A Survey of Personalized News Recommendation

Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data Science and Engineering Jg. 8; H. 4; S. 396 - 416
Hauptverfasser: Meng, Xiangfu, Huo, Hongjin, Zhang, Xiaoyan, Wang, Wanchun, Zhu, Jinxia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Nature Singapore 01.12.2023
Springer
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:2364-1185, 2364-1541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading experience of users. In this paper, we provide a comprehensive overview of personalized news recommendation approaches. Firstly, we introduce personalized news recommendation systems according to different needs and analyze the characteristics. And then, a three-part research framework on personalized news recommendation is put forward. Based on the framework, the knowledge and methods involved in each part are analyzed in detail, including news datasets and processing techniques, prediction models, news ranking and display. On this basis, we focus on news recommendation methods based on different types of graph structure learning, including user–news interaction graph, knowledge graph and social relationship graph. Lastly, the challenges of the current news recommendation are analyzed and the prospect of the future research direction is presented.
AbstractList Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading experience of users. In this paper, we provide a comprehensive overview of personalized news recommendation approaches. Firstly, we introduce personalized news recommendation systems according to different needs and analyze the characteristics. And then, a three-part research framework on personalized news recommendation is put forward. Based on the framework, the knowledge and methods involved in each part are analyzed in detail, including news datasets and processing techniques, prediction models, news ranking and display. On this basis, we focus on news recommendation methods based on different types of graph structure learning, including user–news interaction graph, knowledge graph and social relationship graph. Lastly, the challenges of the current news recommendation are analyzed and the prospect of the future research direction is presented.
Abstract Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading experience of users. In this paper, we provide a comprehensive overview of personalized news recommendation approaches. Firstly, we introduce personalized news recommendation systems according to different needs and analyze the characteristics. And then, a three-part research framework on personalized news recommendation is put forward. Based on the framework, the knowledge and methods involved in each part are analyzed in detail, including news datasets and processing techniques, prediction models, news ranking and display. On this basis, we focus on news recommendation methods based on different types of graph structure learning, including user–news interaction graph, knowledge graph and social relationship graph. Lastly, the challenges of the current news recommendation are analyzed and the prospect of the future research direction is presented.
Audience Academic
Author Wang, Wanchun
Zhu, Jinxia
Zhang, Xiaoyan
Meng, Xiangfu
Huo, Hongjin
Author_xml – sequence: 1
  givenname: Xiangfu
  surname: Meng
  fullname: Meng, Xiangfu
  organization: School of Electronic and Information Engineering, Liaoning Technical University
– sequence: 2
  givenname: Hongjin
  surname: Huo
  fullname: Huo, Hongjin
  email: hhj991009@163.com
  organization: School of Electronic and Information Engineering, Liaoning Technical University
– sequence: 3
  givenname: Xiaoyan
  surname: Zhang
  fullname: Zhang, Xiaoyan
  organization: School of Electronic and Information Engineering, Liaoning Technical University
– sequence: 4
  givenname: Wanchun
  surname: Wang
  fullname: Wang, Wanchun
  organization: School of Electronic and Information Engineering, Liaoning Technical University
– sequence: 5
  givenname: Jinxia
  surname: Zhu
  fullname: Zhu, Jinxia
  organization: School of Electronic and Information Engineering, Liaoning Technical University
BookMark eNp9kU1vEzEQhi1UJErpH-C0Eicktvjb3mNU8RGpAtTC2ZrMzkaOknWxN4X219dkqVA5VD7YHj3vO5p5X7KjMY3E2GvBzwTn7n3Rgouu5VK1nEvpW_OMHUtldSuMFkcPb-HNC3ZayoZXqv60tsfs3aK52ucbum3S0HyjXNII23hHffOFfpXmkjDtdjT2MMU0vmLPB9gWOv17n7AfHz98P__cXnz9tDxfXLRouJxa0FY4jRa0Q2vIoJUdJ6WF64XzHHQvtVkhGCUlGJJaDVwTckTuSclenbDl7Nsn2ITrHHeQb0OCGA6FlNcB8hRxS6FD8Nob6RBBdwY6bleHLs6Rw5WvXm9mr-ucfu6pTGGT9rkOWYL0HVfGdN5V6mym1lBN4zikKQPW09MuYl33EGt94azXzllpq-DtI0FlJvo9rWFfSlheXT5m_cxiTqVkGgLG6bDQ2iRug-DhT45hzjHUHMMhx2CqVP4nfdjGkyI1i0qFxzXlfyM_oboHNXStQg
CitedBy_id crossref_primary_10_1145_3713072
crossref_primary_10_1145_3639306
crossref_primary_10_1016_j_engappai_2025_110102
crossref_primary_10_1057_s41599_023_02516_x
crossref_primary_10_1007_s41019_024_00272_9
crossref_primary_10_1109_ACCESS_2024_3403676
crossref_primary_10_1016_j_patcog_2025_111461
crossref_primary_10_1038_s41598_025_94268_8
crossref_primary_10_1145_3736588
crossref_primary_10_1007_s44443_025_00087_2
Cites_doi 10.1145/3511708
10.1109/ACCESS.2019.2944927
10.1007/s10707-014-0223-5
10.1038/nature14539
10.1111/coin.12012
10.1016/j.future.2021.06.007
10.1007/978-3-319-25159-2_44
10.1016/j.neucom.2021.10.049
10.1016/j.ipm.2019.102142
10.1145/3530257
10.3390/info13030128
10.1016/j.neucom.2022.04.073
10.1007/s10489-021-02497-x
10.1145/3404835.3463069
10.1007/978-3-031-21743-2_52
10.1145/3106426.3109436
10.1145/3565291.3565321
10.1145/3240323.3240344
10.18653/v1/2022.findings-acl.209
10.1145/3178876.3186175
10.1145/988672.988738
10.1109/ICBDA55095.2022.9760340
10.1109/SMC.2017.8122727
10.1109/SCC53864.2021.00029
10.1109/ICSCEE.2018.8538403
10.24963/ijcai.2021/462
10.18653/v1/2022.findings-emnlp.491
10.1109/CISP-BMEI.2016.7852838
10.1145/3477495.3531862
10.1145/3292500.3330665
10.1109/ACCESS.2019.2954957
10.1145/3485447.3512082
10.1145/3477495.3531896
10.1109/ICIBA50161.2020.9276847
10.18653/v1/2022.findings-acl.274
10.1145/3448734.3450933
10.1145/3097983.3098108
10.18653/v1/2022.findings-acl.29
10.1145/2792838.2800186
10.18653/v1/2020.acl-main.392
10.1145/3404835.3463232
10.1145/3474085.3475514
10.24963/ijcai.2021/224
10.18653/v1/2021.findings-emnlp.124
10.18653/v1/P19-1033
10.1145/3477495.3531790
10.18653/v1/D19-1671
10.18653/v1/2022.findings-naacl.178
10.1145/3270323.3270328
10.24963/ijcai.2020/482
10.1145/1719970.1719976
10.1145/3511808.3557284
10.1609/icwsm.v4i1.14021
10.1145/3562007.3562030
10.1145/1772690.1772758
10.1609/aaai.v35i5.16573
10.1109/IJCNN52387.2021.9533818
10.1007/978-3-030-85928-2_29
10.18653/v1/2020.acl-main.331
10.1145/3539597.3570447
10.18653/v1/2021.emnlp-main.223
10.1109/ICASSP43922.2022.9747149
10.1145/3459637.3482462
10.24963/ijcai.2019/536
10.1007/978-3-030-73200-4_7
10.1007/978-3-319-55753-3_32
10.1145/3366423.3380050
10.18653/v1/2022.findings-emnlp.213
10.1145/3340531.3411932
10.1609/aaai.v33i01.33015973
10.1145/3178876.3185994
10.18653/v1/2021.acl-long.424
10.1007/s42486-020-00044-0
10.1145/3477495.3532040
10.1145/2516641.2516643
10.1145/3485447.3512263
10.1145/3383313.3418477
10.1109/CCIS57298.2022.10016419
10.18653/v1/D19-1493
10.1145/3404835.3463234
10.1145/3573834.3574478
10.1109/ICCC51575.2020.9345260
10.1145/3404835.3462912
10.24963/ijcai.2020/418
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7SC
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1007/s41019-023-00228-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 416
ExternalDocumentID oai_doaj_org_article_9ca848527cca495a906bd178077e7cb8
A768477626
10_1007_s41019_023_00228_5
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: No. 61772249
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
ABJCF
AFFHD
ARAPS
BGLVJ
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ADMLS
ARCSS
7SC
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c502t-a46174c6a47c65e5c6290e3417d1780a4d245bca5322a5e243f04ec0cc08e32d3
IEDL.DBID M7S
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001056996300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2364-1185
IngestDate Fri Oct 03 12:46:15 EDT 2025
Wed Oct 08 14:21:58 EDT 2025
Wed Feb 12 07:37:02 EST 2025
Fri Feb 14 04:20:46 EST 2025
Sat Nov 29 06:46:06 EST 2025
Tue Nov 18 21:43:05 EST 2025
Fri Feb 21 02:42:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Graph structure learning
Personalized news recommendation
Prediction models
News ranking and display
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-a46174c6a47c65e5c6290e3417d1780a4d245bca5322a5e243f04ec0cc08e32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2890355987?pq-origsite=%requestingapplication%
PQID 2890355987
PQPubID 4402891
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_9ca848527cca495a906bd178077e7cb8
proquest_journals_2890355987
gale_infotracacademiconefile_A768477626
gale_incontextgauss_ISR_A768477626
crossref_citationtrail_10_1007_s41019_023_00228_5
crossref_primary_10_1007_s41019_023_00228_5
springer_journals_10_1007_s41019_023_00228_5
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Berlin
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationYear 2023
Publisher Springer Nature Singapore
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References CR38
CR36
CR35
CR34
CR33
CR32
CR30
Ma, Na, Wang, Chen, Xu (CR31) 2022; 52
CR49
CR48
CR46
CR45
CR44
Yuan, Chen, Li, Wei (CR43) 2019; 42
Qiu, Hu, Wu (CR77) 2022; 16
Huang, Jiang, Lv, Liu, Li (CR3) 2018; 41
Wang, Li, Sun, Fang (CR6) 2020; 14
Stitini, Kaloun, Bencharef (CR93) 2022; 13
Wu, Wu, Huang, Xie (CR1) 2023; 41
CR59
CR57
CR56
CR55
CR54
CR53
CR52
CR51
CR50
Tian, Ding, Miao, Sun (CR5) 2021; 15
Zhu, Cheng, Luo, Yang, Luo, Qian, Zhou (CR80) 2022; 494
Meng, Chen, Zhang (CR7) 2016; 39
CR68
CR67
CR66
Wang, Wen, Luo, Zhou, Ren (CR42) 2015
CR65
CR64
CR63
Blei, Ng, Jordan (CR39) 2001; 3
CR62
CR61
Kaleli, Polat (CR41) 2015; 31
CR60
Liu, Song, Li, Zhu, Deng (CR40) 2021; 1881
CR79
CR78
CR76
CR75
CR74
CR73
CR72
CR71
CR70
Hu, Li, Shi, Yang, Shao (CR69) 2020; 57
CR8
Li, Wang (CR2) 2019; 7
CR89
CR88
CR87
CR86
CR85
CR84
CR83
CR82
CR81
Huang, Han, Xu, Liu (CR58) 2022; 469
CR19
CR18
CR17
CR16
CR15
CR14
CR13
CR12
CR99
CR10
CR98
CR97
CR96
CR95
CR94
CR92
CR91
CR90
Lecun, Bengio, Hinton (CR47) 2015; 521
Xu, Chow, Yiu, Li, Poon (CR11) 2014; 19
Ji, Wu, Yang, Íñigo (CR37) 2021; 125
CR29
CR28
CR27
CR26
CR25
CR24
CR23
CR22
CR21
Yuan, Chen (CR9) 2018; 45
CR20
CR102
CR100
CR101
Yu, Du, Yue, Xiang, Xu, Leng (CR4) 2021; 48
228_CR28
228_CR29
L Yu (228_CR4) 2021; 48
228_CR24
228_CR25
228_CR26
228_CR27
228_CR20
228_CR21
228_CR22
228_CR23
C Wu (228_CR1) 2023; 41
M Ma (228_CR31) 2022; 52
228_CR35
W Xu (228_CR11) 2014; 19
228_CR36
L Hu (228_CR69) 2020; 57
228_CR38
228_CR32
228_CR33
228_CR34
228_CR30
Y Lecun (228_CR47) 2015; 521
J Huang (228_CR58) 2022; 469
Z Qiu (228_CR77) 2022; 16
228_CR86
228_CR87
228_CR88
228_CR89
DM Blei (228_CR39) 2001; 3
228_CR82
228_CR83
228_CR84
228_CR85
228_CR81
228_CR17
228_CR18
228_CR19
228_CR13
228_CR14
J Liu (228_CR40) 2021; 1881
228_CR15
228_CR16
228_CR97
228_CR8
228_CR10
228_CR98
RJ Yuan (228_CR43) 2019; 42
228_CR99
228_CR12
Z Ji (228_CR37) 2021; 125
228_CR94
228_CR95
228_CR96
228_CR90
228_CR91
228_CR92
X Meng (228_CR7) 2016; 39
L Huang (228_CR3) 2018; 41
S Wang (228_CR6) 2020; 14
228_CR68
228_CR64
228_CR65
228_CR66
228_CR67
228_CR60
228_CR61
228_CR62
228_CR63
M Li (228_CR2) 2019; 7
O Stitini (228_CR93) 2022; 13
228_CR79
228_CR75
228_CR76
228_CR78
228_CR71
228_CR72
228_CR73
228_CR74
R Yuan (228_CR9) 2018; 45
228_CR70
228_CR102
228_CR101
228_CR100
P Zhu (228_CR80) 2022; 494
228_CR46
228_CR48
228_CR49
228_CR44
228_CR45
X Tian (228_CR5) 2021; 15
228_CR57
C Kaleli (228_CR41) 2015; 31
228_CR59
228_CR53
228_CR54
228_CR55
228_CR56
228_CR50
228_CR51
228_CR52
X Wang (228_CR42) 2015
References_xml – ident: CR45
– ident: CR22
– ident: CR97
– ident: CR68
– ident: CR74
– ident: CR16
– ident: CR51
– ident: CR54
– ident: CR8
– ident: CR25
– ident: CR101
– ident: CR71
– ident: CR19
– volume: 16
  start-page: 1
  issue: 5
  year: 2022
  end-page: 17
  ident: CR77
  article-title: Graph neural news recommendation with user existing and potential interest modeling
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/3511708
– ident: CR92
– ident: CR88
– ident: CR57
– ident: CR60
– ident: CR36
– ident: CR85
– volume: 7
  start-page: 145861
  year: 2019
  end-page: 145879
  ident: CR2
  article-title: A survey on personalized news recommendation technology
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944927
– volume: 39
  start-page: 685
  issue: 4
  year: 2016
  end-page: 703
  ident: CR7
  article-title: A survey of mobile news recommend techniques and applications
  publication-title: Chin J Comput
– ident: CR100
– volume: 19
  start-page: 633
  issue: 3
  year: 2014
  end-page: 669
  ident: CR11
  article-title: Mobifeed: a location-aware news feed framework for moving users
  publication-title: GeoInformatica
  doi: 10.1007/s10707-014-0223-5
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR47
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR18
– ident: CR66
– ident: CR91
– ident: CR72
– volume: 3
  start-page: 993
  year: 2001
  end-page: 1022
  ident: CR39
  article-title: Latent Dirichlet allocation
  publication-title: J Mach Learn Res
– volume: 31
  start-page: 47
  year: 2015
  end-page: 68
  ident: CR41
  article-title: Privacy-preserving naïve bayesian classifier-based recommendations on distributed data
  publication-title: Comput Intell
  doi: 10.1111/coin.12012
– ident: CR89
– ident: CR30
– volume: 125
  start-page: 324
  year: 2021
  end-page: 333
  ident: CR37
  article-title: Temporal sensitive heterogeneous graph neural network for news recommendation
  publication-title: Future Gen Comput Syst
  doi: 10.1016/j.future.2021.06.007
– ident: CR10
– ident: CR33
– year: 2015
  ident: CR42
  publication-title: Personalized recommendation system based on support vector machine and particle swarm optimization
  doi: 10.1007/978-3-319-25159-2_44
– ident: CR86
– ident: CR63
– ident: CR27
– ident: CR94
– ident: CR44
– volume: 469
  start-page: 119
  year: 2022
  end-page: 129
  ident: CR58
  article-title: Adapted transformer network for news recommendation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.049
– ident: CR38
– ident: CR52
– ident: CR13
– ident: CR55
– ident: CR83
– ident: CR24
– ident: CR70
– volume: 57
  issue: 2
  year: 2020
  ident: CR69
  article-title: Graph neural news recommendation with long-term and short-term interest modeling
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2019.102142
– ident: CR102
– ident: CR49
– ident: CR87
– ident: CR12
– ident: CR35
– ident: CR29
– ident: CR61
– ident: CR84
– volume: 41
  start-page: 1619
  issue: 7
  year: 2018
  end-page: 1647
  ident: CR3
  article-title: Survey on deep learning based recommender systems
  publication-title: Chin J Comput
– ident: CR21
– ident: CR46
– ident: CR96
– ident: CR67
– ident: CR75
– ident: CR15
– ident: CR50
– volume: 14
  start-page: 18
  issue: 1
  year: 2020
  end-page: 29
  ident: CR6
  article-title: Survey of research on personalized news recommendation techniques
  publication-title: J Front Comput Sci Technol
– ident: CR32
– ident: CR78
– ident: CR81
– ident: CR64
– ident: CR26
– ident: CR99
– volume: 48
  start-page: 1
  issue: 10
  year: 2021
  end-page: 18
  ident: CR4
  article-title: Survey of reinforcement learning based recommender systems
  publication-title: Comput Sci
– ident: CR95
– volume: 41
  start-page: 1
  issue: 1
  year: 2023
  end-page: 50
  ident: CR1
  article-title: Personalized news recommendation: methods and challenges
  publication-title: ACM Transa Inf Syst
  doi: 10.1145/3530257
– ident: CR14
– ident: CR53
– ident: CR82
– ident: CR79
– volume: 15
  start-page: 971
  issue: 6
  year: 2021
  end-page: 998
  ident: CR5
  article-title: Survey on deep learning based news recommendation algorithm
  publication-title: J Front Comput Sci Technol
– volume: 1881
  issue: 3
  year: 2021
  ident: CR40
  article-title: A hybrid news recommendation algorithm based on k-means clustering and collaborative filtering
  publication-title: J Phys: Conf Ser
– ident: CR56
– volume: 45
  start-page: 6
  issue: B11
  year: 2018
  ident: CR9
  article-title: Research on news recommendation methods considering geographical location of news
  publication-title: Comput Sci
– ident: CR98
– ident: CR23
– volume: 13
  start-page: 128
  issue: 3
  year: 2022
  ident: CR93
  article-title: Towards the detection of fake news on social networks contributing to the improvement of trust and transparency in recommendation systems: trends and challenges
  publication-title: Information
  doi: 10.3390/info13030128
– ident: CR48
– ident: CR73
– ident: CR65
– ident: CR90
– volume: 42
  start-page: 114
  issue: 1
  year: 2019
  end-page: 119
  ident: CR43
  article-title: A news recommendation method based on VSM and bisecting k-means clustering
  publication-title: J Beijing Univ Posts Telecommun
– ident: CR17
– ident: CR34
– volume: 494
  start-page: 33
  year: 2022
  end-page: 42
  ident: CR80
  article-title: Si-news: integrating social information for news recommendation with attention-based graph convolutional network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.073
– volume: 52
  start-page: 1913
  issue: 2
  year: 2022
  end-page: 1929
  ident: CR31
  article-title: The graph-based behavior-aware recommendation for interactive news
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02497-x
– ident: CR59
– ident: CR76
– ident: CR28
– ident: CR62
– ident: CR20
– ident: 228_CR55
  doi: 10.1145/3404835.3463069
– volume: 469
  start-page: 119
  year: 2022
  ident: 228_CR58
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.049
– ident: 228_CR98
  doi: 10.1007/978-3-031-21743-2_52
– ident: 228_CR25
  doi: 10.1145/3106426.3109436
– ident: 228_CR36
  doi: 10.1145/3565291.3565321
– ident: 228_CR85
  doi: 10.1145/3240323.3240344
– ident: 228_CR59
  doi: 10.18653/v1/2022.findings-acl.209
– ident: 228_CR72
  doi: 10.1145/3178876.3186175
– ident: 228_CR88
  doi: 10.1145/988672.988738
– ident: 228_CR82
  doi: 10.1109/ICBDA55095.2022.9760340
– ident: 228_CR30
  doi: 10.1109/SMC.2017.8122727
– ident: 228_CR75
  doi: 10.1109/SCC53864.2021.00029
– ident: 228_CR13
  doi: 10.1109/ICSCEE.2018.8538403
– volume: 521
  start-page: 436
  year: 2015
  ident: 228_CR47
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 228_CR57
  doi: 10.24963/ijcai.2021/462
– ident: 228_CR71
  doi: 10.18653/v1/2022.findings-emnlp.491
– ident: 228_CR44
  doi: 10.1109/CISP-BMEI.2016.7852838
– ident: 228_CR83
  doi: 10.1145/3477495.3531862
– ident: 228_CR51
  doi: 10.1145/3292500.3330665
– ident: 228_CR15
  doi: 10.1109/ACCESS.2019.2954957
– ident: 228_CR62
  doi: 10.1145/3485447.3512082
– ident: 228_CR18
  doi: 10.1145/3477495.3531896
– ident: 228_CR79
  doi: 10.1109/ICIBA50161.2020.9276847
– ident: 228_CR52
  doi: 10.18653/v1/2022.findings-acl.274
– volume: 494
  start-page: 33
  year: 2022
  ident: 228_CR80
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.073
– ident: 228_CR49
– volume: 7
  start-page: 145861
  year: 2019
  ident: 228_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944927
– ident: 228_CR22
  doi: 10.1145/3448734.3450933
– ident: 228_CR48
  doi: 10.1145/3097983.3098108
– ident: 228_CR96
  doi: 10.18653/v1/2022.findings-acl.29
– ident: 228_CR12
– ident: 228_CR46
  doi: 10.1145/2792838.2800186
– ident: 228_CR68
  doi: 10.18653/v1/2020.acl-main.392
– ident: 228_CR33
  doi: 10.1145/3404835.3463232
– ident: 228_CR54
– ident: 228_CR19
  doi: 10.1145/3474085.3475514
– ident: 228_CR70
  doi: 10.24963/ijcai.2021/224
– ident: 228_CR90
  doi: 10.18653/v1/2021.findings-emnlp.124
– volume: 3
  start-page: 993
  year: 2001
  ident: 228_CR39
  publication-title: J Mach Learn Res
– ident: 228_CR21
– ident: 228_CR94
– volume: 15
  start-page: 971
  issue: 6
  year: 2021
  ident: 228_CR5
  publication-title: J Front Comput Sci Technol
– ident: 228_CR35
  doi: 10.18653/v1/P19-1033
– ident: 228_CR66
  doi: 10.1145/3477495.3531790
– ident: 228_CR50
  doi: 10.18653/v1/D19-1671
– ident: 228_CR65
  doi: 10.18653/v1/2022.findings-naacl.178
– ident: 228_CR28
  doi: 10.1145/3270323.3270328
– ident: 228_CR8
  doi: 10.24963/ijcai.2020/482
– ident: 228_CR99
– ident: 228_CR45
  doi: 10.1145/1719970.1719976
– ident: 228_CR101
  doi: 10.1145/3511808.3557284
– ident: 228_CR26
  doi: 10.1609/icwsm.v4i1.14021
– ident: 228_CR76
  doi: 10.1145/3562007.3562030
– ident: 228_CR84
  doi: 10.1145/1772690.1772758
– volume-title: Personalized recommendation system based on support vector machine and particle swarm optimization
  year: 2015
  ident: 228_CR42
  doi: 10.1007/978-3-319-25159-2_44
– volume: 41
  start-page: 1
  issue: 1
  year: 2023
  ident: 228_CR1
  publication-title: ACM Transa Inf Syst
  doi: 10.1145/3530257
– ident: 228_CR20
– volume: 52
  start-page: 1913
  issue: 2
  year: 2022
  ident: 228_CR31
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02497-x
– volume: 16
  start-page: 1
  issue: 5
  year: 2022
  ident: 228_CR77
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/3511708
– ident: 228_CR89
  doi: 10.1609/aaai.v35i5.16573
– ident: 228_CR87
  doi: 10.1109/IJCNN52387.2021.9533818
– ident: 228_CR73
  doi: 10.1007/978-3-030-85928-2_29
– ident: 228_CR29
  doi: 10.18653/v1/2020.acl-main.331
– ident: 228_CR100
  doi: 10.1145/3539597.3570447
– ident: 228_CR91
  doi: 10.18653/v1/2021.emnlp-main.223
– volume: 31
  start-page: 47
  year: 2015
  ident: 228_CR41
  publication-title: Comput Intell
  doi: 10.1111/coin.12012
– ident: 228_CR97
  doi: 10.1109/ICASSP43922.2022.9747149
– ident: 228_CR23
  doi: 10.1145/3459637.3482462
– ident: 228_CR32
  doi: 10.24963/ijcai.2019/536
– volume: 45
  start-page: 6
  issue: B11
  year: 2018
  ident: 228_CR9
  publication-title: Comput Sci
– volume: 57
  issue: 2
  year: 2020
  ident: 228_CR69
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2019.102142
– ident: 228_CR60
  doi: 10.1007/978-3-030-73200-4_7
– ident: 228_CR10
  doi: 10.1007/978-3-319-55753-3_32
– volume: 13
  start-page: 128
  issue: 3
  year: 2022
  ident: 228_CR93
  publication-title: Information
  doi: 10.3390/info13030128
– volume: 19
  start-page: 633
  issue: 3
  year: 2014
  ident: 228_CR11
  publication-title: GeoInformatica
  doi: 10.1007/s10707-014-0223-5
– ident: 228_CR67
  doi: 10.1145/3366423.3380050
– ident: 228_CR95
  doi: 10.18653/v1/2022.findings-emnlp.213
– ident: 228_CR74
  doi: 10.1145/3340531.3411932
– volume: 125
  start-page: 324
  year: 2021
  ident: 228_CR37
  publication-title: Future Gen Comput Syst
  doi: 10.1016/j.future.2021.06.007
– volume: 14
  start-page: 18
  issue: 1
  year: 2020
  ident: 228_CR6
  publication-title: J Front Comput Sci Technol
– ident: 228_CR34
  doi: 10.1609/aaai.v33i01.33015973
– volume: 42
  start-page: 114
  issue: 1
  year: 2019
  ident: 228_CR43
  publication-title: J Beijing Univ Posts Telecommun
– ident: 228_CR86
  doi: 10.1145/3178876.3185994
– volume: 1881
  issue: 3
  year: 2021
  ident: 228_CR40
  publication-title: J Phys: Conf Ser
– volume: 48
  start-page: 1
  issue: 10
  year: 2021
  ident: 228_CR4
  publication-title: Comput Sci
– ident: 228_CR24
  doi: 10.18653/v1/2021.acl-long.424
– ident: 228_CR63
  doi: 10.1007/s42486-020-00044-0
– ident: 228_CR14
  doi: 10.1109/ICIBA50161.2020.9276847
– ident: 228_CR64
  doi: 10.1145/3477495.3532040
– ident: 228_CR27
  doi: 10.1145/2516641.2516643
– ident: 228_CR92
  doi: 10.1145/3485447.3512263
– ident: 228_CR17
  doi: 10.1145/3383313.3418477
– ident: 228_CR81
  doi: 10.1109/CCIS57298.2022.10016419
– ident: 228_CR38
  doi: 10.18653/v1/D19-1493
– ident: 228_CR56
  doi: 10.1145/3404835.3463234
– volume: 39
  start-page: 685
  issue: 4
  year: 2016
  ident: 228_CR7
  publication-title: Chin J Comput
– ident: 228_CR102
  doi: 10.1145/3573834.3574478
– volume: 41
  start-page: 1619
  issue: 7
  year: 2018
  ident: 228_CR3
  publication-title: Chin J Comput
– ident: 228_CR16
  doi: 10.1109/ICCC51575.2020.9345260
– ident: 228_CR78
  doi: 10.1145/3404835.3462912
– ident: 228_CR61
  doi: 10.24963/ijcai.2020/418
– ident: 228_CR53
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.4148924
SecondaryResourceType review_article
Snippet Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In...
Abstract Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 396
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Customization
Data Mining and Knowledge Discovery
Database Management
Deep learning
Graph structure learning
Knowledge representation
Neural networks
News
News ranking and display
Personalized news recommendation
Physics
Prediction models
Reading
Recommender systems
Review/Survey Papers
Semantics
Social networks
Statistics for Engineering
Systems and Data Security
User behavior
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SfPBFrD9wtZVFBBUbzGYnyebxLC36UopV6FvIzmZFsHdye1do__pOstlrS1FffDnY29ld5stMZkIy3zD2BuqubZqu4grpBxphuReouBV1wF5b7RFTswlzdNScntrjG62-4pmwkR54BO6jRd9Ao6ShT1Ey763QbVeZRhgTDLapzFcYe2MxRZYEYGqQ14GNrNToiSguztG07GkAxs5zGjhdqVxRk-rqgAzVcgpnPPHDcHUraiVy_7tT-J291BSiDh-xhzm3LGejTtvsXpg_ZtvZe4fyXaaYfv-E7c3Kk_XyPFyUi748nvLxy9CVcdIr45r07CzkfktP2ffDg2_7n3num8BRCbniHigtAdQeDGoVFGppRaBwZRJwHjoJqkWvyJm9ChLqXkBAgSiaUMuufsa25ot5eM7Kzppe6Z7eIBB8630NXdVKFSoaWim6glUTLg4zqXjsbfHLbeiQE5aOsHQJS6cK9mHzzO-RUuOv0p8i3BvJSIed_iAjcdlI3L-MpGCv42C5SHgxjydqfvj1MLgvJ1_dLO5EGgoJumBvs1C_IB3Q5wIFQiJyZN2S3JkG3WWXH1zcsa0j3b0p2N5kCNe3_6zhi_-h4Uv2QEZ7TQdtdtjWarkOu-w-nq9-DstXyTmuAIqjBqM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEB70VPDF81bF6ilBBBUvkKb5-bgeHvpyHJ7CvYV0mh6Ctyvb3QP9602y6S7HqaAvhbbTlpl-mUmYyTcAL0XTtcZ0NZUYD8IwSz1DSS1rAvbKKo-Ym03o42NzdmZPyqawYax2H1OS2VNvNruJiB5LY4yhmbSFyptwS9bGpkK-wy3nuBC6EXwb1CJCtRpJ4pJ_jkseI8S665wSNJ7Jspvm95-5ErEysf91930tj5rD09Hu_yl2H-6V6SiZrvGzBzfCbAK7Y6sHUkb-BO7kSlEcJrBXrg3kdaGsfvMADqbkdLW4DD_IvCcn4_z-Z-hIcqIkrXEvLkLp3_QQvhy9_3z4gZY-DBQl40vqRZzmCFReaFQySFTcshDDn-5qbZgXHReyRS-jc_AycNH0TARkiMyEhnfNI9iZzWfhMZDO6l6qPr6BofCt943o6pbLUEeocNZVUI-2dlhIylOvjG9uQ6-creWitVy2lpMVvN08831N0fFX6XfpF24kE712vjBfnLsyWp1Fb4SRXEd8xxWkt0y1WVetg8bWVPAiAcAlAo1ZqtA596thcB9PP7lpymzqGGJUBa-KUD-POqAvGx6iJRLn1hXJ_RFIrriQwaUMcJPo83UFByNwtrf_rOGTfxN_Cnd5wl4u0dmHneViFZ7Bbbxcfh0Wz_PQ-gXLwRNm
  priority: 102
  providerName: Springer Nature
Title A Survey of Personalized News Recommendation
URI https://link.springer.com/article/10.1007/s41019-023-00228-5
https://www.proquest.com/docview/2890355987
https://doaj.org/article/9ca848527cca495a906bd178077e7cb8
Volume 8
WOSCitedRecordID wos001056996300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734210
  issn: 2364-1185
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: K7-
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: M7S
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: C24
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXoDxEoKwihASIWnUSO3ZOaFttRYVYRV2Qyslyxk6FRDdls1sJDvx2bNfZqqrohYsPycSKPS-Px_4G4DUrTCOlyQhH1zBJK6IpclLRwmJbVqVGDMUmxHQqT06qOm649fFY5WATg6E2Hfo98j2fECs8mrj4cP6T-KpRPrsaS2hswJZHScjC0b3Zeo_FBTfShTvxrky4McecCFbEOSoSkF8Iv-aPAmz_TeN8I0sanM_hg__97YdwPy470_GlnGzDHTt_BNtRsfv0bUSffvcYdsfpbLW4sL_Srk3rYan-25rU28PUh6tnZzaWYnoCXw8nXw4-klhSgSCn-ZJo5lYsDEvNBJbccizzilrnyYTJhKSamZzxBjV3eq65zVnRUmaRIlJpi9wUT2Fz3s3tM0hNJVpetq4Hikw3WhfMZE3Obea4nlOTQDZMrMKIN-7LXvxQa6TkwAzlmKECMxRP4P36m_NLtI1bqfc9v9aUHik7POgWpyoqnqpQSyZ5LpyoumBQV7RswliFsAIbmcArz23lsTDm_rDNqV71vTqaHauxT1IK5y3KBN5EorZzY0Ad7y64mfDwWdcodwY5UNEa9OpKCBLYHSTp6vW_R_j89t5ewL3ci3I4XbMDm8vFyr6Eu3ix_N4vRrC1P5nWxyPYOMjZKGw2uPaTIKOgJb79M3FU9dHn-ttfxskTCQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXoEBFoECEQICoVcexY-eA0PJRdbVlVdFW6s04E6dCortls1tUfhS_EdvrbFVV9NYDlxwSx4o9b2YyHvsNwAue15VSdUYEugtXtCSGoiAlzS02RVkYxFBsQg6H6uCg3FmCP91ZGL-tsrOJwVDXY_Rr5Bs-IZZ7NnH5_vgn8VWjfHa1K6Exh8XAnv5yIVv7rv_JyfclY5uf9z5ukVhVgKCgbEoMd06bY2G4xEJYgQUrqXXGXNaZVNTwmnFRoREO6kZYxvOGcosUkSqbszp3_V6D6zxX0uvVQJLFmo4LppQLr-LZnHBCjzvIl8Q5RhKYZog45_9CmYCLzuBCVjY4u807_9s03YXb8bc67c31YAWW7OgerETD1aavI7v2m_uw3kt3Z5MTe5qOm3SnC0V-2zr19j714fjRkY2lph7A_pV89Sosj8Yj-xDSupSNKBrXA0VuKmNyXmcVEzZzqGa0TiDrBKkx8qn7sh4_9IIJOghfO-HrIHwtEni7eOd4ziZyaesPHh-Llp4JPNwYTw51NCy6RKO4Ekw6VXTBrilpUYWxSmklViqB5x5d2nN9jPxmokMza1vd3_2qez4JK503LBJ4FRs1YzcGNPFshpsJTw92ruVahzsdrV2rz0CXwHqH3LPH_x7ho8t7ewY3t_a-bOvt_nDwGG4xr0ZhJ9EaLE8nM_sEbuDJ9Hs7eRr0MIVvV43ov4ReZs8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0fuCLtafiadUggopdukn2K49n9bAox2EV-rZsZjdFsLlyuSvoX-_u3ubOUhXEl0CSScJMfjuzy-z8BuA5K22tlM0JR39gilbEUOSkoqXDRlTCIMZmE3IyUcfH1fSXKv64271PSa5qGgJLU7vYP7PN_rrwjXkkVcTHGxIJXAi_CtdCRipg_GDDP86YLFmxCXAerVL0hHHBV_vlj2Js1YFOMOLPeKqs-f1nLkSvSPJ_2ZVfyqnGUDXe_n8l78DtNE3NRitc7cAV1w5gu28BkSWPMIAbcQcpdgPYSde67GWisn51F_ZG2dFyfu6-Z7Mmm_bz_h_OZsG5ZmHte3rqUl-ne_Bl_O7zwXuS-jMQ5LRYEMP89IehMEyi4I6jKCrqfFiUNpeKGmYLxms03DsNw13ByoYyhxSRKlcWtrwPW-2sdQ8gs5VsuGj8GygyUxtTMpvXBXe5h1BB7RDy3u4aE3l56KHxTa9pl6O1tLeWjtbSfAiv18-crag7_ir9JvzOtWSg3Y4XZvMTnUaxrtAopnghPe79ytJUVNRRVymdxFoN4VkAgw7EGm3YuXNill2nD48-6VHIeEofesQQXiShZuZ1QJMKIbwlAhfXBcndHlQ6uZZOh8xwGWj15RD2ehBtbv9Zw4f_Jv4Ubk7fjvXHw8mHR3CrCDCMu3h2YWsxX7rHcB3PF1-7-ZM44n4ChwgfLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Personalized+News+Recommendation&rft.jtitle=Data+science+and+engineering&rft.au=Meng%2C+Xiangfu&rft.au=Huo%2C+Hongjin&rft.au=Zhang%2C+Xiaoyan&rft.au=Wang%2C+Wanchun&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2364-1541&rft.volume=8&rft.issue=4&rft.spage=396&rft.epage=416&rft_id=info:doi/10.1007%2Fs41019-023-00228-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon