Representation Learning in Multi-view Clustering: A Literature Review

Multi-view clustering (MVC) has attracted more and more attention in the recent few years by making full use of complementary and consensus information between multiple views to cluster objects into different partitions. Although there have been two existing works for MVC survey, neither of them joi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data Science and Engineering Ročník 7; číslo 3; s. 225 - 241
Hlavní autoři: Chen, Man-Sheng, Lin, Jia-Qi, Li, Xiang-Long, Liu, Bao-Yu, Wang, Chang-Dong, Huang, Dong, Lai, Jian-Huang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.09.2022
Springer
Springer Nature B.V
Témata:
ISSN:2364-1185, 2364-1541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multi-view clustering (MVC) has attracted more and more attention in the recent few years by making full use of complementary and consensus information between multiple views to cluster objects into different partitions. Although there have been two existing works for MVC survey, neither of them jointly takes the recent popular deep learning-based methods into consideration. Therefore, in this paper, we conduct a comprehensive survey of MVC from the perspective of representation learning. It covers a quantity of multi-view clustering methods including the deep learning-based models, providing a novel taxonomy of the MVC algorithms. Furthermore, the representation learning-based MVC methods can be mainly divided into two categories, i.e., shallow representation learning-based MVC and deep representation learning-based MVC, where the deep learning-based models are capable of handling more complex data structure as well as showing better expression. In the shallow category, according to the means of representation learning, we further split it into two groups, i.e., multi-view graph clustering and multi-view subspace clustering. To be more comprehensive, basic research materials of MVC are provided for readers, containing introductions of the commonly used multi-view datasets with the download link and the open source code library. In the end, some open problems are pointed out for further investigation and development.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2364-1185
2364-1541
DOI:10.1007/s41019-022-00190-8