A Survey of Personalized News Recommendation
Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading exp...
Gespeichert in:
| Veröffentlicht in: | Data Science and Engineering Jg. 8; H. 4; S. 396 - 416 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Nature Singapore
01.12.2023
Springer Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 2364-1185, 2364-1541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading experience of users. In this paper, we provide a comprehensive overview of personalized news recommendation approaches. Firstly, we introduce personalized news recommendation systems according to different needs and analyze the characteristics. And then, a three-part research framework on personalized news recommendation is put forward. Based on the framework, the knowledge and methods involved in each part are analyzed in detail, including news datasets and processing techniques, prediction models, news ranking and display. On this basis, we focus on news recommendation methods based on different types of graph structure learning, including user–news interaction graph, knowledge graph and social relationship graph. Lastly, the challenges of the current news recommendation are analyzed and the prospect of the future research direction is presented. |
|---|---|
| AbstractList | Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading experience of users. In this paper, we provide a comprehensive overview of personalized news recommendation approaches. Firstly, we introduce personalized news recommendation systems according to different needs and analyze the characteristics. And then, a three-part research framework on personalized news recommendation is put forward. Based on the framework, the knowledge and methods involved in each part are analyzed in detail, including news datasets and processing techniques, prediction models, news ranking and display. On this basis, we focus on news recommendation methods based on different types of graph structure learning, including user–news interaction graph, knowledge graph and social relationship graph. Lastly, the challenges of the current news recommendation are analyzed and the prospect of the future research direction is presented. Abstract Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In recent years, news recommendation has been increasingly widely studied and has achieved remarkable success in improving the news reading experience of users. In this paper, we provide a comprehensive overview of personalized news recommendation approaches. Firstly, we introduce personalized news recommendation systems according to different needs and analyze the characteristics. And then, a three-part research framework on personalized news recommendation is put forward. Based on the framework, the knowledge and methods involved in each part are analyzed in detail, including news datasets and processing techniques, prediction models, news ranking and display. On this basis, we focus on news recommendation methods based on different types of graph structure learning, including user–news interaction graph, knowledge graph and social relationship graph. Lastly, the challenges of the current news recommendation are analyzed and the prospect of the future research direction is presented. |
| Audience | Academic |
| Author | Wang, Wanchun Zhu, Jinxia Zhang, Xiaoyan Meng, Xiangfu Huo, Hongjin |
| Author_xml | – sequence: 1 givenname: Xiangfu surname: Meng fullname: Meng, Xiangfu organization: School of Electronic and Information Engineering, Liaoning Technical University – sequence: 2 givenname: Hongjin surname: Huo fullname: Huo, Hongjin email: hhj991009@163.com organization: School of Electronic and Information Engineering, Liaoning Technical University – sequence: 3 givenname: Xiaoyan surname: Zhang fullname: Zhang, Xiaoyan organization: School of Electronic and Information Engineering, Liaoning Technical University – sequence: 4 givenname: Wanchun surname: Wang fullname: Wang, Wanchun organization: School of Electronic and Information Engineering, Liaoning Technical University – sequence: 5 givenname: Jinxia surname: Zhu fullname: Zhu, Jinxia organization: School of Electronic and Information Engineering, Liaoning Technical University |
| BookMark | eNp9kU1vEzEQhi1UJErpH-C0Eicktvjb3mNU8RGpAtTC2ZrMzkaOknWxN4X219dkqVA5VD7YHj3vO5p5X7KjMY3E2GvBzwTn7n3Rgouu5VK1nEvpW_OMHUtldSuMFkcPb-HNC3ZayoZXqv60tsfs3aK52ucbum3S0HyjXNII23hHffOFfpXmkjDtdjT2MMU0vmLPB9gWOv17n7AfHz98P__cXnz9tDxfXLRouJxa0FY4jRa0Q2vIoJUdJ6WF64XzHHQvtVkhGCUlGJJaDVwTckTuSclenbDl7Nsn2ITrHHeQb0OCGA6FlNcB8hRxS6FD8Nob6RBBdwY6bleHLs6Rw5WvXm9mr-ucfu6pTGGT9rkOWYL0HVfGdN5V6mym1lBN4zikKQPW09MuYl33EGt94azXzllpq-DtI0FlJvo9rWFfSlheXT5m_cxiTqVkGgLG6bDQ2iRug-DhT45hzjHUHMMhx2CqVP4nfdjGkyI1i0qFxzXlfyM_oboHNXStQg |
| CitedBy_id | crossref_primary_10_1145_3713072 crossref_primary_10_1145_3639306 crossref_primary_10_1016_j_engappai_2025_110102 crossref_primary_10_1057_s41599_023_02516_x crossref_primary_10_1007_s41019_024_00272_9 crossref_primary_10_1109_ACCESS_2024_3403676 crossref_primary_10_1016_j_patcog_2025_111461 crossref_primary_10_1038_s41598_025_94268_8 crossref_primary_10_1145_3736588 crossref_primary_10_1007_s44443_025_00087_2 |
| Cites_doi | 10.1145/3511708 10.1109/ACCESS.2019.2944927 10.1007/s10707-014-0223-5 10.1038/nature14539 10.1111/coin.12012 10.1016/j.future.2021.06.007 10.1007/978-3-319-25159-2_44 10.1016/j.neucom.2021.10.049 10.1016/j.ipm.2019.102142 10.1145/3530257 10.3390/info13030128 10.1016/j.neucom.2022.04.073 10.1007/s10489-021-02497-x 10.1145/3404835.3463069 10.1007/978-3-031-21743-2_52 10.1145/3106426.3109436 10.1145/3565291.3565321 10.1145/3240323.3240344 10.18653/v1/2022.findings-acl.209 10.1145/3178876.3186175 10.1145/988672.988738 10.1109/ICBDA55095.2022.9760340 10.1109/SMC.2017.8122727 10.1109/SCC53864.2021.00029 10.1109/ICSCEE.2018.8538403 10.24963/ijcai.2021/462 10.18653/v1/2022.findings-emnlp.491 10.1109/CISP-BMEI.2016.7852838 10.1145/3477495.3531862 10.1145/3292500.3330665 10.1109/ACCESS.2019.2954957 10.1145/3485447.3512082 10.1145/3477495.3531896 10.1109/ICIBA50161.2020.9276847 10.18653/v1/2022.findings-acl.274 10.1145/3448734.3450933 10.1145/3097983.3098108 10.18653/v1/2022.findings-acl.29 10.1145/2792838.2800186 10.18653/v1/2020.acl-main.392 10.1145/3404835.3463232 10.1145/3474085.3475514 10.24963/ijcai.2021/224 10.18653/v1/2021.findings-emnlp.124 10.18653/v1/P19-1033 10.1145/3477495.3531790 10.18653/v1/D19-1671 10.18653/v1/2022.findings-naacl.178 10.1145/3270323.3270328 10.24963/ijcai.2020/482 10.1145/1719970.1719976 10.1145/3511808.3557284 10.1609/icwsm.v4i1.14021 10.1145/3562007.3562030 10.1145/1772690.1772758 10.1609/aaai.v35i5.16573 10.1109/IJCNN52387.2021.9533818 10.1007/978-3-030-85928-2_29 10.18653/v1/2020.acl-main.331 10.1145/3539597.3570447 10.18653/v1/2021.emnlp-main.223 10.1109/ICASSP43922.2022.9747149 10.1145/3459637.3482462 10.24963/ijcai.2019/536 10.1007/978-3-030-73200-4_7 10.1007/978-3-319-55753-3_32 10.1145/3366423.3380050 10.18653/v1/2022.findings-emnlp.213 10.1145/3340531.3411932 10.1609/aaai.v33i01.33015973 10.1145/3178876.3185994 10.18653/v1/2021.acl-long.424 10.1007/s42486-020-00044-0 10.1145/3477495.3532040 10.1145/2516641.2516643 10.1145/3485447.3512263 10.1145/3383313.3418477 10.1109/CCIS57298.2022.10016419 10.18653/v1/D19-1493 10.1145/3404835.3463234 10.1145/3573834.3574478 10.1109/ICCC51575.2020.9345260 10.1145/3404835.3462912 10.24963/ijcai.2020/418 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
| DOI | 10.1007/s41019-023-00228-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Computer Science |
| EISSN | 2364-1541 |
| EndPage | 416 |
| ExternalDocumentID | oai_doaj_org_article_9ca848527cca495a906bd178077e7cb8 A768477626 10_1007_s41019_023_00228_5 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Science Foundation of China grantid: No. 61772249 |
| GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX ABJCF AFFHD ARAPS BGLVJ CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS ADMLS ARCSS 7SC 8FD 8FE 8FG ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c502t-a46174c6a47c65e5c6290e3417d1780a4d245bca5322a5e243f04ec0cc08e32d3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001056996300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-1185 |
| IngestDate | Fri Oct 03 12:46:15 EDT 2025 Wed Oct 08 14:21:58 EDT 2025 Wed Feb 12 07:37:02 EST 2025 Fri Feb 14 04:20:46 EST 2025 Sat Nov 29 06:46:06 EST 2025 Tue Nov 18 21:43:05 EST 2025 Fri Feb 21 02:42:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Graph structure learning Personalized news recommendation Prediction models News ranking and display |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-a46174c6a47c65e5c6290e3417d1780a4d245bca5322a5e243f04ec0cc08e32d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2890355987?pq-origsite=%requestingapplication% |
| PQID | 2890355987 |
| PQPubID | 4402891 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ca848527cca495a906bd178077e7cb8 proquest_journals_2890355987 gale_infotracacademiconefile_A768477626 gale_incontextgauss_ISR_A768477626 crossref_citationtrail_10_1007_s41019_023_00228_5 crossref_primary_10_1007_s41019_023_00228_5 springer_journals_10_1007_s41019_023_00228_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Berlin |
| PublicationTitle | Data Science and Engineering |
| PublicationTitleAbbrev | Data Sci. Eng |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | CR38 CR36 CR35 CR34 CR33 CR32 CR30 Ma, Na, Wang, Chen, Xu (CR31) 2022; 52 CR49 CR48 CR46 CR45 CR44 Yuan, Chen, Li, Wei (CR43) 2019; 42 Qiu, Hu, Wu (CR77) 2022; 16 Huang, Jiang, Lv, Liu, Li (CR3) 2018; 41 Wang, Li, Sun, Fang (CR6) 2020; 14 Stitini, Kaloun, Bencharef (CR93) 2022; 13 Wu, Wu, Huang, Xie (CR1) 2023; 41 CR59 CR57 CR56 CR55 CR54 CR53 CR52 CR51 CR50 Tian, Ding, Miao, Sun (CR5) 2021; 15 Zhu, Cheng, Luo, Yang, Luo, Qian, Zhou (CR80) 2022; 494 Meng, Chen, Zhang (CR7) 2016; 39 CR68 CR67 CR66 Wang, Wen, Luo, Zhou, Ren (CR42) 2015 CR65 CR64 CR63 Blei, Ng, Jordan (CR39) 2001; 3 CR62 CR61 Kaleli, Polat (CR41) 2015; 31 CR60 Liu, Song, Li, Zhu, Deng (CR40) 2021; 1881 CR79 CR78 CR76 CR75 CR74 CR73 CR72 CR71 CR70 Hu, Li, Shi, Yang, Shao (CR69) 2020; 57 CR8 Li, Wang (CR2) 2019; 7 CR89 CR88 CR87 CR86 CR85 CR84 CR83 CR82 CR81 Huang, Han, Xu, Liu (CR58) 2022; 469 CR19 CR18 CR17 CR16 CR15 CR14 CR13 CR12 CR99 CR10 CR98 CR97 CR96 CR95 CR94 CR92 CR91 CR90 Lecun, Bengio, Hinton (CR47) 2015; 521 Xu, Chow, Yiu, Li, Poon (CR11) 2014; 19 Ji, Wu, Yang, Íñigo (CR37) 2021; 125 CR29 CR28 CR27 CR26 CR25 CR24 CR23 CR22 CR21 Yuan, Chen (CR9) 2018; 45 CR20 CR102 CR100 CR101 Yu, Du, Yue, Xiang, Xu, Leng (CR4) 2021; 48 228_CR28 228_CR29 L Yu (228_CR4) 2021; 48 228_CR24 228_CR25 228_CR26 228_CR27 228_CR20 228_CR21 228_CR22 228_CR23 C Wu (228_CR1) 2023; 41 M Ma (228_CR31) 2022; 52 228_CR35 W Xu (228_CR11) 2014; 19 228_CR36 L Hu (228_CR69) 2020; 57 228_CR38 228_CR32 228_CR33 228_CR34 228_CR30 Y Lecun (228_CR47) 2015; 521 J Huang (228_CR58) 2022; 469 Z Qiu (228_CR77) 2022; 16 228_CR86 228_CR87 228_CR88 228_CR89 DM Blei (228_CR39) 2001; 3 228_CR82 228_CR83 228_CR84 228_CR85 228_CR81 228_CR17 228_CR18 228_CR19 228_CR13 228_CR14 J Liu (228_CR40) 2021; 1881 228_CR15 228_CR16 228_CR97 228_CR8 228_CR10 228_CR98 RJ Yuan (228_CR43) 2019; 42 228_CR99 228_CR12 Z Ji (228_CR37) 2021; 125 228_CR94 228_CR95 228_CR96 228_CR90 228_CR91 228_CR92 X Meng (228_CR7) 2016; 39 L Huang (228_CR3) 2018; 41 S Wang (228_CR6) 2020; 14 228_CR68 228_CR64 228_CR65 228_CR66 228_CR67 228_CR60 228_CR61 228_CR62 228_CR63 M Li (228_CR2) 2019; 7 O Stitini (228_CR93) 2022; 13 228_CR79 228_CR75 228_CR76 228_CR78 228_CR71 228_CR72 228_CR73 228_CR74 R Yuan (228_CR9) 2018; 45 228_CR70 228_CR102 228_CR101 228_CR100 P Zhu (228_CR80) 2022; 494 228_CR46 228_CR48 228_CR49 228_CR44 228_CR45 X Tian (228_CR5) 2021; 15 228_CR57 C Kaleli (228_CR41) 2015; 31 228_CR59 228_CR53 228_CR54 228_CR55 228_CR56 228_CR50 228_CR51 228_CR52 X Wang (228_CR42) 2015 |
| References_xml | – ident: CR45 – ident: CR22 – ident: CR97 – ident: CR68 – ident: CR74 – ident: CR16 – ident: CR51 – ident: CR54 – ident: CR8 – ident: CR25 – ident: CR101 – ident: CR71 – ident: CR19 – volume: 16 start-page: 1 issue: 5 year: 2022 end-page: 17 ident: CR77 article-title: Graph neural news recommendation with user existing and potential interest modeling publication-title: ACM Trans Knowl Discov Data (TKDD) doi: 10.1145/3511708 – ident: CR92 – ident: CR88 – ident: CR57 – ident: CR60 – ident: CR36 – ident: CR85 – volume: 7 start-page: 145861 year: 2019 end-page: 145879 ident: CR2 article-title: A survey on personalized news recommendation technology publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944927 – volume: 39 start-page: 685 issue: 4 year: 2016 end-page: 703 ident: CR7 article-title: A survey of mobile news recommend techniques and applications publication-title: Chin J Comput – ident: CR100 – volume: 19 start-page: 633 issue: 3 year: 2014 end-page: 669 ident: CR11 article-title: Mobifeed: a location-aware news feed framework for moving users publication-title: GeoInformatica doi: 10.1007/s10707-014-0223-5 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR47 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR18 – ident: CR66 – ident: CR91 – ident: CR72 – volume: 3 start-page: 993 year: 2001 end-page: 1022 ident: CR39 article-title: Latent Dirichlet allocation publication-title: J Mach Learn Res – volume: 31 start-page: 47 year: 2015 end-page: 68 ident: CR41 article-title: Privacy-preserving naïve bayesian classifier-based recommendations on distributed data publication-title: Comput Intell doi: 10.1111/coin.12012 – ident: CR89 – ident: CR30 – volume: 125 start-page: 324 year: 2021 end-page: 333 ident: CR37 article-title: Temporal sensitive heterogeneous graph neural network for news recommendation publication-title: Future Gen Comput Syst doi: 10.1016/j.future.2021.06.007 – ident: CR10 – ident: CR33 – year: 2015 ident: CR42 publication-title: Personalized recommendation system based on support vector machine and particle swarm optimization doi: 10.1007/978-3-319-25159-2_44 – ident: CR86 – ident: CR63 – ident: CR27 – ident: CR94 – ident: CR44 – volume: 469 start-page: 119 year: 2022 end-page: 129 ident: CR58 article-title: Adapted transformer network for news recommendation publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.049 – ident: CR38 – ident: CR52 – ident: CR13 – ident: CR55 – ident: CR83 – ident: CR24 – ident: CR70 – volume: 57 issue: 2 year: 2020 ident: CR69 article-title: Graph neural news recommendation with long-term and short-term interest modeling publication-title: Inf Process Manag doi: 10.1016/j.ipm.2019.102142 – ident: CR102 – ident: CR49 – ident: CR87 – ident: CR12 – ident: CR35 – ident: CR29 – ident: CR61 – ident: CR84 – volume: 41 start-page: 1619 issue: 7 year: 2018 end-page: 1647 ident: CR3 article-title: Survey on deep learning based recommender systems publication-title: Chin J Comput – ident: CR21 – ident: CR46 – ident: CR96 – ident: CR67 – ident: CR75 – ident: CR15 – ident: CR50 – volume: 14 start-page: 18 issue: 1 year: 2020 end-page: 29 ident: CR6 article-title: Survey of research on personalized news recommendation techniques publication-title: J Front Comput Sci Technol – ident: CR32 – ident: CR78 – ident: CR81 – ident: CR64 – ident: CR26 – ident: CR99 – volume: 48 start-page: 1 issue: 10 year: 2021 end-page: 18 ident: CR4 article-title: Survey of reinforcement learning based recommender systems publication-title: Comput Sci – ident: CR95 – volume: 41 start-page: 1 issue: 1 year: 2023 end-page: 50 ident: CR1 article-title: Personalized news recommendation: methods and challenges publication-title: ACM Transa Inf Syst doi: 10.1145/3530257 – ident: CR14 – ident: CR53 – ident: CR82 – ident: CR79 – volume: 15 start-page: 971 issue: 6 year: 2021 end-page: 998 ident: CR5 article-title: Survey on deep learning based news recommendation algorithm publication-title: J Front Comput Sci Technol – volume: 1881 issue: 3 year: 2021 ident: CR40 article-title: A hybrid news recommendation algorithm based on k-means clustering and collaborative filtering publication-title: J Phys: Conf Ser – ident: CR56 – volume: 45 start-page: 6 issue: B11 year: 2018 ident: CR9 article-title: Research on news recommendation methods considering geographical location of news publication-title: Comput Sci – ident: CR98 – ident: CR23 – volume: 13 start-page: 128 issue: 3 year: 2022 ident: CR93 article-title: Towards the detection of fake news on social networks contributing to the improvement of trust and transparency in recommendation systems: trends and challenges publication-title: Information doi: 10.3390/info13030128 – ident: CR48 – ident: CR73 – ident: CR65 – ident: CR90 – volume: 42 start-page: 114 issue: 1 year: 2019 end-page: 119 ident: CR43 article-title: A news recommendation method based on VSM and bisecting k-means clustering publication-title: J Beijing Univ Posts Telecommun – ident: CR17 – ident: CR34 – volume: 494 start-page: 33 year: 2022 end-page: 42 ident: CR80 article-title: Si-news: integrating social information for news recommendation with attention-based graph convolutional network publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.073 – volume: 52 start-page: 1913 issue: 2 year: 2022 end-page: 1929 ident: CR31 article-title: The graph-based behavior-aware recommendation for interactive news publication-title: Appl Intell doi: 10.1007/s10489-021-02497-x – ident: CR59 – ident: CR76 – ident: CR28 – ident: CR62 – ident: CR20 – ident: 228_CR55 doi: 10.1145/3404835.3463069 – volume: 469 start-page: 119 year: 2022 ident: 228_CR58 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.049 – ident: 228_CR98 doi: 10.1007/978-3-031-21743-2_52 – ident: 228_CR25 doi: 10.1145/3106426.3109436 – ident: 228_CR36 doi: 10.1145/3565291.3565321 – ident: 228_CR85 doi: 10.1145/3240323.3240344 – ident: 228_CR59 doi: 10.18653/v1/2022.findings-acl.209 – ident: 228_CR72 doi: 10.1145/3178876.3186175 – ident: 228_CR88 doi: 10.1145/988672.988738 – ident: 228_CR82 doi: 10.1109/ICBDA55095.2022.9760340 – ident: 228_CR30 doi: 10.1109/SMC.2017.8122727 – ident: 228_CR75 doi: 10.1109/SCC53864.2021.00029 – ident: 228_CR13 doi: 10.1109/ICSCEE.2018.8538403 – volume: 521 start-page: 436 year: 2015 ident: 228_CR47 publication-title: Nature doi: 10.1038/nature14539 – ident: 228_CR57 doi: 10.24963/ijcai.2021/462 – ident: 228_CR71 doi: 10.18653/v1/2022.findings-emnlp.491 – ident: 228_CR44 doi: 10.1109/CISP-BMEI.2016.7852838 – ident: 228_CR83 doi: 10.1145/3477495.3531862 – ident: 228_CR51 doi: 10.1145/3292500.3330665 – ident: 228_CR15 doi: 10.1109/ACCESS.2019.2954957 – ident: 228_CR62 doi: 10.1145/3485447.3512082 – ident: 228_CR18 doi: 10.1145/3477495.3531896 – ident: 228_CR79 doi: 10.1109/ICIBA50161.2020.9276847 – ident: 228_CR52 doi: 10.18653/v1/2022.findings-acl.274 – volume: 494 start-page: 33 year: 2022 ident: 228_CR80 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.073 – ident: 228_CR49 – volume: 7 start-page: 145861 year: 2019 ident: 228_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944927 – ident: 228_CR22 doi: 10.1145/3448734.3450933 – ident: 228_CR48 doi: 10.1145/3097983.3098108 – ident: 228_CR96 doi: 10.18653/v1/2022.findings-acl.29 – ident: 228_CR12 – ident: 228_CR46 doi: 10.1145/2792838.2800186 – ident: 228_CR68 doi: 10.18653/v1/2020.acl-main.392 – ident: 228_CR33 doi: 10.1145/3404835.3463232 – ident: 228_CR54 – ident: 228_CR19 doi: 10.1145/3474085.3475514 – ident: 228_CR70 doi: 10.24963/ijcai.2021/224 – ident: 228_CR90 doi: 10.18653/v1/2021.findings-emnlp.124 – volume: 3 start-page: 993 year: 2001 ident: 228_CR39 publication-title: J Mach Learn Res – ident: 228_CR21 – ident: 228_CR94 – volume: 15 start-page: 971 issue: 6 year: 2021 ident: 228_CR5 publication-title: J Front Comput Sci Technol – ident: 228_CR35 doi: 10.18653/v1/P19-1033 – ident: 228_CR66 doi: 10.1145/3477495.3531790 – ident: 228_CR50 doi: 10.18653/v1/D19-1671 – ident: 228_CR65 doi: 10.18653/v1/2022.findings-naacl.178 – ident: 228_CR28 doi: 10.1145/3270323.3270328 – ident: 228_CR8 doi: 10.24963/ijcai.2020/482 – ident: 228_CR99 – ident: 228_CR45 doi: 10.1145/1719970.1719976 – ident: 228_CR101 doi: 10.1145/3511808.3557284 – ident: 228_CR26 doi: 10.1609/icwsm.v4i1.14021 – ident: 228_CR76 doi: 10.1145/3562007.3562030 – ident: 228_CR84 doi: 10.1145/1772690.1772758 – volume-title: Personalized recommendation system based on support vector machine and particle swarm optimization year: 2015 ident: 228_CR42 doi: 10.1007/978-3-319-25159-2_44 – volume: 41 start-page: 1 issue: 1 year: 2023 ident: 228_CR1 publication-title: ACM Transa Inf Syst doi: 10.1145/3530257 – ident: 228_CR20 – volume: 52 start-page: 1913 issue: 2 year: 2022 ident: 228_CR31 publication-title: Appl Intell doi: 10.1007/s10489-021-02497-x – volume: 16 start-page: 1 issue: 5 year: 2022 ident: 228_CR77 publication-title: ACM Trans Knowl Discov Data (TKDD) doi: 10.1145/3511708 – ident: 228_CR89 doi: 10.1609/aaai.v35i5.16573 – ident: 228_CR87 doi: 10.1109/IJCNN52387.2021.9533818 – ident: 228_CR73 doi: 10.1007/978-3-030-85928-2_29 – ident: 228_CR29 doi: 10.18653/v1/2020.acl-main.331 – ident: 228_CR100 doi: 10.1145/3539597.3570447 – ident: 228_CR91 doi: 10.18653/v1/2021.emnlp-main.223 – volume: 31 start-page: 47 year: 2015 ident: 228_CR41 publication-title: Comput Intell doi: 10.1111/coin.12012 – ident: 228_CR97 doi: 10.1109/ICASSP43922.2022.9747149 – ident: 228_CR23 doi: 10.1145/3459637.3482462 – ident: 228_CR32 doi: 10.24963/ijcai.2019/536 – volume: 45 start-page: 6 issue: B11 year: 2018 ident: 228_CR9 publication-title: Comput Sci – volume: 57 issue: 2 year: 2020 ident: 228_CR69 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2019.102142 – ident: 228_CR60 doi: 10.1007/978-3-030-73200-4_7 – ident: 228_CR10 doi: 10.1007/978-3-319-55753-3_32 – volume: 13 start-page: 128 issue: 3 year: 2022 ident: 228_CR93 publication-title: Information doi: 10.3390/info13030128 – volume: 19 start-page: 633 issue: 3 year: 2014 ident: 228_CR11 publication-title: GeoInformatica doi: 10.1007/s10707-014-0223-5 – ident: 228_CR67 doi: 10.1145/3366423.3380050 – ident: 228_CR95 doi: 10.18653/v1/2022.findings-emnlp.213 – ident: 228_CR74 doi: 10.1145/3340531.3411932 – volume: 125 start-page: 324 year: 2021 ident: 228_CR37 publication-title: Future Gen Comput Syst doi: 10.1016/j.future.2021.06.007 – volume: 14 start-page: 18 issue: 1 year: 2020 ident: 228_CR6 publication-title: J Front Comput Sci Technol – ident: 228_CR34 doi: 10.1609/aaai.v33i01.33015973 – volume: 42 start-page: 114 issue: 1 year: 2019 ident: 228_CR43 publication-title: J Beijing Univ Posts Telecommun – ident: 228_CR86 doi: 10.1145/3178876.3185994 – volume: 1881 issue: 3 year: 2021 ident: 228_CR40 publication-title: J Phys: Conf Ser – volume: 48 start-page: 1 issue: 10 year: 2021 ident: 228_CR4 publication-title: Comput Sci – ident: 228_CR24 doi: 10.18653/v1/2021.acl-long.424 – ident: 228_CR63 doi: 10.1007/s42486-020-00044-0 – ident: 228_CR14 doi: 10.1109/ICIBA50161.2020.9276847 – ident: 228_CR64 doi: 10.1145/3477495.3532040 – ident: 228_CR27 doi: 10.1145/2516641.2516643 – ident: 228_CR92 doi: 10.1145/3485447.3512263 – ident: 228_CR17 doi: 10.1145/3383313.3418477 – ident: 228_CR81 doi: 10.1109/CCIS57298.2022.10016419 – ident: 228_CR38 doi: 10.18653/v1/D19-1493 – ident: 228_CR56 doi: 10.1145/3404835.3463234 – volume: 39 start-page: 685 issue: 4 year: 2016 ident: 228_CR7 publication-title: Chin J Comput – ident: 228_CR102 doi: 10.1145/3573834.3574478 – volume: 41 start-page: 1619 issue: 7 year: 2018 ident: 228_CR3 publication-title: Chin J Comput – ident: 228_CR16 doi: 10.1109/ICCC51575.2020.9345260 – ident: 228_CR78 doi: 10.1145/3404835.3462912 – ident: 228_CR61 doi: 10.24963/ijcai.2020/418 – ident: 228_CR53 |
| SSID | ssj0002118446 ssib044734210 ssib048876940 |
| Score | 2.4148924 |
| SecondaryResourceType | review_article |
| Snippet | Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information overload. In... Abstract Personalized news recommendation is an important technology to help users obtain news information they are interested in and alleviate information... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 396 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Customization Data Mining and Knowledge Discovery Database Management Deep learning Graph structure learning Knowledge representation Neural networks News News ranking and display Personalized news recommendation Physics Prediction models Reading Recommender systems Review/Survey Papers Semantics Social networks Statistics for Engineering Systems and Data Security User behavior |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SfPBFrD9wtZVFBBUbzGYnyebxLC36UopV6FvIzmZFsHdye1do__pOstlrS1FffDnY29ld5stMZkIy3zD2BuqubZqu4grpBxphuReouBV1wF5b7RFTswlzdNScntrjG62-4pmwkR54BO6jRd9Ao6ShT1Ey763QbVeZRhgTDLapzFcYe2MxRZYEYGqQ14GNrNToiSguztG07GkAxs5zGjhdqVxRk-rqgAzVcgpnPPHDcHUraiVy_7tT-J291BSiDh-xhzm3LGejTtvsXpg_ZtvZe4fyXaaYfv-E7c3Kk_XyPFyUi748nvLxy9CVcdIr45r07CzkfktP2ffDg2_7n3num8BRCbniHigtAdQeDGoVFGppRaBwZRJwHjoJqkWvyJm9ChLqXkBAgSiaUMuufsa25ot5eM7Kzppe6Z7eIBB8630NXdVKFSoaWim6glUTLg4zqXjsbfHLbeiQE5aOsHQJS6cK9mHzzO-RUuOv0p8i3BvJSIed_iAjcdlI3L-MpGCv42C5SHgxjydqfvj1MLgvJ1_dLO5EGgoJumBvs1C_IB3Q5wIFQiJyZN2S3JkG3WWXH1zcsa0j3b0p2N5kCNe3_6zhi_-h4Uv2QEZ7TQdtdtjWarkOu-w-nq9-DstXyTmuAIqjBqM priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEB70VPDF81bF6ilBBBUvkKb5-bgeHvpyHJ7CvYV0mh6Ctyvb3QP9602y6S7HqaAvhbbTlpl-mUmYyTcAL0XTtcZ0NZUYD8IwSz1DSS1rAvbKKo-Ym03o42NzdmZPyqawYax2H1OS2VNvNruJiB5LY4yhmbSFyptwS9bGpkK-wy3nuBC6EXwb1CJCtRpJ4pJ_jkseI8S665wSNJ7Jspvm95-5ErEysf91930tj5rD09Hu_yl2H-6V6SiZrvGzBzfCbAK7Y6sHUkb-BO7kSlEcJrBXrg3kdaGsfvMADqbkdLW4DD_IvCcn4_z-Z-hIcqIkrXEvLkLp3_QQvhy9_3z4gZY-DBQl40vqRZzmCFReaFQySFTcshDDn-5qbZgXHReyRS-jc_AycNH0TARkiMyEhnfNI9iZzWfhMZDO6l6qPr6BofCt943o6pbLUEeocNZVUI-2dlhIylOvjG9uQ6-creWitVy2lpMVvN08831N0fFX6XfpF24kE712vjBfnLsyWp1Fb4SRXEd8xxWkt0y1WVetg8bWVPAiAcAlAo1ZqtA596thcB9PP7lpymzqGGJUBa-KUD-POqAvGx6iJRLn1hXJ_RFIrriQwaUMcJPo83UFByNwtrf_rOGTfxN_Cnd5wl4u0dmHneViFZ7Bbbxcfh0Wz_PQ-gXLwRNm priority: 102 providerName: Springer Nature |
| Title | A Survey of Personalized News Recommendation |
| URI | https://link.springer.com/article/10.1007/s41019-023-00228-5 https://www.proquest.com/docview/2890355987 https://doaj.org/article/9ca848527cca495a906bd178077e7cb8 |
| Volume | 8 |
| WOSCitedRecordID | wos001056996300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734210 issn: 2364-1185 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: K7- dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: M7S dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: C24 dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXoDxEoKwihASIWnUSO3ZOaFttRYVYRV2Qyslyxk6FRDdls1sJDvx2bNfZqqrohYsPycSKPS-Px_4G4DUrTCOlyQhH1zBJK6IpclLRwmJbVqVGDMUmxHQqT06qOm649fFY5WATg6E2Hfo98j2fECs8mrj4cP6T-KpRPrsaS2hswJZHScjC0b3Zeo_FBTfShTvxrky4McecCFbEOSoSkF8Iv-aPAmz_TeN8I0sanM_hg__97YdwPy470_GlnGzDHTt_BNtRsfv0bUSffvcYdsfpbLW4sL_Srk3rYan-25rU28PUh6tnZzaWYnoCXw8nXw4-klhSgSCn-ZJo5lYsDEvNBJbccizzilrnyYTJhKSamZzxBjV3eq65zVnRUmaRIlJpi9wUT2Fz3s3tM0hNJVpetq4Hikw3WhfMZE3Obea4nlOTQDZMrMKIN-7LXvxQa6TkwAzlmKECMxRP4P36m_NLtI1bqfc9v9aUHik7POgWpyoqnqpQSyZ5LpyoumBQV7RswliFsAIbmcArz23lsTDm_rDNqV71vTqaHauxT1IK5y3KBN5EorZzY0Ad7y64mfDwWdcodwY5UNEa9OpKCBLYHSTp6vW_R_j89t5ewL3ci3I4XbMDm8vFyr6Eu3ix_N4vRrC1P5nWxyPYOMjZKGw2uPaTIKOgJb79M3FU9dHn-ttfxskTCQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXoEBFoECEQICoVcexY-eA0PJRdbVlVdFW6s04E6dCortls1tUfhS_EdvrbFVV9NYDlxwSx4o9b2YyHvsNwAue15VSdUYEugtXtCSGoiAlzS02RVkYxFBsQg6H6uCg3FmCP91ZGL-tsrOJwVDXY_Rr5Bs-IZZ7NnH5_vgn8VWjfHa1K6Exh8XAnv5yIVv7rv_JyfclY5uf9z5ukVhVgKCgbEoMd06bY2G4xEJYgQUrqXXGXNaZVNTwmnFRoREO6kZYxvOGcosUkSqbszp3_V6D6zxX0uvVQJLFmo4LppQLr-LZnHBCjzvIl8Q5RhKYZog45_9CmYCLzuBCVjY4u807_9s03YXb8bc67c31YAWW7OgerETD1aavI7v2m_uw3kt3Z5MTe5qOm3SnC0V-2zr19j714fjRkY2lph7A_pV89Sosj8Yj-xDSupSNKBrXA0VuKmNyXmcVEzZzqGa0TiDrBKkx8qn7sh4_9IIJOghfO-HrIHwtEni7eOd4ziZyaesPHh-Llp4JPNwYTw51NCy6RKO4Ekw6VXTBrilpUYWxSmklViqB5x5d2nN9jPxmokMza1vd3_2qez4JK503LBJ4FRs1YzcGNPFshpsJTw92ruVahzsdrV2rz0CXwHqH3LPH_x7ho8t7ewY3t_a-bOvt_nDwGG4xr0ZhJ9EaLE8nM_sEbuDJ9Hs7eRr0MIVvV43ov4ReZs8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0fuCLtafiadUggopdukn2K49n9bAox2EV-rZsZjdFsLlyuSvoX-_u3ubOUhXEl0CSScJMfjuzy-z8BuA5K22tlM0JR39gilbEUOSkoqXDRlTCIMZmE3IyUcfH1fSXKv64271PSa5qGgJLU7vYP7PN_rrwjXkkVcTHGxIJXAi_CtdCRipg_GDDP86YLFmxCXAerVL0hHHBV_vlj2Js1YFOMOLPeKqs-f1nLkSvSPJ_2ZVfyqnGUDXe_n8l78DtNE3NRitc7cAV1w5gu28BkSWPMIAbcQcpdgPYSde67GWisn51F_ZG2dFyfu6-Z7Mmm_bz_h_OZsG5ZmHte3rqUl-ne_Bl_O7zwXuS-jMQ5LRYEMP89IehMEyi4I6jKCrqfFiUNpeKGmYLxms03DsNw13ByoYyhxSRKlcWtrwPW-2sdQ8gs5VsuGj8GygyUxtTMpvXBXe5h1BB7RDy3u4aE3l56KHxTa9pl6O1tLeWjtbSfAiv18-crag7_ir9JvzOtWSg3Y4XZvMTnUaxrtAopnghPe79ytJUVNRRVymdxFoN4VkAgw7EGm3YuXNill2nD48-6VHIeEofesQQXiShZuZ1QJMKIbwlAhfXBcndHlQ6uZZOh8xwGWj15RD2ehBtbv9Zw4f_Jv4Ubk7fjvXHw8mHR3CrCDCMu3h2YWsxX7rHcB3PF1-7-ZM44n4ChwgfLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Personalized+News+Recommendation&rft.jtitle=Data+science+and+engineering&rft.au=Meng%2C+Xiangfu&rft.au=Huo%2C+Hongjin&rft.au=Zhang%2C+Xiaoyan&rft.au=Wang%2C+Wanchun&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2364-1541&rft.volume=8&rft.issue=4&rft.spage=396&rft.epage=416&rft_id=info:doi/10.1007%2Fs41019-023-00228-5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |