Multilayer Fisher extreme learning machine for classification
As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the rep...
Saved in:
| Published in: | Complex & intelligent systems Vol. 9; no. 2; pp. 1975 - 1993 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.04.2023
Springer Nature B.V Springer |
| Subjects: | |
| ISSN: | 2199-4536, 2198-6053 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the representation learning of the ELM-AE. However, given label information, the unsupervised learning of the ELM-AE is difficult to build the discriminative feature space for classification tasks. To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM). The FELM-AE introduces the Fisher criterion into the ELM-AE by adding the Fisher regularization term to the objective function, aiming to maximize the between-class distance and minimize the within-class distance of abstract feature. Different from the ELM-AE, the FELM-AE requires class labels to calculate the Fisher regularization loss, so that the learned abstract feature contains sufficient category information to complete classification tasks. The ML-FELM stacks the FELM-AE to extract feature and adopts the extreme leaning machine (ELM) to classify samples. Experiments on benchmark datasets show that the abstract feature extracted by the FELM-AE is more discriminative than the ELM-AE, and the classification results of the ML-FELM are more competitive and robust in comparison with the ELM, one-dimensional convolutional neural network (1D-CNN), ML-ELM, denoising multilayer extreme learning machine (D-ML-ELM), multilayer generalized extreme learning machine (ML-GELM), and hierarchical extreme learning machine with L21‑norm loss and regularization (H-LR21-ELM). |
|---|---|
| AbstractList | As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the representation learning of the ELM-AE. However, given label information, the unsupervised learning of the ELM-AE is difficult to build the discriminative feature space for classification tasks. To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM). The FELM-AE introduces the Fisher criterion into the ELM-AE by adding the Fisher regularization term to the objective function, aiming to maximize the between-class distance and minimize the within-class distance of abstract feature. Different from the ELM-AE, the FELM-AE requires class labels to calculate the Fisher regularization loss, so that the learned abstract feature contains sufficient category information to complete classification tasks. The ML-FELM stacks the FELM-AE to extract feature and adopts the extreme leaning machine (ELM) to classify samples. Experiments on benchmark datasets show that the abstract feature extracted by the FELM-AE is more discriminative than the ELM-AE, and the classification results of the ML-FELM are more competitive and robust in comparison with the ELM, one-dimensional convolutional neural network (1D-CNN), ML-ELM, denoising multilayer extreme learning machine (D-ML-ELM), multilayer generalized extreme learning machine (ML-GELM), and hierarchical extreme learning machine with L21‑norm loss and regularization (H-LR21-ELM). Abstract As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the representation learning of the ELM-AE. However, given label information, the unsupervised learning of the ELM-AE is difficult to build the discriminative feature space for classification tasks. To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM). The FELM-AE introduces the Fisher criterion into the ELM-AE by adding the Fisher regularization term to the objective function, aiming to maximize the between-class distance and minimize the within-class distance of abstract feature. Different from the ELM-AE, the FELM-AE requires class labels to calculate the Fisher regularization loss, so that the learned abstract feature contains sufficient category information to complete classification tasks. The ML-FELM stacks the FELM-AE to extract feature and adopts the extreme leaning machine (ELM) to classify samples. Experiments on benchmark datasets show that the abstract feature extracted by the FELM-AE is more discriminative than the ELM-AE, and the classification results of the ML-FELM are more competitive and robust in comparison with the ELM, one-dimensional convolutional neural network (1D-CNN), ML-ELM, denoising multilayer extreme learning machine (D-ML-ELM), multilayer generalized extreme learning machine (ML-GELM), and hierarchical extreme learning machine with L21‑norm loss and regularization (H-LR21-ELM). |
| Author | Lai, Jie Wang, Jian Lei, Lei Xiang, Qian Wang, Xiaodan |
| Author_xml | – sequence: 1 givenname: Jie surname: Lai fullname: Lai, Jie organization: College of Air and Missile Defense, Air Force Engineering University – sequence: 2 givenname: Xiaodan orcidid: 0000-0003-2785-9539 surname: Wang fullname: Wang, Xiaodan email: afeu_wang@163.com organization: College of Air and Missile Defense, Air Force Engineering University – sequence: 3 givenname: Qian surname: Xiang fullname: Xiang, Qian organization: College of Air and Missile Defense, Air Force Engineering University – sequence: 4 givenname: Jian surname: Wang fullname: Wang, Jian organization: College of Air and Missile Defense, Air Force Engineering University – sequence: 5 givenname: Lei surname: Lei fullname: Lei, Lei organization: College of Information and Navigation, Air Force Engineering University |
| BookMark | eNp9kEtrHDEQhEVwII7jP5DTQM6TtKTR65BDMH6BjS_JWbSl1lrL7MiRZiH-957sJBh88Kmbpr6iuj6yo6lMxNhnDl85gPnWBjCD6UGIHsBq05t37FhwZ3sNSh4ddtcPSuoP7LS1LQBwY6wEccy-3-7HOY_4RLW7yO1hGfRnrrSjbiSsU5423Q7DQ56oS6V2YcTWcsoB51ymT-x9wrHR6b95wn5dnP88u-pv7i6vz37c9EGBmHtUEBOKmIKUeA-oogvCIndDtPdcKcsjcdSATqZAUohotAZtyQlUaeDyhF2vvrHg1j_WvMP65AtmfziUuvFY5xxG8pFDJLfAWtnBWHSobcRkTUAdSNHi9WX1eqzl957a7LdlX6clvhcWhNaSW7eo7KoKtbRWKfmQ58PPc8U8eg7-b_d-7d4v3ftD994sqHiF_g_8JiRXqC3iaUP1JdUb1DPJWZge |
| CitedBy_id | crossref_primary_10_1016_j_asej_2025_103518 crossref_primary_10_1088_1742_6596_2852_1_012001 crossref_primary_10_1016_j_measurement_2025_118900 crossref_primary_10_1051_matecconf_202439900022 |
| Cites_doi | 10.3390/diagnostics11020241 10.1016/j.jmsy.2020.05.005 10.1109/TNNLS.2016.2636834 10.1109/TSMCB.2011.2168604 10.1007/s13042-016-0544-9 10.1177/0144598720903797 10.1007/s11045-016-0437-9 10.1016/j.neucom.2016.12.027 10.1049/iet-gtd.2019.0531 10.1109/JSEN.2020.3019777 10.3390/app10124125 10.1109/ACCESS.2019.2921390 10.1007/s13042-019-00967-w 10.1007/s10489-022-03422-6 10.1016/j.neucom.2017.04.060 10.1109/34.291440 10.1007/s00500-016-2189-8 10.1016/j.sigpro.2020.107915 10.1126/science.1127647 10.1016/j.jclepro.2020.122248 10.1007/s00500-016-2372-y 10.1109/JIOT.2018.2856241 10.1109/TMM.2018.2865834 10.1109/TGRS.2018.2890040 10.1016/j.neucom.2005.12.126 10.1109/TNN.2006.875977 10.1007/s13042-020-01234-z 10.1016/j.asoc.2019.04.019 10.1109/5.726791 10.1016/j.cosrev.2021.100379 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/s40747-022-00867-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 2198-6053 |
| EndPage | 1993 |
| ExternalDocumentID | oai_doaj_org_article_d10de9068658478a9a68daf87ca6ce5e 10_1007_s40747_022_00867_7 |
| GrantInformation_xml | – fundername: The National Natural Science Foundation of China grantid: 61876189; 61273275; 61806219; 61703426 – fundername: The Natural Science Basic Research Program of Shaanxi Province grantid: No.2021JM-226 |
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c502t-a50dfa2dfc33ab0a5d9c28a194d8b15581de1a60a93fce322d766068e92a5f413 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876841700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4536 |
| IngestDate | Tue Oct 14 18:46:24 EDT 2025 Wed Oct 08 14:21:35 EDT 2025 Sat Nov 29 05:48:59 EST 2025 Tue Nov 18 21:14:57 EST 2025 Fri Feb 21 02:43:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deep learning Representation learning Extreme learning machine Autoencoder Fisher criterion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-a50dfa2dfc33ab0a5d9c28a194d8b15581de1a60a93fce322d766068e92a5f413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2785-9539 |
| OpenAccessLink | https://www.proquest.com/docview/2802663189?pq-origsite=%requestingapplication% |
| PQID | 2802663189 |
| PQPubID | 2044308 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d10de9068658478a9a68daf87ca6ce5e proquest_journals_2802663189 crossref_citationtrail_10_1007_s40747_022_00867_7 crossref_primary_10_1007_s40747_022_00867_7 springer_journals_10_1007_s40747_022_00867_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Complex & intelligent systems |
| PublicationTitleAbbrev | Complex Intell. Syst |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | Wong, Vong, Wong, Cao (CR22) 2016; 29 Xu, Deng, Coutinho, Wu, Zhao (CR10) 2018; 21 Zabala-Blanco, Mora, Barrientos (CR5) 2020; 10 Yan, Chu, Zhang, Liu (CR7) 2018; 22 Dong, Wang, Abbas (CR16) 2021; 40 Huang, Zhu, Siew (CR1) 2006; 70 Hull (CR29) 1994; 16 Zhao, Wu, Gao, Niu, Wang (CR20) 2020; 21 LeCun, Buttou, Bengio, Haffner (CR30) 1998; 86 Li, Wang, Lei, Song (CR8) 2018; 7 CR32 He, Sun, Yan, Shen, Nian (CR6) 2017; 28 CR31 Kasun, Zhou, Huang, Vong (CR17) 2013; 28 Krishnan, Kamath (CR34) 2019; 80 Lu, Yan (CR28) 2020; 56 Labed, Labed (CR11) 2019; 13 Luo, Li, Wang, Ban, Wang, Zhao (CR26) 2020; 11 Zhang, Ding, Shi (CR21) 2016; 171 Wang, Chen, Yang, Zhao, Hu (CR13) 2017; 267 Le, Xiao, Mao, Song (CR27) 2019; 57 Chen, Hai-Yue, Wun, Wang, Li (CR12) 2020; 38 Li, Wang, Song, Lei (CR24) 2021; 12 Du, Song, Chen, Shu, Guo (CR33) 2020; 270 Roul, Asthana, Kumar (CR18) 2017; 21 Lai, Wang, Xiang, Li, Song (CR35) 2022 Luo, Yang, Jiang, Ban (CR4) 2018; 9 Huang, Zhou, Ding, Zhang (CR3) 2011; 42 Lahoura, Singh, Aggarwal, Sharma, Damaševičius (CR14) 2021; 11 Chen, Honeine, Hua, Xia (CR25) 2018; 84 Sun, Zhang, Zhang, Hu (CR23) 2017; 230 Khatab, Gazestani, Ghorashi, Ghavami (CR36) 2021; 181 Chen, Li, Luo, Wang, Wang, Zhao (CR19) 2018; 6 Huang, Chen, Siew (CR2) 2006; 17 Guo, Wang, Dang, Liu, Guan (CR9) 2019; 7 Hinton, Salakhutdinov (CR15) 2006; 313 GB Huang (867_CR3) 2011; 42 GB Huang (867_CR1) 2006; 70 X Luo (867_CR4) 2018; 9 M Wang (867_CR13) 2017; 267 V Lahoura (867_CR14) 2021; 11 867_CR32 867_CR31 D Yan (867_CR7) 2018; 22 I Labed (867_CR11) 2019; 13 X Luo (867_CR26) 2020; 11 LLC Kasun (867_CR17) 2013; 28 R Li (867_CR24) 2021; 12 GB Huang (867_CR2) 2006; 17 H Du (867_CR33) 2020; 270 X Xu (867_CR10) 2018; 21 CM Wong (867_CR22) 2016; 29 GS Krishnan (867_CR34) 2019; 80 K Sun (867_CR23) 2017; 230 ZE Khatab (867_CR36) 2021; 181 S Dong (867_CR16) 2021; 40 JJ Hull (867_CR29) 1994; 16 LJ Chen (867_CR25) 2018; 84 N Zhang (867_CR21) 2016; 171 RK Roul (867_CR18) 2017; 21 BT Le (867_CR27) 2019; 57 Y LeCun (867_CR30) 1998; 86 L Guo (867_CR9) 2019; 7 D Zabala-Blanco (867_CR5) 2020; 10 M Chen (867_CR19) 2018; 6 B He (867_CR6) 2017; 28 GE Hinton (867_CR15) 2006; 313 W Lu (867_CR28) 2020; 56 G Zhao (867_CR20) 2020; 21 J Lai (867_CR35) 2022 XD Chen (867_CR12) 2020; 38 R Li (867_CR8) 2018; 7 |
| References_xml | – volume: 11 start-page: 241 issue: 2 year: 2021 ident: CR14 article-title: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine publication-title: Diagnostics doi: 10.3390/diagnostics11020241 – volume: 56 start-page: 241 issue: 1 year: 2020 end-page: 251 ident: CR28 article-title: Deep fisher autoencoder combined with self-organizing map for visual industrial process monitoring publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.05.005 – volume: 29 start-page: 757 issue: 3 year: 2016 end-page: 762 ident: CR22 article-title: Kernel-based multilayer extreme learning machines for representation learning publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2636834 – volume: 42 start-page: 513 issue: 2 year: 2011 end-page: 529 ident: CR3 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2011.2168604 – volume: 9 start-page: 465 issue: 3 year: 2018 end-page: 476 ident: CR4 article-title: Timeliness online regularized extreme learning machine publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0544-9 – volume: 38 start-page: 1194 issue: 4 year: 2020 end-page: 1211 ident: CR12 article-title: Power load forecasting in energy system based on improved extreme learning machine publication-title: Energy Explor Exploit doi: 10.1177/0144598720903797 – volume: 28 start-page: 1051 issue: 3 year: 2017 end-page: 1069 ident: CR6 article-title: A pruning ensemble model of extreme learning machine with L regularizer publication-title: Multidimens Syst Signal Process doi: 10.1007/s11045-016-0437-9 – volume: 230 start-page: 374 issue: 1 year: 2017 end-page: 381 ident: CR23 article-title: Generalized extreme learning machine autoencoder and a new deep neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.027 – volume: 13 start-page: 5058 issue: 22 year: 2019 end-page: 5070 ident: CR11 article-title: Extreme learning machine-based alleviation for overloaded power system publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2019.0531 – volume: 21 start-page: 2324 issue: 2 year: 2020 end-page: 2333 ident: CR20 article-title: Multi-layer extreme learning machine-based keystroke dynamics identification for intelligent keyboard publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3019777 – volume: 10 start-page: 4125 issue: 12 year: 2020 ident: CR5 article-title: Fingerprint classification through standard and weighted extreme learning machines publication-title: Appl Sci doi: 10.3390/app10124125 – volume: 7 start-page: 75798 issue: 1 year: 2019 end-page: 75809 ident: CR9 article-title: Exploration of complementary feature for speech emotion recognition based on kernel extreme learning machine publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921390 – volume: 11 start-page: 197 issue: 1 year: 2020 end-page: 216 ident: CR26 article-title: A robust multilayer extreme learning machine using kernel risk-sensitive loss criterion publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00967-w – volume: 84 start-page: 357 issue: 1 year: 2018 end-page: 370 ident: CR25 article-title: Correntropy-based robust multilayer extreme learning machines publication-title: Pattern Recogn – year: 2022 ident: CR35 article-title: FVAE: a regularized variational autoencoder using the Fisher criterion publication-title: Appl Intell doi: 10.1007/s10489-022-03422-6 – volume: 267 start-page: 69 issue: 1 year: 2017 end-page: 84 ident: CR13 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – volume: 16 start-page: 550 issue: 5 year: 1994 end-page: 554 ident: CR29 article-title: A database for handwritten text recognition research publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.291440 – volume: 21 start-page: 4239 issue: 15 year: 2017 end-page: 4256 ident: CR18 article-title: Study on suitability and importance of multilayer extreme learning machine for classification of text data publication-title: Soft Comput doi: 10.1007/s00500-016-2189-8 – volume: 181 year: 2021 ident: CR36 article-title: A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine publication-title: Signal Process doi: 10.1016/j.sigpro.2020.107915 – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: CR15 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 171 start-page: 1066 issue: 1 year: 2016 end-page: 1074 ident: CR21 article-title: Denoising Laplacian multi-layer extreme learning machine publication-title: Neurocomputing – volume: 270 issue: 1 year: 2020 ident: CR33 article-title: Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122248 – volume: 22 start-page: 677 issue: 2 year: 2018 end-page: 689 ident: CR7 article-title: Information discriminative extreme learning machine publication-title: Soft Comput doi: 10.1007/s00500-016-2372-y – volume: 6 start-page: 1410 issue: 2 year: 2018 end-page: 1418 ident: CR19 article-title: A novel human activity recognition scheme for smart health using multilayer extreme learning machine publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2856241 – volume: 21 start-page: 795 issue: 3 year: 2018 end-page: 808 ident: CR10 article-title: Connecting subspace learning and extreme learning machine in speech emotion recognition publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2018.2865834 – volume: 57 start-page: 4192 issue: 7 year: 2019 end-page: 4201 ident: CR27 article-title: Coal quality exploration technology based on an incremental multilayer extreme learning machine and remote sensing images publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2018.2890040 – ident: CR31 – volume: 70 start-page: 489 issue: 1 year: 2006 end-page: 501 ident: CR1 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 28 start-page: 31 issue: 6 year: 2013 end-page: 34 ident: CR17 article-title: Representational learning with extreme learning machine for big data publication-title: IEEE Intell Syst – volume: 7 start-page: 6575 issue: 1 year: 2018 end-page: 6586 ident: CR8 article-title: L21-norm based loss function and regularization extreme learning machine publication-title: IEEE Access – ident: CR32 – volume: 17 start-page: 879 issue: 4 year: 2006 end-page: 892 ident: CR2 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNN.2006.875977 – volume: 12 start-page: 1297 issue: 5 year: 2021 end-page: 1310 ident: CR24 article-title: Hierarchical extreme learning machine with L21-norm loss and regularization publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01234-z – volume: 80 start-page: 525 issue: 1 year: 2019 end-page: 533 ident: CR34 article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.04.019 – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: CR30 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 40 issue: 1 year: 2021 ident: CR16 article-title: A survey on deep learning and its applications publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100379 – volume: 21 start-page: 4239 issue: 15 year: 2017 ident: 867_CR18 publication-title: Soft Comput doi: 10.1007/s00500-016-2189-8 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 867_CR1 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 7 start-page: 75798 issue: 1 year: 2019 ident: 867_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921390 – volume: 21 start-page: 2324 issue: 2 year: 2020 ident: 867_CR20 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3019777 – volume: 42 start-page: 513 issue: 2 year: 2011 ident: 867_CR3 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2011.2168604 – volume: 270 issue: 1 year: 2020 ident: 867_CR33 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122248 – volume: 84 start-page: 357 issue: 1 year: 2018 ident: 867_CR25 publication-title: Pattern Recogn – volume: 6 start-page: 1410 issue: 2 year: 2018 ident: 867_CR19 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2856241 – volume: 56 start-page: 241 issue: 1 year: 2020 ident: 867_CR28 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.05.005 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 867_CR15 publication-title: Science doi: 10.1126/science.1127647 – volume: 17 start-page: 879 issue: 4 year: 2006 ident: 867_CR2 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNN.2006.875977 – volume: 29 start-page: 757 issue: 3 year: 2016 ident: 867_CR22 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2636834 – volume: 21 start-page: 795 issue: 3 year: 2018 ident: 867_CR10 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2018.2865834 – volume: 230 start-page: 374 issue: 1 year: 2017 ident: 867_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.027 – ident: 867_CR31 – volume: 11 start-page: 197 issue: 1 year: 2020 ident: 867_CR26 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00967-w – volume: 171 start-page: 1066 issue: 1 year: 2016 ident: 867_CR21 publication-title: Neurocomputing – volume: 181 year: 2021 ident: 867_CR36 publication-title: Signal Process doi: 10.1016/j.sigpro.2020.107915 – volume: 10 start-page: 4125 issue: 12 year: 2020 ident: 867_CR5 publication-title: Appl Sci doi: 10.3390/app10124125 – volume: 80 start-page: 525 issue: 1 year: 2019 ident: 867_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.04.019 – volume: 13 start-page: 5058 issue: 22 year: 2019 ident: 867_CR11 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2019.0531 – volume: 12 start-page: 1297 issue: 5 year: 2021 ident: 867_CR24 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01234-z – volume: 16 start-page: 550 issue: 5 year: 1994 ident: 867_CR29 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.291440 – volume: 22 start-page: 677 issue: 2 year: 2018 ident: 867_CR7 publication-title: Soft Comput doi: 10.1007/s00500-016-2372-y – year: 2022 ident: 867_CR35 publication-title: Appl Intell doi: 10.1007/s10489-022-03422-6 – volume: 28 start-page: 31 issue: 6 year: 2013 ident: 867_CR17 publication-title: IEEE Intell Syst – volume: 9 start-page: 465 issue: 3 year: 2018 ident: 867_CR4 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0544-9 – volume: 7 start-page: 6575 issue: 1 year: 2018 ident: 867_CR8 publication-title: IEEE Access – volume: 28 start-page: 1051 issue: 3 year: 2017 ident: 867_CR6 publication-title: Multidimens Syst Signal Process doi: 10.1007/s11045-016-0437-9 – volume: 38 start-page: 1194 issue: 4 year: 2020 ident: 867_CR12 publication-title: Energy Explor Exploit doi: 10.1177/0144598720903797 – volume: 40 issue: 1 year: 2021 ident: 867_CR16 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100379 – volume: 57 start-page: 4192 issue: 7 year: 2019 ident: 867_CR27 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2018.2890040 – volume: 11 start-page: 241 issue: 2 year: 2021 ident: 867_CR14 publication-title: Diagnostics doi: 10.3390/diagnostics11020241 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 867_CR30 publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 267 start-page: 69 issue: 1 year: 2017 ident: 867_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – ident: 867_CR32 |
| SSID | ssj0001778302 ssib044733412 ssib045327741 |
| Score | 2.2360566 |
| Snippet | As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent... Abstract As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1975 |
| SubjectTerms | Algorithms Artificial neural networks Autoencoder Classification Complexity Computational Intelligence Data Structures and Information Theory Deep learning Engineering Extreme learning machine Fisher criterion Machine learning Multilayers Original Article Regularization Representation learning Unsupervised learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ilaCsrABhZJbMf2wACIioWKAaRuluMHQioFtYXfj895tEUCFtbEkZzz-e6zff4-hE69F5YaaXAK97eoMAKLzAlcmABmmecl4TaKTfDhUIxG8mFJ6gtqwip64MpwFzZLrZNwkQEO9ISWuhBWe8GNLoxjDqJvyuXSYip4EqWcELpI3JSRnDcaM3H3hXMgvgLluUxKTOMZZq-9V0eBVh5DoTtAfo75StaK5P4riPTbIWrMTYNttFWDyuSq-pkdtOYmu2jzvmVkne2hy3jTdqwDwk4qufMkhGXYHExq4Yjn5DUWVrok4NjEAKqGMqI4cvvoaXD7eHOHa-kEbFiaz7FmqfU6t94QostUMytNLnQmqRVlgBABpbpMF6mWxBsXJrXlRVjKCCdzzXxIbAeoM3mbuEOUMAmHM8RlToaoWvpSlmERJx3LNdXCiS7KGtMoU_OKg7zFWLWMyNGcKphTRXMq3kVn7TfvFavGr62vweJtS2DEjg-Cn6jaT9RfftJF_Wa8VD1NZyoXYQlahLAmu-i8GcPF65-71PuPLh2hDRCvr-qA-qgzn364Y7RuPucvs-lJdOgvHrHxEg priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6K8lIENLOVhx_bAAIiKhYoBpG6W40eFBAW1hd-Pz03CQyoSjEmcKLlz7j777r4DOPFeWGqkISnWb1FhBBGZE6Q0Acwyz6uC29hsgvf7YjCQd3VR2KTJdm9CktFSt8VuFLneCWafIw7nhC_CEsuExES-q0_OcUp5UdDaacedFs6R5Aq7zGVSEhrjlfvzH_vNQ0Ui_2_o80fANPqh3vr_vmAD1mrcmVzMJsomLLjRFqx-YSMMR7cthetkG85jae6TDpA8mfVHT4Idx93EpO40MUyeYyamSwLwTQzCcMw7iqregYfe9f3VDal7LRDD0nxKNEut17n1pih0lWpmpcmFziS1ogqYI8Bal-ky1bLwxgUrYHkZ1j7CyVwzHzzhLnRGLyO3BwmTGM0pXOZkMMOVr2QVVn3SsVxTLZzoQtbIV5maiBz7YTyplkI5CkoFQakoKMW7cNre8zqj4fh19CWqrR2JFNrxxMt4qOo_UtkstU5ihQxGioWWuhRWe8GNLo1jrguHjdJV_V9PVC7CmrUMdlB24axR8ufl-a-0_7fhB7CCfe1nKUKH0JmO39wRLJv36eNkfBzn-wd7L_Tq priority: 102 providerName: Springer Nature |
| Title | Multilayer Fisher extreme learning machine for classification |
| URI | https://link.springer.com/article/10.1007/s40747-022-00867-7 https://www.proquest.com/docview/2802663189 https://doaj.org/article/d10de9068658478a9a68daf87ca6ce5e |
| Volume | 9 |
| WOSCitedRecordID | wos000876841700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6VxwEObSmgJk2jPXBrLfZhr-1DVRUEag9Eq6qVgIvl9QMh0QSStL-_Hse7EUjl0uu-tLszHn-eGX8fwJH3wlIjDclx_xYVRhBROEFqE8As87ytuI1iE3wyEZeXskkJt0Vqq-xiYgzUdmYwR35cirBaqIMHys_3DwRVo7C6miQ0NmALWRJQuqFh150_Ucqriq6nb8qqkndKMzEHwznSX6H-XCElobGSOex311EklyfY7o7AnxP-aO6KFP-PcOmTUmqcoc5f_e-3vYaXCZtmX1bOtAcv3PQN7F70xK6LffgUN-ze6QDUs5VqehaiO-YYs6Q_cZP9iv2ZLgtwODMIzrEbKTrAAfw8P_tx-pUkBQZiWF4uiWa59bq03lSVbnPNrDSl0IWkVrQBiQSw6wpd51pW3rgQGyyvw4pIOFlq5sP8eAib09nUvYWMSazxVK5wMgTn1reyDWtB6VipqRZODKDo_q0yiZ4cVTLuVE-sHO2hgj1UtIfiA_jQ33O_Iud49uoTNFl_JRJrxwOz-Y1K41TZIrdO4r4ZrB8LLXUtrPaCG10bx9wARp0JVRrtC7W23wA-dk6wPv3vVxo-_7R3sIPq9qtGoRFsLue_3XvYNn-Wt4v5GLZOzibN9zFsnJZ0HJMJ4-j_4Uzz7aK5-gvf0gOx |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwBuxpUAOcAKLxHFi-1AhXlVX7a72UKRyMo7tVEjtbtldQPwpfiMzzmNVJHrrgWviRFbmyzw8jw_geV0rL5x2LKX-LaGcYioLipUOndmillUufSSbkJOJOj7W0w343fXCUFllpxOjovZzR2fkr7nCaKFEBOo3598YsUZRdrWj0GhgcRB-_cSQbbk7-oDyfcH53sej9_usZRVgrkj5itki9bXlvnZ5bqvUFl47riwG815VaF3RgQuZLVOr89oFxLuXJXr5Kmhuixp1Pr73GmwKAvsANqej8fRzh2AhZJ6LtcMgipzLjtsmnvpISQO3iPEu05qJmDvd7vv5BI2zZ1RgT6GGZPKCtYykAhc84b-St9Em7t3-377mHbjVet_J2-Z3uQsbYXYPbo770bXL-7AbW5JPLYYiScMLn6D9olPUpGXYOEnOYgVqSNDhTxyFH1RvFSH-AD5dyf4fwmA2n4VHkBSaslh5yIJG81PVla4w2tWh4FZYFdQQsk6WxrUD2IkH5NT0o6Oj_A3K30T5GzmEl_0z5834kUtXvyOI9CtpdHi8MF-cmFYTGZ-lPmjqDKIMubLalsrbWklnSxeKMISdDjKm1WdLs8bLEF51oFvf_veWti9_2zO4sX80PjSHo8nBY9ji6EE2ZVE7MFgtvocncN39WH1dLp62f1oCX64ajn8AInRdiw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PHrxpsI-0SQ4efC2KunhQ8BbSPBZBV9ld_f1m0m59gIJ4bJuWdjqZ-ZKZ-QZg1zluqBaaxFi_RbnmhCeWk0J7MJs7VmbMhGYTrNPh9_fi5lMVf8h2H4Ukq5oGZGnqDQ9ejDtoCt8o8r4TzERHTM4IG4dJjEihjp988I9TyrKM1g487LowhoRX2HEuEYLQELtc__mxX7xVIPX_gkS_BU-DT2rP__9rFmCuxqPRUaVAizBme0sw-4ml0B9dN9Sug2U4DCW7j8pD9ajqmx55-467jFHdgaIbPYUMTRt5QBxphOeYjxRUYAXu2me3J-ek7sFAdB6nQ6Ly2DiVGqezTJWxyo3QKVeJoIaXHot4uGsTVcRKZE5bbx0MK_yaiFuRqtx5D7kKE73nnl2DKBcY5clsYoU3z6UrRelXg8LmqaKKW96CZCRrqWuCcuyT8SgbauUgKOkFJYOgJGvBXnPPS0XP8evoY_yFzUik1g4nnvtdWc9UaZLYWIGVMxhB5kqoghvlONOq0Da3LdgcKYCs5_tAptyvZQtvH0UL9kc__OPyz6-0_rfhOzB9c9qWVxedyw2YST3gqrKINmFi2H-1WzCl34YPg_52mAbvM10Awg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayer+Fisher+extreme+learning+machine+for+classification&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Lai%2C+Jie&rft.au=Wang%2C+Xiaodan&rft.au=Xiang%2C+Qian&rft.au=Wang%2C+Jian&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=9&rft.issue=2&rft.spage=1975&rft.epage=1993&rft_id=info:doi/10.1007%2Fs40747-022-00867-7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |