Provenance-Aware Knowledge Representation: A Survey of Data Models and Contextualized Knowledge Graphs
Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of structured data. However, the standard used for representing these triples, RDF, inherently lacks the mechanism to attach provenance data, which would...
Uložené v:
| Vydané v: | Data Science and Engineering Ročník 5; číslo 3; s. 293 - 316 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 2364-1185, 2364-1541 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of structured data. However, the standard used for representing these triples, RDF, inherently lacks the mechanism to attach provenance data, which would be crucial to make automatically generated and/or processed data authoritative. This paper is a critical review of data models, annotation frameworks, knowledge organization systems, serialization syntaxes, and algebras that enable provenance-aware RDF statements. The various approaches are assessed in terms of standard compliance, formal semantics, tuple type, vocabulary term usage, blank nodes, provenance granularity, and scalability. This can be used to advance existing solutions and help implementers to select the most suitable approach (or a combination of approaches) for their applications. Moreover, the analysis of the mechanisms and their limitations highlighted in this paper can serve as the basis for novel approaches in RDF-powered applications with increasing provenance needs. |
|---|---|
| AbstractList | Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of structured data. However, the standard used for representing these triples, RDF, inherently lacks the mechanism to attach provenance data, which would be crucial to make automatically generated and/or processed data authoritative. This paper is a critical review of data models, annotation frameworks, knowledge organization systems, serialization syntaxes, and algebras that enable provenance-aware RDF statements. The various approaches are assessed in terms of standard compliance, formal semantics, tuple type, vocabulary term usage, blank nodes, provenance granularity, and scalability. This can be used to advance existing solutions and help implementers to select the most suitable approach (or a combination of approaches) for their applications. Moreover, the analysis of the mechanisms and their limitations highlighted in this paper can serve as the basis for novel approaches in RDF-powered applications with increasing provenance needs. Abstract Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of structured data. However, the standard used for representing these triples, RDF, inherently lacks the mechanism to attach provenance data, which would be crucial to make automatically generated and/or processed data authoritative. This paper is a critical review of data models, annotation frameworks, knowledge organization systems, serialization syntaxes, and algebras that enable provenance-aware RDF statements. The various approaches are assessed in terms of standard compliance, formal semantics, tuple type, vocabulary term usage, blank nodes, provenance granularity, and scalability. This can be used to advance existing solutions and help implementers to select the most suitable approach (or a combination of approaches) for their applications. Moreover, the analysis of the mechanisms and their limitations highlighted in this paper can serve as the basis for novel approaches in RDF-powered applications with increasing provenance needs. |
| Audience | Academic |
| Author | Sikos, Leslie F. Philp, Dean |
| Author_xml | – sequence: 1 givenname: Leslie F. surname: Sikos fullname: Sikos, Leslie F. email: l.sikos@ecu.edu.au organization: Edith Cowan University – sequence: 2 givenname: Dean surname: Philp fullname: Philp, Dean organization: Defence Science and Technology Group |
| BookMark | eNp9Uktv1DAQjlCRKKV_gFMkThxSxo_YCbfVAmVFEaiFszVxJsGr1F7sbEv59ZiGCsqhJ9uj7zGe-Z4WBz54KornDE4YgH6VJAPWVsChAmCsqeBRcciFkhWrJTu4u7OmflIcp7QFAJ5fUqrDYvgcwxV59Jaq1TVGKj_4cD1RP1J5TrtIifyMswv-dbkqL_bxim7KMJRvcMbyY-hpSiX6vlwHP9OPeY-T-0n9PyKnEXff0rPi8YBTouM_51Hx9d3bL-v31dmn0816dVbZGvhcoW6YkMSJo9WdaGxXS5Sq01oN1irdMm2JRNcr2WmrhpokQG3RSq0BWiuOis2i2wfcml10lxhvTEBnbgshjgbj7OxEhjGRXVTNs4-0PbUtH5pGgW67plU9Za0Xi9Yuhu97SrPZhn30uX3DpdAqzw-ajDpZUCNmUeeHMEfMHWFPl87mRQ0u11dKCN1muM6El_cIdpnciPuUzObi_D62WbA2hpQiDca6ZRvZxE2GgfmdALMkwOQEmNsEGMhU_h_1bhoPksRCShnsR4p_v_wA6xfH88Mt |
| CitedBy_id | crossref_primary_10_1016_j_bdr_2022_100351 crossref_primary_10_1108_EL_04_2023_0102 crossref_primary_10_1007_s11280_022_01100_8 crossref_primary_10_1007_s41019_023_00230_x crossref_primary_10_3233_SW_212883 crossref_primary_10_1007_s10115_023_01860_3 crossref_primary_10_3390_info15080509 crossref_primary_10_3390_info13040161 crossref_primary_10_1093_llc_fqaf076 crossref_primary_10_1016_j_eswa_2021_115043 crossref_primary_10_2196_50027 crossref_primary_10_1016_j_engappai_2025_110102 crossref_primary_10_1108_JD_12_2024_0310 crossref_primary_10_1108_DLP_03_2024_0044 crossref_primary_10_1016_j_jksuci_2022_10_018 crossref_primary_10_1145_3594721 crossref_primary_10_1016_j_future_2023_10_008 crossref_primary_10_22399_ijcesen_3854 crossref_primary_10_1016_j_procs_2024_11_072 crossref_primary_10_1002_cpe_6544 crossref_primary_10_1016_j_cogsys_2025_101378 crossref_primary_10_1016_j_jisa_2023_103478 crossref_primary_10_1162_qss_a_00292 crossref_primary_10_1016_j_knosys_2022_109576 crossref_primary_10_1016_j_knosys_2022_109134 crossref_primary_10_4000_12xqn crossref_primary_10_1016_j_autcon_2024_105927 crossref_primary_10_12688_f1000research_72843_1 crossref_primary_10_1007_s00287_024_01567_x crossref_primary_10_12688_f1000research_72843_2 crossref_primary_10_1186_s12859_022_04932_3 |
| Cites_doi | 10.1007/978-3-642-17819-1_21 10.1561/9781601983879 10.1016/j.dss.2014.04.007 10.1145/2566486.2568014 10.1016/j.fsidi.2019.200892 10.1145/1656242.1656245 10.1145/2810037 10.1109/CICN.2015.334 10.1109/PDGC.2014.7030772 10.1016/j.websem.2011.08.006 10.1007/978-1-4842-1049-9 10.1007/978-1-4614-8265-9 10.1007/978-3-319-16462.-5_29 10.1007/s11042-016-3705-7 10.1145/1367497.1367582 10.1007/978-3-319-98842-9 10.1007/11823285_38 10.1145/1060745.1060835 10.1007/978-3-319-93417-4_5 10.1016/j.websem.2006.11.003 10.1007/978-3-319-99247-1_12 10.1007/978-3-642-41360-5_6 10.1016/j.tcs.2012.06.020 10.1017/S1471068407003213 10.4230/LIPIcs.ICLP.2012.381 10.2307/2102968 10.1145/2567948.2577357 10.1109/FUZZ-IEEE.2018.8491686 10.1109/ICIT.2015.21 10.1016/j.procs.2018.07.206 10.1145/2484712.2484715 10.1007/978-3-642-17819-1_22 10.1016/j.future.2010.10.011 10.1145/1866480.1866508 10.1109/MIC.2011.7 10.1007/978-981-15-1699-3_16 10.1007/978-3-030-31423-1_4 10.1016/j.websem.2015.08.001 10.1561/1800000010 10.1016/j.diin.2015.04.004 10.1109/TKDE.2007.34 10.1007/s10115-018-1164-3 10.1007/978-3-319-46922-5_44 10.1007/978-3-642-34222-6_4 10.1016/j.compeleceng.2015.03.012 10.14778/2824032.2824119 10.1007/978-3-030-23182-8_2 10.1007/978-3-642-33876-2_15 10.1007/11853107_12 10.1007/11610113_99 10.1016/j.artint.2012.06.001 10.1016/j.websem.2009.07.004 10.1007/978-3-319-16462-5_7 10.1609/aaai.v24i1.7499 10.1007/978-981-13-8311-3_29 10.1007/978-981-13-8311-3_30 10.1007/978-3-642-35176-1_39 10.1007/s10472-013-9396-0 10.1007/978-3-642-17819-1_16 10.1007/978-3-319-54066-5 10.1007/s10796-019-09935-9 10.1007/978-3-319-59439-2_9 10.1093/bib/bbn044 10.1007/978-3-540-30145-5_10 10.1007/978-3-642-13818-8_32 10.1016/j.is.2005.02.003 10.1186/2041-1480-4-37 10.3233/ISU-2010-0613 10.1007/978-3-642-04930-9_13 10.1007/978-3-319-16462-5_19 10.1007/978-3-642-17819-1_19 10.1007/978-3-642-02121-3_25 10.1007/978-3-030-33220-4_11 10.1007/s10115-019-01332-7 10.1007/978-3-642-17819-1_30 10.1007/11890850_10 10.1145/2566486.2567973 10.1007/s00799-007-0018-5 10.1007/978-3-319-34129-3_35 10.1016/j.future.2010.07.005 10.1016/j.websem.2015.04.001 10.1007/11574620_57 10.1145/1988688.1988709 10.1145/2736277.2741143 10.1145/3106426.3106495 10.1186/2041-1480-4-38 10.1145/1900008.1900067 10.1007/978-3-319-58068-5_39 10.1007/978-3-030-38788-4 10.1007/978-3-319-11964-9_27 10.1007/11890850_27 10.1007/978-3-540-30475-3_8 10.1109/SERVICES.2013.32 10.1109/WI.2006.25 10.1007/s10115-018-1305-8 10.1007/978-3-642-17819-1_10 10.1007/978-3-642-17819-1_9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 Springer The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Springer – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1007/s41019-020-00118-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Computer Science |
| EISSN | 2364-1541 |
| EndPage | 316 |
| ExternalDocumentID | oai_doaj_org_article_1132ac652b384cde992f886079b896de A633790837 10_1007_s41019_020_00118_0 |
| GeographicLocations | Australia New York Israel |
| GeographicLocations_xml | – name: Israel – name: New York – name: Australia |
| GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX ABJCF AFFHD ARAPS BGLVJ CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS ADMLS ARCSS 7SC 8FD 8FE 8FG ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c502t-a78134e2e2ac7b38cb54a46b776fcc67917cee3bd64b7c6f5e4005cac477009c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657155900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-1185 |
| IngestDate | Fri Oct 03 12:42:02 EDT 2025 Wed Oct 08 14:20:59 EDT 2025 Wed Feb 12 07:01:49 EST 2025 Fri Feb 14 02:20:08 EST 2025 Tue Nov 18 22:21:21 EST 2025 Sat Nov 29 06:46:06 EST 2025 Fri Feb 21 02:32:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Contextual knowledge graph RDF data model RDF provenance RDF reification alternatives |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-a78134e2e2ac7b38cb54a46b776fcc67917cee3bd64b7c6f5e4005cac477009c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/1132ac652b384cde992f886079b896de |
| PQID | 2437644608 |
| PQPubID | 4402891 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1132ac652b384cde992f886079b896de proquest_journals_2437644608 gale_infotracacademiconefile_A633790837 gale_incontextgauss_ISR_A633790837 crossref_citationtrail_10_1007_s41019_020_00118_0 crossref_primary_10_1007_s41019_020_00118_0 springer_journals_10_1007_s41019_020_00118_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Berlin |
| PublicationTitle | Data Science and Engineering |
| PublicationTitleAbbrev | Data Sci. Eng |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Zhao J, Goble C, Stevens R, Bechhofer S (2004) Semantically linking and browsing provenance logs for e-science. In: Bouzeghoub M, Goble C, Kashyap V, Spaccapietra S (eds) Semantics of a networked world. Springer, Heidelberg, pp 158–176. https://doi.org/10.1007/978-3-540-30145-5_10 Sahoo S, Sheth A (2009) Provenir ontology: towards a framework for eScience provenance management. Microsoft eScience Workshop, Pittsburgh, PA, USA, 15–17 October 2009 Lopes N, Kirrane S, Zimmermann A, Polleres A, Mileo A (2012) A logic programming approach for access control over RDF. In: Dovier A, Costa VS (eds) Technical communications of the 28th International Conference on Logic Programming (ICLP’12). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, pp 381–392. https://doi.org/10.4230/LIPIcs.ICLP.2012.381 Zhao J, Wroe C, Goble C, Stevens R, Quan D, Greenwood M (2004) Using Semantic Web technologies for representing e-science provenance. In: McIlraith SA, Plexousakis D, van Harmelen F (eds) The Semantic Web—ISWC 2004. Springer, Heidelberg, pp 92–106. https://doi.org/10.1007/978-3-540-30475-3_8 Sikos LF (2019) Knowledge representation to support partially automated honeypot analysis based on Wireshark packet capture files. In: Czarnowski I, Howlett RJ, Jain LC (eds) Intelligent decision technologies 2019. Springer, Singapore, pp 345–351. https://doi.org/10.1007/978-981-13-8311-3_30 GrothPGibsonAVelteropJThe anatomy of a nanopublicationInform Serv Use2010301–2515610.3233/ISU-2010-0613 McGuinnessDDingLda SilvaPChangCRoth-BerghoferTSchulzSBahlsDLeakeDPML 2: a modular explanation interlinguaExplanation-aware computing2007Menlo ParkAAAI Press4955 Springer, Cham. (2018) AI in cybersecurity. https://doi.org/10.1007/978-3-319-98842-9 Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D, (2018) Summarizing network information for cyber-situational awareness via cyber-knowledge integration. AOC 2018 Convention. Adelaide, Australia, 28–30 May 2018 Freitas A, Legendre A, O’Riain S, Curry E (2010) Prov4J: a Semantic Web framework for generic provenance management. In: Sahoo S, Zhao J, Missier P, Gomez-Perez J (eds) Proceedings of the Second International Workshop on the Role of Semantic Web in Provenance Management. RWTH Aachen University, Aachen GeertsFUngerTKarvounarakisGFudulakiIChristophidesVAlgebraic structures for capturing the provenance of SPARQL queriesJ ACM201663163349022810.1145/28100371426.68079 Zimmermann A, Giménez-García JM (2017) Integrating context of statements within description logics. arXiv:1709.04970v1 Alper P, Belhajjame K, Goble CA, Karagoz P (2015) LabelFlow: exploiting workflow provenance to surface scientific data provenance. In: Ludäscher B, Plale B (eds) Provenance and annotation of data and processes. Springer, Cham, pp 84–96. https://doi.org/10.1007/978-3-319-16462-5_7 Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D (2018) Representing network knowledge using provenance-aware formalisms for cyber-situational awareness. Procedia Comput Sci 126:29–38. https://doi.org/10.1016/j.procs.2018.07.206 LivingstonKMBadaMHunterLEVerspoorKRepresenting annotation compositionality and provenance for the Semantic WebJ Biomed Semant201343810.1186/2041-1480-4-38 Omitola T, Omitola T, Gutteridge C, Millard IC, Glaser H, Gibbins N, Shadbolt N (2011) Tracing the provenance of Linked Data using VoID. In: Akerkar R (ed) Proceedings of the International Conference on Web Intelligence, Mining and Semantics. https://doi.org/10.1145/1988688.1988709 Frey J, Roure DD, Taylor K, Essex J, Mills H, Zaluska E (2006) CombeChem: a case study in provenance and annotation using the Semantic Web. In: Moreau L, Foster I (eds) Provenance and annotation of data. Springer, Heidelberg, pp 270–277. https://doi.org/10.1007/11890850_27 Myers J, Futrelle J, Gaynor J, Plutchak J, Bajcsy P, Kastner J, Kotwani K, Lee J, Marini L, Kooper R, McGrath R, McLaren T, Rodriguez A, Liu Y (2008) Embedding data within knowledge spaces. arXiv:0902.0744 Sahoo SS, Bodenreider O, Hitzler P, Sheth A, Thirunarayan K (2010) Provenance Context Entity (PaCE): scalable provenance tracking for scientific RDF data. In: Gertz M, Ludäscher B (eds) Scientific and statistical database management. Springer, Heidelberg, pp 461–470. https://doi.org/10.1007/978-3-642-13818-8_32 Klarman S (2013) Reasoning with contexts in description logics. Ph.D. thesis, VU University Amsterdam, Amsterdam, Netherlands Chen L, Yang X, Tao F (2006) A Semantic Web service based approach for augmented provenance. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, Los Alamitos, CA, USA, pp 594–600. https://doi.org/10.1109/WI.2006.25 UdreaOUdreaOSubrahmanianVSAnnotated RDF. ACM Trans Comput Logic201011214110.1145/1656242.1656245 da SilvaPPMcGuinnessDLFikesRA proof markup language for Semantic Web servicesInform Syst2006314–538139510.1016/j.is.2005.02.003 Berners-Lee T (2005) Notation 3 Logic. https://www.w3.org/DesignIssues/N3Logic. Accessed 29 March 2020 Di Iorio A, Caron B (2016) PREMIS 3.0 ontology: Improving semantic interoperability of preservation metadata. In: Proceedings of the 13th International Conference on Digital Preservation. Swiss National Library, Bern, pp 32–36 Sharma K, Marjit U, Biswas U (2015) Efficient provenance storage for RDF dataset in Semantic Web environment. In: 2015 International Conference on Information Technology. IEEE, New York. https://doi.org/10.1109/ICIT.2015.21 Wylot M, Cudre-Mauroux P, Groth P (2015) A demonstration of TripleProv: tracking and querying provenance over Web data. VLDB Endowment 8(12):1992–1995 https://doi.org/10.14778/2824032.2824119 Noy N, Rector A, Hayes P, Welty C (2006) Defining n-ary relations on the Semantic Web. https://www.w3.org/TR/swbp-n-aryRelations/. Accessed 29 March 2020 CiccaresePSoiland-ReyesSBelhajjameKGrayAJGGobleCClarkTPAV ontology: provenance, authoring and versioningJ Biomed Semant201343710.1186/2041-1480-4-37 Welty C, Fikes R (2006) A reusable ontology for fluents in OWL. In: Proceedings of the 2006 Conference on Formal Ontology in Information Systems. IOS Press, Amsterdam, pp 226–236 ZimmermannALopesNPolleresAStracciaUA general framework for representing, reasoning and querying with annotated Semantic Web dataWeb Semant Sci Serv Agents World Wide Web201211729510.1016/j.websem.2011.08.006 Chebotko A, Abraham J, Brazier P, Piazza A, Kashlev A, Lu S (2013) Storing, indexing and querying large provenance data sets as RDF graphs in Apache HBase. In: IEEE Ninth World Congress on Services, IEEE, New York. https://doi.org/10.1109/SERVICES.2013.32 Nguyen V, Sheth AP (2017) Logical inferences with contexts of RDF triples. arXiv:1701.05724 MilesSWongSCFangWGrothPZaunerKPMoreauLProvenance-based validation of e-science experimentsWeb Semant Sci Serv Agents World Wide Web200751283810.1016/j.websem.2006.11.003 Lebo T, P W, Graves A, McGuinness D (2012) Towards unified provenance granularities. In: Groth P, Frew J (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 39–51. https://doi.org/10.1007/978-3-642-34222-6_4 Wylot M, Cudre-Mauroux P, Groth P (2014) TripleProv: Efficient processing of lineage queries in a native RDF store. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, New York, pp 455–466. https://doi.org/10.1145/2566486.2568014 Pandey M, Pandey R (2015) Provenance constraints and attributes definition in OWL ontology to support machine learning. In: Guerrero J (ed) Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks. IEEE, Washington, pp 1408–1414. https://doi.org/10.1109/CICN.2015.334 Moreau L, Clifford B, Freire J, Futrelle J, Gil Y, Groth P, Kwasnikowska N, Miles S, Missier P, Myers J, Plale B, Simmhan Y, Stephan E, den Bussche JV (2011) The Open Provenance Model Core Specification (v1.1). Future Gener Comp Sy 27(6):743–756. https://doi.org/10.1016/j.future.2010.07.005 DividinoRSizovSStaabSSchuelerBQuerying for provenance, trust, uncertainty and other meta knowledge in RDFWeb Semant Sci Serv Agents World Wide Web20097320421910.1016/j.websem.2009.07.004 Philp D, Thomas L, Gilmartin D, Voigt S, (2018) Cyber situational awareness for communication networks. AOC, (2018) Convention. Adelaide, Australia Halaschek-Wiener C, Golbeck J, Schain A, Grove M, Parsia B, Hendler J (2006) Annotation and provenance tracking in Semantic Web photo libraries. In: Moreau L, Foster I (eds) Provenance and annotation of data. Springer, Heidelberg, pp 82–89. https://doi.org/10.1007/11890850_10 Wylot M, Cudré-Mauroux P, Groth P (2015) Adaptive RDF query processing based on provenance. In: Ludäscher B, Plale B (eds) Provenance and annotation of data and processes. Springer, Cham, pp 264–266. https://doi.org/10.1007/978-3-319-16462.-5_29 Hurtado C, Vaisman A (2006) Reasoning with temporal constraints in RDF. In: Alferes JJ, Bailey J, May W, Schwertel U (eds) Principles and practice of Semantic Web reasoning. Springer, Heidelberg, pp 164–178. https://doi.org/10.1007/11853107_12 Ding L, Bao J, Michaelis JR, Zhao J, McGuinness DL (2010) Reflections on provenance ontology encodings. In: McGuinness DL, Michaelis JR, Moreau L (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 198–205. https://doi.org/10.1007/978-3-642-17819-1_22 Schueler B, Sizov S, Staab S (2008) Querying for meta knowledge. In: Proceedings of the 17th International Conference on World Wide Web. ACM, New York, pp 625–634. https://doi.org/10.1145/1367497.1367582 Hayes P, Patel-Schneider P (2014) Simple Interpretations. In: RDF 1.1 semantics. https://www.w3.org/TR/rdf11-mt/#simple-interpretations. Accessed 29 March 2020 SikosLFRDF-powered semantic video annotation tools with concept mapping to Linked Data for next-generation video indexingMultim Tools Appl20167612144371446010.1007/s11042-016-3705-7 Newman A, Li Y, Hunter J (2008) A scale-out RDF molecule store for improved coidentification, querying and inferencing. In: International 118_CR129 118_CR55 118_CR127 118_CR56 118_CR128 118_CR50 L Moreau (118_CR6) 2006 118_CR52 118_CR1 118_CR2 118_CR57 118_CR58 PP da Silva (118_CR80) 2006; 31 LF Sikos (118_CR3) 2015 118_CR4 118_CR59 A Analyti (118_CR64) 2014; 70 L Liu (118_CR98) 2018 LF Sikos (118_CR5) 2020; 32C 118_CR132 118_CR133 118_CR131 118_CR136 118_CR135 I Dellal (118_CR16) 2019; 61 118_CR66 A Tarski (118_CR72) 1944; 4 118_CR138 118_CR67 118_CR60 B Pérez (118_CR7) 2018 C Gutierrez (118_CR65) 2007; 19 118_CR62 118_CR63 J Hunter (118_CR130) 2007; 7 118_CR68 118_CR69 118_CR140 118_CR141 118_CR142 118_CR75 118_CR76 118_CR78 118_CR71 118_CR73 D McGuinness (118_CR84) 2007 118_CR70 J Hoffart (118_CR48) 2012; 194 118_CR86 118_CR88 118_CR89 118_CR82 L Ding (118_CR118) 2011; 27 118_CR85 L Bunnell (118_CR37) 2019 R Dividino (118_CR45) 2009; 7 118_CR81 E Damiani (118_CR51) 2019; 61 118_CR97 118_CR10 118_CR11 118_CR99 118_CR12 118_CR93 118_CR94 118_CR95 118_CR96 118_CR17 118_CR18 118_CR13 118_CR14 118_CR15 T Berners-Lee (118_CR44) 2008; 8 J Zhao (118_CR30) 2003 P Ciccarese (118_CR87) 2013; 4 LF Sikos (118_CR74) 2017 O Udrea (118_CR47) 2010; 11 118_CR90 118_CR91 118_CR92 D Gerber (118_CR134) 2015; 35 P Gardenfors (118_CR77) 1992; 44 118_CR20 118_CR21 118_CR22 118_CR23 LF Sikos (118_CR126) 2016; 76 J Zhao (118_CR34) 2011; 15 J Zhao (118_CR79) 2008; 10 118_CR29 L Moreau (118_CR83) 2015; 35 118_CR24 118_CR25 M Dezani-Ciancaglini (118_CR112) 2012; 464 118_CR27 B Turnbull (118_CR137) 2015; 13 118_CR100 118_CR103 P Groth (118_CR61) 2010; 30 118_CR104 S Miles (118_CR28) 2007; 5 118_CR101 118_CR102 118_CR31 118_CR107 118_CR32 118_CR108 118_CR33 A Zimmermann (118_CR53) 2012; 11 118_CR105 118_CR106 118_CR109 118_CR39 KM Livingston (118_CR54) 2013; 4 118_CR35 118_CR36 118_CR38 L Moreau (118_CR19) 2010 F Geerts (118_CR125) 2016; 63 118_CR110 118_CR111 118_CR114 118_CR115 118_CR113 118_CR42 118_CR43 118_CR119 118_CR116 118_CR117 118_CR40 118_CR41 118_CR46 118_CR49 L Chen (118_CR26) 2006; 7 118_CR8 118_CR9 A Sorici (118_CR139) 2015; 44 118_CR121 118_CR122 118_CR120 118_CR123 118_CR124 |
| References_xml | – reference: Damásio CV, Analyti A, Antoniou G (2012) Provenance for SPARQL queries. In: Cudré-Mauroux P, Heflin J, Sirin E, Tudorache T, Euzenat J, Hauswirth M, Parreira JX, Hendler J, Schreiber G, Bernstein A, Blomqvist E (eds) The Semantic Web—ISWC 2012. Springer, Heidelberg, pp 625–640. https://doi.org/10.1007/978-3-642-35176-1_39 – reference: McGrath R, Futrelle J (2008) Reasoning about provenance with OWL and SWRL rules. In: AAAI 2008 Spring Symposia, Palo Alto, CA, USA, 26–28 March 2008 – reference: Hartig O, Thompson B (2014) Foundations of an alternative approach to reification in RDF. arXiv:1406.3399 – reference: Zednik S, Fox P, McGuinness DL (2010) System transparency, or how I learned to worry about meaning and love provenance! In: McGuinness DL, Michaelis JR, Moreau L (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 165–173. https://doi.org/10.1007/978-3-642-17819-1_19 – reference: Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D (2018) Automated reasoning over provenance-aware communication network knowledge in support of cyber-situational awareness. In: Liu W, Giunchiglia F, Yang B (eds) Knowledge science, engineering and management. Springer, Cham, pp 132–143. https://doi.org/10.1007/978-3-319-99247-1_12 – reference: McGuinnessDDingLda SilvaPChangCRoth-BerghoferTSchulzSBahlsDLeakeDPML 2: a modular explanation interlinguaExplanation-aware computing2007Menlo ParkAAAI Press4955 – reference: Alper P, Belhajjame K, Goble CA, Karagoz P (2015) LabelFlow: exploiting workflow provenance to surface scientific data provenance. In: Ludäscher B, Plale B (eds) Provenance and annotation of data and processes. Springer, Cham, pp 84–96. https://doi.org/10.1007/978-3-319-16462-5_7 – reference: Wylot M, Cudre-Mauroux P, Groth P (2015) A demonstration of TripleProv: tracking and querying provenance over Web data. VLDB Endowment 8(12):1992–1995 https://doi.org/10.14778/2824032.2824119 – reference: McGlothlin JP, Khan L (2010) Efficient RDF data management including provenance and uncertainty. In: Proceedings of the Fourteenth International Database Engineering and Applications Symposium. ACM, New York, pp 193–198. https://doi.org/10.1145/1866480.1866508 – reference: Pandey M, Pandey R (2014) Analysis of provenance data stack for OWL ontology relevance. In: Singh Y, Sehgal V, Nitin, Ghrera SP (eds) Proceedings of the 2014 International Conference on Parallel, Distributed and Grid Computing. IEEE, Washington, pp 365–369. https://doi.org/10.1109/PDGC.2014.7030772 – reference: Macko P, Seltzer M (2012) A general-purpose provenance library. In: Proceedings of the 4th USENIX Conference on Theory and Practice of Provenance – reference: ZhaoJMilesAKlyneGShottonDLinked Data and provenance in biological data WebsBrief Bioinform200810213915210.1093/bib/bbn044 – reference: Anam S, Kang B, Kim Y, Liu Q (2015) Linked Data provenance: state of the art and challenges. In: 3rd Australasian Web Conference, Sydney, Australia, 27–30 January 2015 – reference: Flouris G, Fundulaki I, Pediaditis P, Theoharis Y, Christophides V (2009) Coloring RDF triples to capture provenance. In: Bernstein A, Karger DR, Heath T, Feigenbaum L, Maynard D, Motta E, Thirunarayan K (eds) The Semantic Web—ISWC 2009. Springer, Heidelberg, pp 196–212. https://doi.org/10.1007/978-3-642-04930-9_13 – reference: Wang X, Wang J (2016) ProvRPQ: an interactive tool for provenance-aware regular path queries on RDF graphs. In: Cheema MA, Zhang W, Chang L (eds) Databases theory and applications. Springer, Cham, pp 480–484. https://doi.org/10.1007/978-3-319-46922-5_44 – reference: da SilvaPPMcGuinnessDLFikesRA proof markup language for Semantic Web servicesInform Syst2006314–538139510.1016/j.is.2005.02.003 – reference: TarskiAThe semantic conception of truth and the foundations of semanticsPhilos Phenomen Res1944433413761052110.2307/2102968 – reference: GerberDEstevesDLehmannJBühmannLUsbeckRNgomoACNSpeckRDeFacto–temporal and multilingual deep fact validationWeb Semant Sci Serv Agents World Wide Web2015358510110.1016/j.websem.2015.08.001 – reference: LivingstonKMBadaMHunterLEVerspoorKRepresenting annotation compositionality and provenance for the Semantic WebJ Biomed Semant201343810.1186/2041-1480-4-38 – reference: Missier P, Sahoo SS, Zhao J, Goble C, Sheth A (2010) Janus: from workflows to semantic provenance and Linked Open Data. In: McGuinness DL, Michaelis JR, Moreau L (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 129–141. https://doi.org/10.1007/978-3-642-17819-1_16 – reference: Beek W, Raad J, Wielemaker J, van Harmelen F (2018) sameAs.cc: the closure of 500M owl:sameAs statements. In: Gangemi A, Navigli R, Vidal ME, Hitzler P, Troncy R, Hollink L, Tordai A, Alam M (eds) The Semantic Web. Springer, Cham, pp 65–80. https://doi.org/10.1007/978-3-319-93417-4_5 – reference: ZimmermannALopesNPolleresAStracciaUA general framework for representing, reasoning and querying with annotated Semantic Web dataWeb Semant Sci Serv Agents World Wide Web201211729510.1016/j.websem.2011.08.006 – reference: Hogan A (2018) Context in graphs. In: Proceedings of the 1st International Workshop on Conceptualized Knowledge Graphs. RWTH Aachen University, Aachen – reference: Berners-Lee T (2005) Notation 3 Logic. https://www.w3.org/DesignIssues/N3Logic. Accessed 29 March 2020 – reference: Philp D, Thomas L, Gilmartin D, Voigt S, (2018) Cyber situational awareness for communication networks. AOC, (2018) Convention. Adelaide, Australia – reference: Narock T, Yoon V, March S (2014) A provenance-based approach to Semantic Web service description and discovery. J Decis Support Syst 64(C):90–99. https://doi.org/10.1016/j.dss.2014.04.007 – reference: Sikos LF (2019) Knowledge representation to support partially automated honeypot analysis based on Wireshark packet capture files. In: Czarnowski I, Howlett RJ, Jain LC (eds) Intelligent decision technologies 2019. Springer, Singapore, pp 345–351. https://doi.org/10.1007/978-981-13-8311-3_30 – reference: Patton EW, Difranzo D, McGuinness DL (2010) SAF: a provenance-tracking framework for interoperable semantic applications. In: McGuinness DL, Michaelis JR, Moreau L (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 73–77. https://doi.org/10.1007/978-3-642-17819-1_9 – reference: Halpin H, Cheney J (2014) Dynamic provenance for SPARQL updates using named graphs. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, New York, pp 287–288. https://doi.org/10.1145/2567948.2577357 – reference: Sahoo SS, Barga RS, Goldstein J, Sheth AP (2008) Provenance algebra and materialized view-based provenance management. Technical Report 76523/tr-2008-170 – reference: Garijo D, Eckert K, Miles S, Trim C, Panzer M (2013) Dublin Core to PROV mapping. https://www.w3.org/TR/prov-dc/. Accessed 29 March 2020 – reference: Garae J, Ko RKL (2017) Visualization and data provenance trends in decision support for cybersecurity. In: Carrascosa IP, Kalutarage HK, Huang Y (eds) Data analytics and decision support for cybersecurity. Springer, Cham, pp 243–270. https://doi.org/10.1007/978-3-319-59439-2_9 – reference: Dezani-CiancagliniMHorneRSassoneVTracing where and who provenance in Linked Data: a calculusTheor Comput Sci2012464113129299251310.1016/j.tcs.2012.06.0201253.68043 – reference: SikosLFRDF-powered semantic video annotation tools with concept mapping to Linked Data for next-generation video indexingMultim Tools Appl20167612144371446010.1007/s11042-016-3705-7 – reference: Myers J, Futrelle J, Gaynor J, Plutchak J, Bajcsy P, Kastner J, Kotwani K, Lee J, Marini L, Kooper R, McGrath R, McLaren T, Rodriguez A, Liu Y (2008) Embedding data within knowledge spaces. arXiv:0902.0744 – reference: Hayes P, Patel-Schneider P (2014a) RDF 1.1 semantics. https://www.w3.org/TR/rdf11-mt/. Accessed 29 March 2020 – reference: HoffartJSuchanekFMBerberichKWeikumGYAGO2: a spatially and temporally enhanced knowledge base from WikipediaArtif Intell20121942861300292310.1016/j.artint.2012.06.0011270.68303 – reference: Sahoo SS, Bodenreider O, Hitzler P, Sheth A, Thirunarayan K (2010) Provenance Context Entity (PaCE): scalable provenance tracking for scientific RDF data. In: Gertz M, Ludäscher B (eds) Scientific and statistical database management. Springer, Heidelberg, pp 461–470. https://doi.org/10.1007/978-3-642-13818-8_32 – reference: Zhao J, Wroe C, Goble C, Stevens R, Quan D, Greenwood M (2004) Using Semantic Web technologies for representing e-science provenance. In: McIlraith SA, Plexousakis D, van Harmelen F (eds) The Semantic Web—ISWC 2004. Springer, Heidelberg, pp 92–106. https://doi.org/10.1007/978-3-540-30475-3_8 – reference: Sikos LF, Choo KKR (eds) (2020) Data science in cybersecurity and cyberthreat intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-38788-4 – reference: Avgoustaki A, Flouris G, Fundulaki I, Plexousakis D (2016) Provenance management for evolving RDF datasets. In: Sack H, Blomqvist E, d’Aquin M, Ghidini C, Ponzetto SP, Lange C (eds) The Semantic Web. Latest advances and new domains. Springer, Cham, pp 575–592. https://doi.org/10.1007/978-3-319-34129-3_35 – reference: Aljalbout S, Buchs D, Falquet G (2019) Introducing contextual reasoning to the Semantic Web with OWLC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{OWL}^{C}$$\end{document}. In: Endres D, Alam M, Şotropa D (eds) Graph-based representation and reasoning. Springer, Cham, pp 13–26. https://doi.org/10.1007/978-3-030-23182-8_2 – reference: Keskisärkkä R, Blomqvist E, Lind L, Hartig O (2019) RSP-QL*: enabling statement-level annotations in RDF streams. In: E (ed) Semantic systems. The power of AI and knowledge graphs. Springer, Cham, pp 140–155. https://doi.org/10.1007/978-3-030-33220-4_11 – reference: Lopes N, Kirrane S, Zimmermann A, Polleres A, Mileo A (2012) A logic programming approach for access control over RDF. In: Dovier A, Costa VS (eds) Technical communications of the 28th International Conference on Logic Programming (ICLP’12). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, pp 381–392. https://doi.org/10.4230/LIPIcs.ICLP.2012.381 – reference: Dimou A, De Nies T, Verborgh R, Mannens E, Van de Walle R (2016) Automated metadata generation for Linked Data generation and publishing workflows. In: Auer S, Berners-Lee T, Bizer C, Heath T (eds) Proceedings of the 9th Workshop on Linked Data on the Web. RWTH Aachen University, Aachen – reference: MoreauLUsage of ‘provenance’: a Tower of Babel–towards a concept map2006Mountain ViewLife Cycle Seminar – reference: Moreau L, Groth P, Herman I, Hawke S (2013) Provenance WG Wiki. https://www.w3.org/2011/prov/wiki/Main_Page. Accessed 29 March 2020 – reference: Moreau L, Clifford B, Freire J, Futrelle J, Gil Y, Groth P, Kwasnikowska N, Miles S, Missier P, Myers J, Plale B, Simmhan Y, Stephan E, den Bussche JV (2011) The Open Provenance Model Core Specification (v1.1). Future Gener Comp Sy 27(6):743–756. https://doi.org/10.1016/j.future.2010.07.005 – reference: Springer, Cham. (2018) AI in cybersecurity. https://doi.org/10.1007/978-3-319-98842-9 – reference: Hayes P, Patel-Schneider P (2014) Simple Interpretations. In: RDF 1.1 semantics. https://www.w3.org/TR/rdf11-mt/#simple-interpretations. Accessed 29 March 2020 – reference: Welty C, Fikes R (2006) A reusable ontology for fluents in OWL. In: Proceedings of the 2006 Conference on Formal Ontology in Information Systems. IOS Press, Amsterdam, pp 226–236 – reference: Wylot M, Cudre-Mauroux P, Groth P (2014) TripleProv: Efficient processing of lineage queries in a native RDF store. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, New York, pp 455–466. https://doi.org/10.1145/2566486.2568014 – reference: Sikos LF, Philp D, Voigt S, Howard C, Stumptner M, Mayer W (2018a) Provenance-aware LOD datasets for detecting network inconsistencies. In: Proceedings of the 1st International Workshop on Conceptualized Knowledge Graphs. RWTH Aachen University, Aachen – reference: Omitola T, Omitola T, Gutteridge C, Millard IC, Glaser H, Gibbins N, Shadbolt N (2011) Tracing the provenance of Linked Data using VoID. In: Akerkar R (ed) Proceedings of the International Conference on Web Intelligence, Mining and Semantics. https://doi.org/10.1145/1988688.1988709 – reference: Da Cruz S, Campos M, Mattoso M (2012) A foundational ontology to support scientific experiments. In: Malucelli A, Bax M (eds) Proceedings of Joint V Seminar on Ontology Research in Brazil and VII International Workshop on Metamodels, Ontologies and Semantic Technologies. RWTH Aachen University, Aachen, pp 144–155 – reference: De Mendonça R, da Cruz S, De La Cerda J, Cavalcanti M, Cordeiro K, Campos M (2013) LOP: capturing and linking open provenance on LOD cycle. In: Proceedings of the Fifth Workshop on Semantic Web Information Management. ACM, New York. https://doi.org/10.1145/2484712.2484715 – reference: Dividino R, Gröner G, Scheglmann S, Thimm M (2012) Ranking RDF with provenance via preference aggregation. In: ten Teije A, Völker J, Handschuh S, Stuckenschmidt H, d’Acquin M, Nikolov A, Aussenac-Gilles N, Hernandez N (eds) Knowledge engineering and knowledge management. Springer, Heidelberg, pp 154–163. https://doi.org/10.1007/978-3-642-33876-2_15 – reference: Sikos LF (2018) Handling uncertainty and vagueness in network knowledge representation for cyberthreat intelligence. In: 2018 IEEE International Conference on Fuzzy Systems. IEEE, Piscataway. https://doi.org/10.1109/FUZZ-IEEE.2018.8491686 – reference: Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D (2018) Representing network knowledge using provenance-aware formalisms for cyber-situational awareness. Procedia Comput Sci 126:29–38. https://doi.org/10.1016/j.procs.2018.07.206 – reference: LiuLÖzsuMEncyclopedia of database systems20182New YorkSpringer10.1007/978-1-4614-8265-9 – reference: Ding L, Finin T, Peng Y, Da Silva P, McGuinness D (2005) Tracking RDF graph provenance using RDF molecules. In: Fourth International Semantic Web Conference, Galway, Ireland, 6–10 November 2015 – reference: Chen L, Jiao Z, Cox SJ (2006) On the use of semantic annotations for supporting provenance in grids. In: Nagel WE, Walter WV, Lehner W (eds) Euro-Par 2006 Parallel Processing. Springer, Heidelberg, pp 371–380. https://doi.org/10.1007/11823285_38 – reference: Carroll JJ, Bizer C, Bizer C, Stickler P (2005) Named graphs, provenance and trust. In: Proceedings of the 14th International Conference on World Wide Web, ACM, New York, pp 613–622. https://doi.org/10.1145/1060745.1060835 – reference: Hayes P, Patel-Schneider P (2014) RDFS interpretations. In: RDF 1.1 semantics. https://www.w3.org/TR/rdf11-mt/#rdfs-interpretations. Accessed 29 March 2020 – reference: Michaelis J, McGuinness D (2010) Towards provenance aware comment tracking for Web applications. In: McGuinness DL, Michaelis JR, Moreau L (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 265–273. https://doi.org/10.1007/978-3-642-17819-1_30 – reference: Erling O (2018) Provenance and reification in Virtuoso. https://www.openlinksw.com/weblog/oerling/?id=1572. Accessed 29 March 2020 – reference: Zhao J, Goble C, Stevens R, Bechhofer S (2004) Semantically linking and browsing provenance logs for e-science. In: Bouzeghoub M, Goble C, Kashyap V, Spaccapietra S (eds) Semantics of a networked world. Springer, Heidelberg, pp 158–176. https://doi.org/10.1007/978-3-540-30145-5_10 – reference: Frey J, Roure DD, Taylor K, Essex J, Mills H, Zaluska E (2006) CombeChem: a case study in provenance and annotation using the Semantic Web. In: Moreau L, Foster I (eds) Provenance and annotation of data. Springer, Heidelberg, pp 270–277. https://doi.org/10.1007/11890850_27 – reference: Berners-LeeTConnollyDKagalLScharfYHendlerJN3Logic: a logical framework for the World Wide WebTheor Pract Log Prog200883249269241660810.1017/S14710684070032131139.68010 – reference: Hurtado C, Vaisman A (2006) Reasoning with temporal constraints in RDF. In: Alferes JJ, Bailey J, May W, Schwertel U (eds) Principles and practice of Semantic Web reasoning. Springer, Heidelberg, pp 164–178. https://doi.org/10.1007/11853107_12 – reference: DamianiEOliboniBQuintarelliETancaLA graph-based meta-model for heterogeneous data managementKnowl Inf Syst201961110713610.1007/s10115-018-1305-8 – reference: Sahoo S, Sheth A (2009) Provenir ontology: towards a framework for eScience provenance management. Microsoft eScience Workshop, Pittsburgh, PA, USA, 15–17 October 2009 – reference: Moreau L (2010) The foundations for provenance on the Web. J Found Trends Web Sci 2(2–3):99–241. https://doi.org/10.1561/1800000010 – reference: ChenLJiaoZSupporting provenance in service-oriented computing using the Semantic Web technologiesIEEE Intell Inform Bull200671411 – reference: McCusker J, McGuinness D (2010) owl:sameAs considered harmful to provenance. In: ISCB Conference on Semantics in Healthcare and Life Sciences, Cambridge, MA, USA, 2010 – reference: GeertsFUngerTKarvounarakisGFudulakiIChristophidesVAlgebraic structures for capturing the provenance of SPARQL queriesJ ACM201663163349022810.1145/28100371426.68079 – reference: Pandey M, Pandey R (2015) Provenance constraints and attributes definition in OWL ontology to support machine learning. In: Guerrero J (ed) Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks. IEEE, Washington, pp 1408–1414. https://doi.org/10.1109/CICN.2015.334 – reference: Mojžiš J, Laclavík M (2013) SRelation: fast RDF graph traversal. In: Klinov P, Mouromtsev D (eds) Knowledge engineering and the Semantic Web. Springer, Heidelberg, pp 69–82. https://doi.org/10.1007/978-3-642-41360-5_6 – reference: Lopes N, Zimmermann A, Hogan A, Lukácsy G, Polleres A, Straccia U, Decker S (2010) RDF needs annotations. In: RDF next steps, Stanford, Palo Alto, CA, USA, June 26–27, 2010 – reference: Pediaditis P, Flouris G, Fundulaki I, Christophides V (2009) On explicit provenance management in RDF/S graphs. First Workshop on the Theory and Practice of Provenance, San Francisco, CA, USA, 23 February 2009 – reference: Wong SC, Miles S, Fang W, Groth P, Moreau L (2005) Provenance-based validation of e-science experiments. In: Gil Y, Motta E, Benjamins VR, Musen MA (eds) The Semantic Web—ISWC 2005. Springer, Heidelberg, pp 801–815. https://doi.org/10.1007/11574620_57 – reference: Watkins ER, Nicole DA (2006) Named graphs as a mechanism for reasoning about provenance. In: Zhou X, Li J, Shen HT, Kitsuregawa M, Zhang Y (eds) Frontiers of WWW Research and Development—APWeb 2006. Springer, Heidelberg, pp 943–948. https://doi.org/10.1007/11610113_99 – reference: Vicknair C, Macias M, Zhao Z, Nan X, Chen Y, Wilkins D (2010) A comparison of a graph database and a relational database: a data provenance perspective. In: Proceedings of the 48th Annual Southeast Regional Conference. ACM, New York. https://doi.org/10.1145/1900008.1900067 – reference: MilesSWongSCFangWGrothPZaunerKPMoreauLProvenance-based validation of e-science experimentsWeb Semant Sci Serv Agents World Wide Web200751283810.1016/j.websem.2006.11.003 – reference: ZhaoJGobleCGreenwoodMWroeCStevensRAshishNGobleCAnnotating, linking and browsing provenance logs for e-scienceSemantic Web technologies for searching and retrieving scientific data2003AachenRWTH Aachen University – reference: Ding L, Bao J, Michaelis JR, Zhao J, McGuinness DL (2010) Reflections on provenance ontology encodings. In: McGuinness DL, Michaelis JR, Moreau L (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 198–205. https://doi.org/10.1007/978-3-642-17819-1_22 – reference: SikosLFDescription logics in multimedia reasoningSpringer, Cham.2017367466710.1007/978-3-319-54066-51373.68013 – reference: Nguyen V, Sheth AP (2017) Logical inferences with contexts of RDF triples. arXiv:1701.05724 – reference: Klarman S (2013) Reasoning with contexts in description logics. Ph.D. thesis, VU University Amsterdam, Amsterdam, Netherlands – reference: DingLMichaelisJMcCuskerJMcGuinnessDLinked Provenance Data: a Semantic Web-based approach to interoperable workflow tracesFuture Gener Comput Syst201127679780510.1016/j.future.2010.10.011 – reference: DellalIJeanSHadjaliAChardinBBaronMQuery answering over uncertain RDF knowledge bases: explain and obviate unsuccessful query resultsKnowl Inf Syst20196131633166510.1007/s10115-019-01332-7 – reference: OpenLink Software (2017) Do you support additional metadata for triples, such as time-stamps, security tags etc? In: Openlink Virtuoso Universal Server Documentation. http://docs.openlinksw.com/virtuoso/virtuosofaq13/. Accessed 29 March 2020 – reference: Di Iorio A, Caron B (2016) PREMIS 3.0 ontology: Improving semantic interoperability of preservation metadata. In: Proceedings of the 13th International Conference on Digital Preservation. Swiss National Library, Bern, pp 32–36 – reference: Eckert K, Garijo D, Panzer M, Percin O (2011) Metadata provenance: Dublin Core on the next level. In: Baker T, Hillmann D, Isaac A (eds) Proceedings of the International Conference on Dublin Core and Metadata Applications, The Hague, The Netherlands, 21–23 September 2011 – reference: Sharma K, Marjit U, Biswas U (2015) Efficient provenance storage for RDF dataset in Semantic Web environment. In: 2015 International Conference on Information Technology. IEEE, New York. https://doi.org/10.1109/ICIT.2015.21 – reference: Noy N, Rector A, Hayes P, Welty C (2006) Defining n-ary relations on the Semantic Web. https://www.w3.org/TR/swbp-n-aryRelations/. Accessed 29 March 2020 – reference: Zhao J, Bizer C, Gil Y, Missier P, Sahoo S (2010) Provenance requirements for the next version of RDF. In: RDF Next Steps, Stanford, Palo Alto, CA, USA, June 26–27, 2010 – reference: Halpin H, Cheney J (2014) Dynamic provenance for SPARQL updates. In: Mika P, Tudorache T, Bernstein A, Welty C, Knoblock C, Vrandečić D, Groth P, Noy N, Janowicz K, Goble C (eds) The Semantic Web—ISWC 2014. Springer, Cham, pp 425–440. https://doi.org/10.1007/978-3-319-11964-9_27 – reference: AnalytiADamásioCVAntoniouGPachoulakisIWhy-provenance information for RDF, rules, and negationAnn Math Artif Intell2014703221277319472110.1007/s10472-013-9396-01357.68210 – reference: SikosLFPacket analysis for network forensics: a comprehensive surveyForensic Sci Int Digit Investig202032C20089210.1016/j.fsidi.2019.200892 – reference: BunnellLOsei-BrysonKMYoonVYRecSys issues ontology: a knowledge classification of issues for recommender systems researchersInform Syst Front201910.1007/s10796-019-09935-9 – reference: Trinh TD, Aryan P, Do BL, Ekaputra F, Kiesling E, Rauber A, Wetz P, Tjoa A (2017) Linked Data processing provenance: towards transparent and reusable Linked Data integration. In: Proceedings of the International Conference on Web Intelligence. ACM, New York, pp 88–96. https://doi.org/10.1145/3106426.3106495 – reference: Wylot M (2015) Efficient, scalable, and provenance-aware management of Linked Data. Ph.D. thesis, University of Fribourg, Fribourg, Switzerland – reference: Brauer PC, Fittkau F, Hasselbring W (2015) The aspect-oriented architecture of the CAPS Framework for capturing, analyzing and archiving provenance data. In: Ludäscher B, Plale B (eds) Provenance and annotation of data and processes. Springer, Cham, pp 223–225. https://doi.org/10.1007/978-3-319-16462-5_19 – reference: Giménez-García JM, Zimmermann A, Maret P (2017) NdFluents: an ontology for annotated statements with inference preservation. In: Blomqvist E, Maynard D, Gangemi A, Hoekstra R, Hitzler P, Hartig O (eds) The Semantic Web. Springer, Cham, pp 638–654. https://doi.org/10.1007/978-3-319-58068-5_39 – reference: Schueler B, Sizov S, Staab S (2008) Querying for meta knowledge. In: Proceedings of the 17th International Conference on World Wide Web. ACM, New York, pp 625–634. https://doi.org/10.1145/1367497.1367582 – reference: Wylot M, Cudré-Mauroux P, Groth P (2015) Adaptive RDF query processing based on provenance. In: Ludäscher B, Plale B (eds) Provenance and annotation of data and processes. Springer, Cham, pp 264–266. https://doi.org/10.1007/978-3-319-16462.-5_29 – reference: Halaschek-Wiener C, Golbeck J, Schain A, Grove M, Parsia B, Hendler J (2006) Annotation and provenance tracking in Semantic Web photo libraries. In: Moreau L, Foster I (eds) Provenance and annotation of data. Springer, Heidelberg, pp 82–89. https://doi.org/10.1007/11890850_10 – reference: Klinov P (2017) How to read Stardog query plans. https://www.stardog.com/blog/how-to-read-stardog-query-plans/. Accessed 29 March 2020 – reference: UdreaOUdreaOSubrahmanianVSAnnotated RDF. ACM Trans Comput Logic201011214110.1145/1656242.1656245 – reference: Suchanek FM, Lajus J, Boschin A, Weikum G (2019) Knowledge representation and rule mining in entity-centric knowledge bases. In: Krötzsch M, Stepanova D (eds) Reasoning Web. Explainable artificial intelligence. Springer, Cham, pp 110–152. https://doi.org/10.1007/978-3-030-31423-1_4 – reference: DividinoRSizovSStaabSSchuelerBQuerying for provenance, trust, uncertainty and other meta knowledge in RDFWeb Semant Sci Serv Agents World Wide Web20097320421910.1016/j.websem.2009.07.004 – reference: Chebotko A, Abraham J, Brazier P, Piazza A, Kashlev A, Lu S (2013) Storing, indexing and querying large provenance data sets as RDF graphs in Apache HBase. In: IEEE Ninth World Congress on Services, IEEE, New York. https://doi.org/10.1109/SERVICES.2013.32 – reference: GutierrezCHurtadoCAVaismanAIntroducing time into RDFIEEE T Knowl Data Eng200719220721810.1109/TKDE.2007.34 – reference: Straccia U, Lopes N, Lukacsy G, Polleres A (2010) A general framework for representing and reasoning with annotated Semantic Web data. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI Press, Menlo Park, pp 1437–1442 – reference: Tappolet J, Bernstein A (2009) Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Aroyo L, Traverso P, Ciravegna F, Cimiano P, Heath T, Hyvönen E, Mizoguchi R, Oren E, Sabou M, Simperl E (eds) The Semantic Web: research and applications. Springer, Heidelberg, pp 308–322. https://doi.org/10.1007/978-3-642-02121-3_25 – reference: PérezBRubioJSáenz-AdánCA systematic review of provenance systemsKnowl Inf Syst201810.1007/s10115-018-1164-3 – reference: Zimmermann A, Giménez-García JM (2017) Integrating context of statements within description logics. arXiv:1709.04970v1 – reference: Philp D, Chan N, Sikos LF (2019) Decision support for network path estimation via automated reasoning. In: Czarnowski I, Howlett RJ, Jain LC (eds) Intelligent decision technologies 2019. Springer, Singapore, pp 335–344. https://doi.org/10.1007/978-981-13-8311-3_29 – reference: Li X, Lebo T, McGuinness DL (2010) Provenance-based strategies to develop trust in Semantic Web applications. Provenance and annotation of data and processes 182–197: https://doi.org/10.1007/978-3-642-17819-1_21 – reference: TurnbullBRandhawaSAutomated event and social network extraction from digital evidence sources with ontological mappingDigit Invest2015139410610.1016/j.diin.2015.04.004 – reference: Chen L, Yang X, Tao F (2006) A Semantic Web service based approach for augmented provenance. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, Los Alamitos, CA, USA, pp 594–600. https://doi.org/10.1109/WI.2006.25 – reference: Philp D, Chan N, Mayer W (2019) Network path estimation in uncertain data via entity resolution. In: Le TD, Ong KL, Zhao Y, Jin WH, Wong S, Liu L, Williams G (eds) Data mining. Springer, Singapore, pp 196–207. https://doi.org/10.1007/978-981-15-1699-3_16 – reference: Freitas A, Legendre A, O’Riain S, Curry E (2010) Prov4J: a Semantic Web framework for generic provenance management. In: Sahoo S, Zhao J, Missier P, Gomez-Perez J (eds) Proceedings of the Second International Workshop on the Role of Semantic Web in Provenance Management. RWTH Aachen University, Aachen – reference: Hartig O, Zhao J (2010) Publishing and consuming provenance metadata on the Web of Linked Data. In: McGuinness DL, Michaelis JR, Moreau L (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 78–90. https://doi.org/10.1007/978-3-642-17819-1_10 – reference: HunterJCheungKProvenance Explorer–a graphical interface for constructing scientific publication packages from provenance trailsInt J Digit Libr200771–29910710.1007/s00799-007-0018-5 – reference: SoriciAPicardGBoissierOZimmermannAFloreaACONSERT: applying Semantic Web technologies to context modeling in ambient intelligenceComput Electr Eng20154428030610.1016/j.compeleceng.2015.03.012 – reference: Sharma B, Keshan N, Agu N, Chari S, Narkar S (2019) Diabetes treatment support ontology. http://tw.rpi.edu/media/latest/DiabetesTreatmentSupport_DraftProjectPaper.pdf. Accessed 29 March 2020 – reference: Fu G, Bolton E, Queralt N, Furlong LI, Nguyen V, Sheth A, Bodenreider O, Dumontier M (2015) Exposing provenance metadata using different RDF models. In: Malone J, Stevens R, Forsberg K, Splendiani A (eds) Proceedings of the 8th International Conference on Semantic Web Applications and Tools for Life Sciences. RWTH Aachen University, Aachen, pp 167–176 – reference: ZhaoJSahooSSMissierPShethAGobleCExtending semantic provenance into the Web of DataIEEE Int Comput2011151404810.1109/MIC.2011.7 – reference: GrothPGibsonAVelteropJThe anatomy of a nanopublicationInform Serv Use2010301–2515610.3233/ISU-2010-0613 – reference: MoreauLFoundations and trends: the foundations for provenance on the Web2010HanoverNow Publishers10.1561/9781601983879 – reference: GardenforsPThe dynamics of belief systems: foundations versus coherence theoriesRev Int Philos19924424460832.90146 – reference: Newman A, Li Y, Hunter J (2008) A scale-out RDF molecule store for improved coidentification, querying and inferencing. In: International Workshop on Scalable Semantic Web Knowledge Base Systems, Beijing, China, 22 April 2008 – reference: Lagoze C, Van de Sompel H, Johnston P, Nelson M, Sanderson R, Warner S (2008) ORE user guide–resource map implementation in RDF/XML. http://www.openarchives.org/ore/1.0/rdfxml. Accessed 29 March 2020 – reference: CiccaresePSoiland-ReyesSBelhajjameKGrayAJGGobleCClarkTPAV ontology: provenance, authoring and versioningJ Biomed Semant201343710.1186/2041-1480-4-37 – reference: Nguyen V, Bodenreider O, Sheth A (2014) Don’t like RDF reification? Making statements about statements using singleton property. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, New York, pp 759–770. https://doi.org/10.1145/2566486.2567973 – reference: Lebo T, P W, Graves A, McGuinness D (2012) Towards unified provenance granularities. In: Groth P, Frew J (eds) Provenance and annotation of data and processes. Springer, Heidelberg, pp 39–51. https://doi.org/10.1007/978-3-642-34222-6_4 – reference: SikosLFMastering structured data on the Semantic WebApress, New York.201510.1007/978-1-4842-1049-9 – reference: Wylot M, Cudre-Mauroux P, Groth P (2015) Executing provenance-enabled queries over web data. In: Proceedings of the 24th International Conference on World Wide Web. Springer, Heidelberg, pp 1275–1285. https://doi.org/10.1145/2736277.2741143 – reference: Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D, (2018) Summarizing network information for cyber-situational awareness via cyber-knowledge integration. AOC 2018 Convention. Adelaide, Australia, 28–30 May 2018 – reference: MoreauLGrothPCheneyJLeboTMilesSThe rationale of PROVWeb Semant Sci Serv Agents World Wide Web201535423525710.1016/j.websem.2015.04.001 – ident: 118_CR78 – ident: 118_CR23 doi: 10.1007/978-3-642-17819-1_21 – ident: 118_CR133 – ident: 118_CR70 – ident: 118_CR110 – volume-title: Foundations and trends: the foundations for provenance on the Web year: 2010 ident: 118_CR19 doi: 10.1561/9781601983879 – ident: 118_CR41 – ident: 118_CR128 doi: 10.1016/j.dss.2014.04.007 – ident: 118_CR101 doi: 10.1145/2566486.2568014 – ident: 118_CR142 – ident: 118_CR49 – ident: 118_CR104 – volume: 32C start-page: 200892 year: 2020 ident: 118_CR5 publication-title: Forensic Sci Int Digit Investig doi: 10.1016/j.fsidi.2019.200892 – volume: 11 start-page: 1 issue: 2 year: 2010 ident: 118_CR47 publication-title: Annotated RDF. ACM Trans Comput Logic doi: 10.1145/1656242.1656245 – volume: 63 start-page: 1 year: 2016 ident: 118_CR125 publication-title: J ACM doi: 10.1145/2810037 – ident: 118_CR15 doi: 10.1109/CICN.2015.334 – ident: 118_CR96 – ident: 118_CR75 – ident: 118_CR113 – ident: 118_CR14 doi: 10.1109/PDGC.2014.7030772 – ident: 118_CR17 – volume: 11 start-page: 72 year: 2012 ident: 118_CR53 publication-title: Web Semant Sci Serv Agents World Wide Web doi: 10.1016/j.websem.2011.08.006 – year: 2015 ident: 118_CR3 publication-title: Apress, New York. doi: 10.1007/978-1-4842-1049-9 – ident: 118_CR107 – volume-title: Encyclopedia of database systems year: 2018 ident: 118_CR98 doi: 10.1007/978-1-4614-8265-9 – ident: 118_CR102 doi: 10.1007/978-3-319-16462.-5_29 – volume: 76 start-page: 14437 issue: 12 year: 2016 ident: 118_CR126 publication-title: Multim Tools Appl doi: 10.1007/s11042-016-3705-7 – ident: 118_CR46 doi: 10.1145/1367497.1367582 – ident: 118_CR11 doi: 10.1007/978-3-319-98842-9 – ident: 118_CR24 doi: 10.1007/11823285_38 – ident: 118_CR57 doi: 10.1145/1060745.1060835 – ident: 118_CR109 doi: 10.1007/978-3-319-93417-4_5 – volume: 5 start-page: 28 issue: 1 year: 2007 ident: 118_CR28 publication-title: Web Semant Sci Serv Agents World Wide Web doi: 10.1016/j.websem.2006.11.003 – ident: 118_CR40 doi: 10.1007/978-3-319-99247-1_12 – ident: 118_CR1 doi: 10.1007/978-3-642-41360-5_6 – ident: 118_CR43 – volume: 464 start-page: 113 year: 2012 ident: 118_CR112 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2012.06.020 – volume: 8 start-page: 249 issue: 3 year: 2008 ident: 118_CR44 publication-title: Theor Pract Log Prog doi: 10.1017/S1471068407003213 – ident: 118_CR138 doi: 10.4230/LIPIcs.ICLP.2012.381 – volume: 4 start-page: 341 issue: 3 year: 1944 ident: 118_CR72 publication-title: Philos Phenomen Res doi: 10.2307/2102968 – ident: 118_CR85 – ident: 118_CR106 – ident: 118_CR140 – volume: 44 start-page: 24 year: 1992 ident: 118_CR77 publication-title: Rev Int Philos – ident: 118_CR122 doi: 10.1145/2567948.2577357 – ident: 118_CR12 doi: 10.1109/FUZZ-IEEE.2018.8491686 – ident: 118_CR116 doi: 10.1109/ICIT.2015.21 – ident: 118_CR63 doi: 10.1016/j.procs.2018.07.206 – ident: 118_CR108 doi: 10.1145/2484712.2484715 – ident: 118_CR132 – ident: 118_CR81 doi: 10.1007/978-3-642-17819-1_22 – volume: 27 start-page: 797 issue: 6 year: 2011 ident: 118_CR118 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2010.10.011 – ident: 118_CR94 – ident: 118_CR8 doi: 10.1145/1866480.1866508 – volume: 15 start-page: 40 issue: 1 year: 2011 ident: 118_CR34 publication-title: IEEE Int Comput doi: 10.1109/MIC.2011.7 – ident: 118_CR88 – ident: 118_CR136 doi: 10.1007/978-981-15-1699-3_16 – ident: 118_CR18 doi: 10.1007/978-3-030-31423-1_4 – ident: 118_CR21 – volume: 35 start-page: 85 year: 2015 ident: 118_CR134 publication-title: Web Semant Sci Serv Agents World Wide Web doi: 10.1016/j.websem.2015.08.001 – ident: 118_CR9 doi: 10.1561/1800000010 – volume: 13 start-page: 94 year: 2015 ident: 118_CR137 publication-title: Digit Invest doi: 10.1016/j.diin.2015.04.004 – volume: 19 start-page: 207 issue: 2 year: 2007 ident: 118_CR65 publication-title: IEEE T Knowl Data Eng doi: 10.1109/TKDE.2007.34 – ident: 118_CR114 – year: 2018 ident: 118_CR7 publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1164-3 – ident: 118_CR135 doi: 10.1007/978-3-319-46922-5_44 – ident: 118_CR82 doi: 10.1007/978-3-642-34222-6_4 – ident: 118_CR59 – volume: 44 start-page: 280 year: 2015 ident: 118_CR139 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2015.03.012 – ident: 118_CR119 doi: 10.14778/2824032.2824119 – ident: 118_CR69 doi: 10.1007/978-3-030-23182-8_2 – ident: 118_CR38 doi: 10.1007/978-3-642-33876-2_15 – volume-title: Semantic Web technologies for searching and retrieving scientific data year: 2003 ident: 118_CR30 – ident: 118_CR66 doi: 10.1007/11853107_12 – ident: 118_CR58 doi: 10.1007/11610113_99 – volume: 194 start-page: 28 year: 2012 ident: 118_CR48 publication-title: Artif Intell doi: 10.1016/j.artint.2012.06.001 – ident: 118_CR22 – ident: 118_CR68 – ident: 118_CR27 – volume: 7 start-page: 204 issue: 3 year: 2009 ident: 118_CR45 publication-title: Web Semant Sci Serv Agents World Wide Web doi: 10.1016/j.websem.2009.07.004 – ident: 118_CR131 doi: 10.1007/978-3-319-16462-5_7 – ident: 118_CR52 doi: 10.1609/aaai.v24i1.7499 – ident: 118_CR39 doi: 10.1007/978-981-13-8311-3_29 – ident: 118_CR4 doi: 10.1007/978-981-13-8311-3_30 – ident: 118_CR71 – ident: 118_CR117 – ident: 118_CR121 doi: 10.1007/978-3-642-35176-1_39 – volume: 70 start-page: 221 issue: 3 year: 2014 ident: 118_CR64 publication-title: Ann Math Artif Intell doi: 10.1007/s10472-013-9396-0 – ident: 118_CR92 – ident: 118_CR86 doi: 10.1007/978-3-642-17819-1_16 – ident: 118_CR13 – year: 2017 ident: 118_CR74 publication-title: Springer, Cham. doi: 10.1007/978-3-319-54066-5 – year: 2019 ident: 118_CR37 publication-title: Inform Syst Front doi: 10.1007/s10796-019-09935-9 – ident: 118_CR10 doi: 10.1007/978-3-319-59439-2_9 – volume: 10 start-page: 139 issue: 2 year: 2008 ident: 118_CR79 publication-title: Brief Bioinform doi: 10.1093/bib/bbn044 – ident: 118_CR31 doi: 10.1007/978-3-540-30145-5_10 – ident: 118_CR141 – ident: 118_CR55 doi: 10.1007/978-3-642-13818-8_32 – volume: 31 start-page: 381 issue: 4–5 year: 2006 ident: 118_CR80 publication-title: Inform Syst doi: 10.1016/j.is.2005.02.003 – volume: 7 start-page: 4 issue: 1 year: 2006 ident: 118_CR26 publication-title: IEEE Intell Inform Bull – volume: 4 start-page: 37 year: 2013 ident: 118_CR87 publication-title: J Biomed Semant doi: 10.1186/2041-1480-4-37 – volume: 30 start-page: 51 issue: 1–2 year: 2010 ident: 118_CR61 publication-title: Inform Serv Use doi: 10.3233/ISU-2010-0613 – ident: 118_CR60 doi: 10.1007/978-3-642-04930-9_13 – ident: 118_CR95 – ident: 118_CR103 doi: 10.1007/978-3-319-16462-5_19 – ident: 118_CR33 doi: 10.1007/978-3-642-17819-1_19 – ident: 118_CR67 doi: 10.1007/978-3-642-02121-3_25 – ident: 118_CR76 – ident: 118_CR50 doi: 10.1007/978-3-030-33220-4_11 – ident: 118_CR89 – ident: 118_CR20 – volume: 61 start-page: 1633 issue: 3 year: 2019 ident: 118_CR16 publication-title: Knowl Inf Syst doi: 10.1007/s10115-019-01332-7 – ident: 118_CR129 doi: 10.1007/978-3-642-17819-1_30 – ident: 118_CR36 doi: 10.1007/11890850_10 – ident: 118_CR56 doi: 10.1145/2566486.2567973 – ident: 118_CR62 – volume: 7 start-page: 99 issue: 1–2 year: 2007 ident: 118_CR130 publication-title: Int J Digit Libr doi: 10.1007/s00799-007-0018-5 – ident: 118_CR124 doi: 10.1007/978-3-319-34129-3_35 – ident: 118_CR91 doi: 10.1016/j.future.2010.07.005 – volume: 35 start-page: 235 issue: 4 year: 2015 ident: 118_CR83 publication-title: Web Semant Sci Serv Agents World Wide Web doi: 10.1016/j.websem.2015.04.001 – ident: 118_CR29 doi: 10.1007/11574620_57 – ident: 118_CR93 doi: 10.1145/1988688.1988709 – ident: 118_CR120 doi: 10.1145/2736277.2741143 – ident: 118_CR115 doi: 10.1145/3106426.3106495 – volume: 4 start-page: 38 year: 2013 ident: 118_CR54 publication-title: J Biomed Semant doi: 10.1186/2041-1480-4-38 – volume-title: Usage of ‘provenance’: a Tower of Babel–towards a concept map year: 2006 ident: 118_CR6 – ident: 118_CR99 doi: 10.1145/1900008.1900067 – ident: 118_CR111 – ident: 118_CR97 doi: 10.1007/978-3-319-58068-5_39 – ident: 118_CR2 doi: 10.1007/978-3-030-38788-4 – ident: 118_CR73 – ident: 118_CR123 doi: 10.1007/978-3-319-11964-9_27 – ident: 118_CR35 doi: 10.1007/11890850_27 – ident: 118_CR32 doi: 10.1007/978-3-540-30475-3_8 – ident: 118_CR42 – ident: 118_CR100 doi: 10.1109/SERVICES.2013.32 – ident: 118_CR25 doi: 10.1109/WI.2006.25 – volume: 61 start-page: 107 issue: 1 year: 2019 ident: 118_CR51 publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1305-8 – start-page: 49 volume-title: Explanation-aware computing year: 2007 ident: 118_CR84 – ident: 118_CR90 doi: 10.1007/978-3-642-17819-1_10 – ident: 118_CR105 – ident: 118_CR127 doi: 10.1007/978-3-642-17819-1_9 |
| SSID | ssj0002118446 ssib044734210 ssib048876940 |
| Score | 2.3884141 |
| SecondaryResourceType | review_article |
| Snippet | Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of... Abstract Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 293 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Annotations Artificial Intelligence Chemistry and Earth Sciences Computer Science Contextual knowledge graph Data Mining and Knowledge Discovery Data models Database Management Graphical representations Knowledge bases (artificial intelligence) Knowledge representation Physics RDF data model RDF provenance RDF reification alternatives Semantics Statistics for Engineering Surveys Systems and Data Security Web applications |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ba9YwFA86ffBFnResTgkiqGhY2qS5-CKfl6kMxtgU9haSNB2D0c72--blr_ckX_rNMdyLr-1JaZJzTc75HYSeSWkltSXEJoq3hNumJmDHW8KsZGCQhFN82WxC7uyogwO9mw_cxpxWOenEpKib3scz8s0InAe2W1D19uQ7iV2j4u1qbqFxFV0rq6qMfL4tyeqMBYIbBUNyrUyqmOPAgprEmCmhnxF6zh4l2P6LyvnCLWkyPlu3_ve3b6Ob2e3EsyWfrKMrobuD1rNgj_hFRp9-eRe1u0MPCjAyA5n9sEPA29OxG95LabO5Wql7g2d4fzGchl-4b_EHO7c4dlY7HrHtGpxgr37G6pSj36H56yOfIkT2eA992_r49f1nkpsxEF_Tak6sVCXjoQqV9dIx5V3NLRdOStF6LySEfWBvmWsEd9KLtg6gHWpvPZcS_DjP7qO1ru_CA4RF8OB4hQi703Dmgqa0oa7UVlvhvG4LVE5bYnxGKo8NM47NCmM5baOBbUw5ecrQAr1ajTlZ4nRcSv0u7vSKMmJspwf9cGiyyEJsxGCuoq5gttw3QeuqVUpQqZ3SogkFehr5xEQUjbSih3YxjubL_p6ZCcakBu9WFuh5Jmp7mAOsx7LqAVYiAm-do9yYOMhkPTKaM_Yp0OuJB89e_3uGDy__2iN0o0pCEJPlNtDafFiEx-i6P50fjcOTJEV_AKumIDo priority: 102 providerName: ProQuest – databaseName: SpringerLINK dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kKvhi7akYrbKIoKILSXazH76d1aoIpbQKfVt2N5tSKIkkd231r3d2s7mzVAV9vNzcHTP57XxcZn6D0DMhjMhNAbWJZA1hpq4IxPGGUCMoBCRuJRuXTYi9PXl0pPbTUNgwdbtPjySjp14NuzFAjyKh3InEZQQK9etVIVXA9c6ac5wxQVm5DmqAUMEnkrjgn6HkkYyNW-c4I_CqStM0v_-ZSxErEvtfdd9XnqPG8LS7-X-K3UG3UzqK5yN-ttA1387Q5rTqAaeTP0M3Y6eoG2ZoK10b8ItEWf3yLmr2-w68ZkAQmZ-b3uPP0391-CD22qYRp_YNnuPDZX_mv-Ouwe_MwuCwju10wKatceTKuggjLSc_fP3Ll3wIvNrDPfR19_2XnY8kbXAgrsrLBTFCFpT50pfGCUulsxUzjFsheOMcF1ArQpCmtubMCsebyoNLqZxxTAhI_hy9jzbarvUPEObeQbbmA1dPzaj1Ks_r3BbKKMOtU02GiukuaZfozcOWjVO9ImaOdtZg59jIJ3WeoVerz3wbyT3-Kv023PyVZCDmjhe6_lincw4FFQVdeVWCtszVXqmykZLnQllAau0z9DRARwfqjWjRY7McBv3p8EDPOaVCQUosMvQ8CTUd6AD2GEclwBKBreuS5PYEQZ2cz6ADxySkuTyXGXo9QW799p81fPhv4o_QrTKiNnTcbaONRb_0j9ENd7Y4Gfon8VD-BItAJ_s priority: 102 providerName: Springer Nature |
| Title | Provenance-Aware Knowledge Representation: A Survey of Data Models and Contextualized Knowledge Graphs |
| URI | https://link.springer.com/article/10.1007/s41019-020-00118-0 https://www.proquest.com/docview/2437644608 https://doaj.org/article/1132ac652b384cde992f886079b896de |
| Volume | 5 |
| WOSCitedRecordID | wos000657155900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734210 issn: 2364-1185 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: K7- dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: M7S dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: C24 dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg8MAL2vgQgVFZCAkQWKSJ4w_eutHBNFFVLUjjybIdZ5o0pShpN-CBv52z43SdJuCFl0htr5V898t9pHe_Q-g555qnegi1iaAVobosCMTxiuSa5xCQmBG0WzbBJxNxfCynG6u-fE9YRw_cKe6t34SuLSsykwtqSydlVgnBUi6NkKx03vtC1rNRTAGSKOU5zS4DG6CUs54ozvtoKHsEpd3mOUYJvCriRE2Yq6MAVEl8ZRU40kh6JWoFcv_rLvzaf6khRB1so7sxt8Sj7kw76Iar76GdePe2-GWkmH51H1XTZgFezlucjC504_BR_2wNz0JvbBxJqt_hEZ6vmnP3Ay8q_F4vNfbr085arOsSB26r734E5fSnKzd-5IPnwW4foC8H48_7H0ncuEBskWZLorkY5tRlDlTOQeHWFFRTZjhnlbWMQ20HQTU3JaOGW1YVDlxAYbWlnEOyZvOHaKte1O4RwsxZyK6c59YpaW6cTNMyNUOppWbGyipBw16jykY6cr8V40ytiZSDFRRYITTeCZUm6PX6O986Mo6_Su95Q60lPZF2eAPgpSK81L_glaBn3szKU2UEjZ7oVduqw_lMjViecwkpLE_QiyhULeAMoI9utAE04dm1rkju9nBR0Vm0ynNCQlrKUpGgNz2ELj_-8wkf_48TPkF3soB03ze3i7aWzco9Rbft-fK0bQbo1t54Mp0N0M39jA7CTQbXI04Gvkt27q-_xiA1Pfw0_foborwiAA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9RAEJ8gmuiLih-hiroxGjXY0Gu3-2FizCkil8ML4TDhbd1ut4SEtNjegfhH-Tc6u9ceEiJvPPjabjed6W9ndrYzvwF4wbnmke5hbCJoEVKdpyH68SJMNE_QIbFM0FmzCT4aib09ub0Av7taGJdW2dlEb6jzyrgz8jVHnIe-m0Xiw9GP0HWNcn9XuxYaM1gM7ekJhmzN-8E6ft-XcbzxeffTZth2FQhNGsWTUHPRS6iNbawNzxJhspRqyjLOWWEM4xi_oONIspzRjBtWpBZhnhptKOe4ITEJznsNrlNn_X2q4Hh-poPBlMBXbGtzfIUeRcjL0MVonm0tjM75P98m4KIzuPBX1ju7jTv_m5ruwu12W036s3WwBAu2vAdLreFqyOuWXfvNfSi26woNvAN72D_RtSXD7liR7Pi04LYaq3xH-mQ8rY_tKakKsq4nmrjOcYcN0WVOPK3XT1d9c_DL5n9N8sVRgDcP4NuVyPsQFsuqtMtAmDW4sbSOViinSWZlFOVR1pNaapYZWQTQ6yCgTMvE7hqCHKo5h7SHjULY-JxDoaIAVufPHM14SC4d_dEhaz7ScYj7C1W9r1qThLFfgrKyNEZpqcmtlHEhBIu4zIRkuQ3gucOlciwhXqP7eto0ajDeUX2WJFzi7p0H8KodVFQoA-pjVtWBmnDEYudGrnSIVa2dbNQZXAN422H-7Pa_JXx0-WzP4Obm7tcttTUYDR_DrdgvQJcYuAKLk3pqn8ANczw5aOqnfgUT-H7Va-EP64t-PQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELfQeIgvGysgMgZYCAkQREtjxw--lY3CNFRVG0j7ZjmOM02akilJx-Ov5-w47aYBEuJj02uru_5yj_judwi94FzzRI-hNhG0jKkushjieBkTzQkEJJYL2i-b4LOZOD6W80tT_L7bfTiS7GcaHEtT1e2cF-XOcvCNApJk7EofT2IWQ9F-051IufJrd8U_TiknNF0FOEArZwNhnPPVUP4ISvsNdIzG8CoLkzW__5kr0cuT_F935dfOVH2omm78v5L30HpIU_Gkx9UmumGrEdoYVkDg4BFG6LbvIDXtCG2Gay1-FaisX99H5bypwZs6ZMWTb7qx-GB4hocPfQ9uGH2q3uEJPlo0F_YHrku8pzuN3Zq2sxbrqsCeQ-u7G3U5_WmLS1_y0fFttw_Q1-mHL7uf4rDZITZZknax5mJMqE1tqg3PiTB5RjVlOeesNIZxqCEheJO8YDTnhpWZBVeTGW0o55AUGvIQrVV1ZR8hzKyBLM46Dp-CktzKJCmSfCy11Cw3sozQePjHlAm05277xplaEjZ7Oyuws2_wEyqJ0JvlZ8570o-_Sr93QFhKOsJuf6FuTlS4_6HQIqAry1LQlprCSpmWQrCEy1xIVtgIPXcwUo6Sw1v0RC_aVu0fHaoJI4RLSJV5hF4GobIGHcAe_QgFWMKxeF2R3B7gqIJTapXjnoT0lyUiQm8H-K3e_rOGW_8m_gzdme9N1ef92cFjdDf1AHZNedtorWsW9gm6ZS6607Z56u_VXyk8M8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Provenance-Aware+Knowledge+Representation%3A+A+Survey+of+Data+Models+and+Contextualized+Knowledge+Graphs&rft.jtitle=Data+Science+and+Engineering&rft.au=Sikos%2C+Leslie+F&rft.au=Philp%2C+Dean&rft.date=2020-09-01&rft.pub=Springer&rft.issn=2364-1185&rft.volume=5&rft.issue=3&rft.spage=293&rft_id=info:doi/10.1007%2Fs41019-020-00118-0&rft.externalDocID=A633790837 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |