIzdDw_-LL3gcQkDkTnCe2JAo6aA53QgjqtjZFJxgo1ddz6oGCdUMlSo3mptDXW0GkhlSyZM7kqnCpBm3qONuqmti8Qzqa5AQuHUuiMyWmqpFElsA2dOniU-QSl658ldEQ494k2zsSIzRxWWsBKi7DSgk_Q27HNasD3-Gvt954GxpoemzsUNO2piFtdgIbpjNK5S5TfBjBGw3LKQM9OGMyATdDOmoJEZBidyECvA1YKps4EvVtTzOXnm4e09W_VX6N7R_tzcfhx8Wkb3ac-mXFwQd9BG317bl-iu_qir7r2VdhHvwFClBrg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bi-subpopulation+coevolutionary+immune+algorithm+for+multi-objective+combinatorial+optimization+in+multi-UAV+task+allocation&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Chen%2C+Xi&rft.au=Wan%2C+Yu&rft.au=Qi%2C+Jingtao&rft.au=Zhao%2C+Zipeng&rft.date=2025-02-01&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1007%2Fs40747-024-01720-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40747_024_01720_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |