A sample decreasing threshold greedy-based algorithm for big data summarisation
As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-nega...
Uložené v:
| Vydané v: | Journal of big data Ročník 8; číslo 1; s. 1 - 21 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
09.02.2021
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 2196-1115, 2196-1115 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to
k
-extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of
1
1
+
k
-
ϵ
for maximising monotone submodular functions and of
k
(
1
+
k
)
2
-
ϵ
in non-monotone cases with expected computational complexity of
O
n
(
1
+
k
)
ϵ
ln
r
ϵ
. Here,
r
is the largest size of feasible solutions, and
ϵ
∈
0
,
1
1
+
k
is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database. |
|---|---|
| AbstractList | Abstract As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k-extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of $$\frac{1}{1+k}-\epsilon $$ 1 1 + k - ϵ for maximising monotone submodular functions and of $$\frac{k}{(1+k)^2}-\epsilon $$ k ( 1 + k ) 2 - ϵ in non-monotone cases with expected computational complexity of $$O\left(\frac{n}{(1+k)\epsilon }\ln \frac{r}{\epsilon }\right)$$ O n ( 1 + k ) ϵ ln r ϵ . Here, r is the largest size of feasible solutions, and $$\epsilon \in \left(0, \frac{1}{1+k}\right)$$ ϵ ∈ 0 , 1 1 + k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database. As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k-extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of 11+k-ϵ for maximising monotone submodular functions and of k(1+k)2-ϵ in non-monotone cases with expected computational complexity of On(1+k)ϵlnrϵ. Here, r is the largest size of feasible solutions, and ϵ∈0,11+k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database. As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k -extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of $$\frac{1}{1+k}-\epsilon $$ 1 1 + k - ϵ for maximising monotone submodular functions and of $$\frac{k}{(1+k)^2}-\epsilon $$ k ( 1 + k ) 2 - ϵ in non-monotone cases with expected computational complexity of $$O\left(\frac{n}{(1+k)\epsilon }\ln \frac{r}{\epsilon }\right)$$ O n ( 1 + k ) ϵ ln r ϵ . Here, r is the largest size of feasible solutions, and $$\epsilon \in \left(0, \frac{1}{1+k}\right)$$ ϵ ∈ 0 , 1 1 + k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database. As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k -extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of 1 1 + k - ϵ for maximising monotone submodular functions and of k ( 1 + k ) 2 - ϵ in non-monotone cases with expected computational complexity of O n ( 1 + k ) ϵ ln r ϵ . Here, r is the largest size of feasible solutions, and ϵ ∈ 0 , 1 1 + k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database. |
| ArticleNumber | 30 |
| Author | Tsourdos, Antonios Li, Teng Shin, Hyo-Sang |
| Author_xml | – sequence: 1 givenname: Teng surname: Li fullname: Li, Teng organization: School of Aerospace, Transport and Manufacturing, Cranfield University – sequence: 2 givenname: Hyo-Sang orcidid: 0000-0001-9938-0370 surname: Shin fullname: Shin, Hyo-Sang email: h.shin@cranfield.ac.uk organization: School of Aerospace, Transport and Manufacturing, Cranfield University – sequence: 3 givenname: Antonios surname: Tsourdos fullname: Tsourdos, Antonios organization: School of Aerospace, Transport and Manufacturing, Cranfield University |
| BookMark | eNp9kcFu1DAURS1UJErpD7CyxDrwbMdJvKwqoJUqdQNr6yV-zniUiQfbs5i_x0xAIBZd2bLuuTrWfcuu1rgSY-8FfBRi6D7lFrTqG5CiAWhF15xfsWspTNcIIfTVP_c37DbnPQAIVZmuvWbPdzzj4bgQdzQlwhzWmZddoryLi-NzInLnZsRMjuMyxxTK7sB9THwMM3dYkOfT4YApZCwhru_Ya49Lptvf5w37_uXzt_uH5un56-P93VMzaZClQeU0ULXokaAFcgBqlDAS9aYbnADv1WTAjE57R8Zp53snCUdliLwR6oY9br0u4t4eU6gKZxsx2MtDTLPFVMK0kB2MrJQTZpKi7aRH6UeB1Gp0xrVC1a4PW9cxxR8nysXu4ymtVd_Kdui7Tule19SwpaYUc07k7RTK5c8lYVisAPtrDbutYesa9rKGPVdU_of-EX4RUhuUa3idKf21eoH6CUR0n-s |
| CitedBy_id | crossref_primary_10_3233_JIFS_221236 |
| Cites_doi | 10.1287/moor.2016.0809 10.1007/BF01588971 10.1016/j.bdr.2015.01.006 10.1137/080733991 10.1287/moor.3.3.177 10.1007/BFb0006528 10.1145/2827872 10.1137/1.9781611975673.45 10.1109/GlobalSIP.2016.7906050 10.1609/aaai.v29i1.9486 10.1145/2623330.2623637 10.1109/FOCS.2011.46 10.1137/1.9781611973402.110 10.1109/CVPR.2015.7298836 10.1137/1.9781611973730.80 10.1007/11841036_48 10.1007/978-3-642-17572-5_20 10.1017/CBO9781139177801.004 10.1109/CVPR.2015.7298928 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-021-00416-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_89239ed19c21462fa2fb1ae45ad9d413 10_1186_s40537_021_00416_y |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB PRQQA 7XB 8AL 8FK JQ2 L.- PKEHL POGQB PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c502t-a3d50e1347ae040ed003b20bee7968d10ff3c909bd5fde9d5df7d2eab39eef913 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618346700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Tue Oct 14 18:59:45 EDT 2025 Fri Nov 14 18:45:43 EST 2025 Sat Nov 29 06:20:02 EST 2025 Tue Nov 18 22:12:54 EST 2025 Fri Feb 21 02:48:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Personalised recommendation extendible system constraints Submodular maximisation Big data summarisation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-a3d50e1347ae040ed003b20bee7968d10ff3c909bd5fde9d5df7d2eab39eef913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9938-0370 |
| OpenAccessLink | https://www.proquest.com/docview/2487663575?pq-origsite=%requestingapplication% |
| PQID | 2487663575 |
| PQPubID | 2046140 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_89239ed19c21462fa2fb1ae45ad9d413 proquest_journals_2487663575 crossref_citationtrail_10_1186_s40537_021_00416_y crossref_primary_10_1186_s40537_021_00416_y springer_journals_10_1186_s40537_021_00416_y |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-09 |
| PublicationDateYYYYMMDD | 2021-02-09 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Calinescu, Chekuri, Pál, Vondrák (CR28) 2011; 40 Nemhauser, Wolsey (CR27) 1978; 3 CR18 CR17 CR16 CR15 CR37 CR14 CR13 CR35 CR12 Buchbinder, Feldman, Schwartz (CR25) 2016; 42 CR34 CR11 CR33 CR10 CR32 CR31 CR30 Minoux (CR38) 1978 Nemhauser, Wolsey, Fisher (CR19) 1978; 14 Krause, Golovin (CR36) 2014; 3 Mirzasoleiman, Karbasi, Sarkar, Krause (CR8) 2016; 17 CR2 CR4 CR3 CR6 CR5 CR7 CR29 CR9 CR26 CR24 CR22 CR21 CR20 Harper, Konstan (CR23) 2016; 5 Jin, Wah, Cheng, Wang (CR1) 2015; 2 416_CR9 416_CR7 416_CR5 416_CR6 X Jin (416_CR1) 2015; 2 416_CR29 416_CR26 FM Harper (416_CR23) 2016; 5 416_CR24 416_CR21 416_CR22 N Buchbinder (416_CR25) 2016; 42 416_CR20 G Calinescu (416_CR28) 2011; 40 GL Nemhauser (416_CR27) 1978; 3 B Mirzasoleiman (416_CR8) 2016; 17 416_CR18 416_CR16 416_CR17 416_CR14 416_CR15 416_CR37 M Minoux (416_CR38) 1978 416_CR3 416_CR12 416_CR34 416_CR4 416_CR13 GL Nemhauser (416_CR19) 1978; 14 416_CR35 416_CR10 416_CR32 416_CR2 416_CR11 416_CR33 A Krause (416_CR36) 2014; 3 416_CR30 416_CR31 |
| References_xml | – ident: CR22 – ident: CR18 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR37 – ident: CR12 – ident: CR30 – volume: 3 start-page: 71 year: 2014 end-page: 104 ident: CR36 article-title: Submodular function maximization publication-title: Tractability. – ident: CR10 – ident: CR33 – volume: 42 start-page: 308 issue: 2 year: 2016 end-page: 329 ident: CR25 article-title: Comparing apples and oranges: query trade-off in submodular maximization publication-title: Math Oper Res doi: 10.1287/moor.2016.0809 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 14 start-page: 265 issue: 1 year: 1978 end-page: 294 ident: CR19 article-title: An analysis of approximations for maximizing submodular set functions—I publication-title: Math Program doi: 10.1007/BF01588971 – ident: CR21 – ident: CR3 – ident: CR15 – volume: 2 start-page: 59 issue: 2 year: 2015 end-page: 64 ident: CR1 article-title: Significance and challenges of big data research publication-title: Big Data Res doi: 10.1016/j.bdr.2015.01.006 – ident: CR17 – volume: 40 start-page: 1740 issue: 6 year: 2011 end-page: 1766 ident: CR28 article-title: Maximizing a monotone submodular function subject to a matroid constraint publication-title: SIAM J Comput doi: 10.1137/080733991 – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR9 – ident: CR32 – volume: 3 start-page: 177 issue: 3 year: 1978 end-page: 188 ident: CR27 article-title: Best algorithms for approximating the maximum of a submodular set function publication-title: Math Oper Res doi: 10.1287/moor.3.3.177 – ident: CR34 – start-page: 234 year: 1978 end-page: 243 ident: CR38 article-title: Accelerated greedy algorithms for maximizing submodular set functions publication-title: Optimization techniques doi: 10.1007/BFb0006528 – ident: CR5 – ident: CR7 – volume: 5 start-page: 1 issue: 4 year: 2016 end-page: 19 ident: CR23 article-title: The movielens datasets: history and context publication-title: ACM Trans Interac Intell Syst (TIIS) doi: 10.1145/2827872 – ident: CR26 – ident: CR24 – volume: 17 start-page: 8330 issue: 1 year: 2016 end-page: 8373 ident: CR8 article-title: Distributed submodular maximization publication-title: J Mach Learn Res – ident: CR20 – ident: 416_CR11 doi: 10.1137/1.9781611975673.45 – start-page: 234 volume-title: Optimization techniques year: 1978 ident: 416_CR38 doi: 10.1007/BFb0006528 – volume: 17 start-page: 8330 issue: 1 year: 2016 ident: 416_CR8 publication-title: J Mach Learn Res – volume: 3 start-page: 177 issue: 3 year: 1978 ident: 416_CR27 publication-title: Math Oper Res doi: 10.1287/moor.3.3.177 – ident: 416_CR4 doi: 10.1109/GlobalSIP.2016.7906050 – ident: 416_CR21 – ident: 416_CR24 doi: 10.1609/aaai.v29i1.9486 – ident: 416_CR2 – ident: 416_CR15 – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 416_CR28 publication-title: SIAM J Comput doi: 10.1137/080733991 – ident: 416_CR12 doi: 10.1145/2623330.2623637 – ident: 416_CR13 – volume: 5 start-page: 1 issue: 4 year: 2016 ident: 416_CR23 publication-title: ACM Trans Interac Intell Syst (TIIS) doi: 10.1145/2827872 – volume: 2 start-page: 59 issue: 2 year: 2015 ident: 416_CR1 publication-title: Big Data Res doi: 10.1016/j.bdr.2015.01.006 – ident: 416_CR34 – volume: 42 start-page: 308 issue: 2 year: 2016 ident: 416_CR25 publication-title: Math Oper Res doi: 10.1287/moor.2016.0809 – ident: 416_CR30 – ident: 416_CR29 doi: 10.1109/FOCS.2011.46 – ident: 416_CR22 doi: 10.1137/1.9781611973402.110 – ident: 416_CR6 – ident: 416_CR16 doi: 10.1109/CVPR.2015.7298836 – ident: 416_CR37 doi: 10.1137/1.9781611973730.80 – ident: 416_CR26 – ident: 416_CR20 doi: 10.1007/11841036_48 – ident: 416_CR32 doi: 10.1007/978-3-642-17572-5_20 – volume: 3 start-page: 71 year: 2014 ident: 416_CR36 publication-title: Tractability. doi: 10.1017/CBO9781139177801.004 – ident: 416_CR14 – ident: 416_CR35 – ident: 416_CR18 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 416_CR19 publication-title: Math Program doi: 10.1007/BF01588971 – ident: 416_CR7 – ident: 416_CR17 doi: 10.1109/CVPR.2015.7298928 – ident: 416_CR33 – ident: 416_CR9 – ident: 416_CR31 – ident: 416_CR10 – ident: 416_CR3 – ident: 416_CR5 |
| SSID | ssj0001340564 |
| Score | 2.1611998 |
| Snippet | As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses... Abstract As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Approximation Big Data Big data summarisation Communications Engineering Complexity Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Database Management Experiments Greedy algorithms Information Storage and Retrieval k-extendible system constraints Mathematical Applications in Computer Science Maximization Networks Optimization Personalised recommendation Random sampling Recommender systems Sampling Submodular maximisation Summarization Thresholds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQqgcu9IOibkuRD9zAwnHsxD5uK1YcKsoBpL1ZdjyBlehSbQLS_vuOnWTZrQS99JoPyXozk3kTj98QciyCicJEjlWgCiZBKGZ4LdEgGgr0Ich9svSP8vJSz2bmamPUV-wJ6-SBO-DONDIQAyEzVRxBLWonap85kMoFE2SaVyt4aTaKqfR3JUciUsjhlIwuzhoZlUtY7EiIGlMFW21loiTYv8Uy_9oYTflm-o7s9USRTroFvic7sPhA3g5DGGgfk_vk54Q2Lkr80pAYYKz9aYsWauLGEsVyGr-jLCarQN397cNy3t79okhVqZ_f0tggSrsDbH1fz0dyMz2__n7B-ikJrFJctMzlQXGIJ0IdYERCwDj1gnuA0hQ6ZLyu88pw44OqA5igQl0GAc4jrFCbLD8go8XDAj4RCgKDELjwmdcS8dWyUqXjWpoS85grxiQbELNVLyEeJ1nc21RK6MJ2KFtE2SaU7WpMTtbv_O4ENF59-ls0xPrJKH6dLqBL2N4l7L9cYkwOBzPaPiIbK7Ayi-yqVGNyOpj2-fbLS_r8P5b0heyK5HqCcXNIRu3yEb6SN9VTO2-WR8l3_wD3LvB9 priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VlEMvDS1UBELlAzew8HrXu_YxRK16qNIeQOrNstezIVKboOyClH9f2_G2CoJK5bo7lqx5eGbsmW8APnKnAjCRoTWKkhbIBVWsKbxAJJZehzC3UdKX1Wwmb27UdWoKa_tq9_5JMp7U0axl-aUtAvQIDSUFASSqpJsXsC8yWYWUa5p6HOLNSu4py6LvkPnr0h0vFMH6dyLMPx5Fo685H_7fLl_BYYotyWSrDEewh8tjGPZzG0gy49dwNSGtCajAxMWgMVwXkM4LtQ1vUcRn4P7opcG_OWJu56v1ovtxR3x0S-xiTkJNKdn2vKVSoDfw_fzs2_SCpsEKtBaMd9TkTjAMTaQGvRGj86ZtObOIlSqly1jT5LViyjrROFROuKZyHI3NFWKjsvwEBsvVEt8CQe7tFhm3mZWFcUoWtagMk4WqvOsz5QiyntG6TqjjYfjFrY7Zhyz1lmPac0xHjunNCD49rPm5xdx4kvprkN8DZcDLjh9W67lO5qelj2MVukzVYZA5bwxvbGawEH7LzvvxEYx76etkxK3mPpkLAVklRvC5l_bj739v6d3zyN_DAY8KwylTYxh061_4AV7Wv7tFuz6Nyn0PdgH0qg priority: 102 providerName: Springer Nature |
| Title | A sample decreasing threshold greedy-based algorithm for big data summarisation |
| URI | https://link.springer.com/article/10.1186/s40537-021-00416-y https://www.proquest.com/docview/2487663575 https://doaj.org/article/89239ed19c21462fa2fb1ae45ad9d413 |
| Volume | 8 |
| WOSCitedRecordID | wos000618346700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M0C dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: P5Z dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: K7- dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: 7WY dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Social Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M2R dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/socscijournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoy4EL5VNdKCsfuIFVx4mT-ITaVatW0CVCIFoulhNPlkplt2wCUv89M16nqyLRCxdLiZ3EypvxjMf2G8ZeK2-ImMiJBnQuMlBaGNlmCEgJOcoQpHVA-kMxnZZnZ6aKAbcubqscxsQwUPtFQzHyPYWeNVnHQr-7-ikoaxStrsYUGhtsizwb4s4_lZN1jCVFdyTPhrMyZb7XZcRfImhfAjFN5eL6lj0KtP23fM2_lkeD1Tna_t_-PmIPo7_J91cC8pjdg_kTtj3kcuBRtZ-yj_u8c8QUzH1wJCmEwHsEuqP1KY6zchyOBdk8z93lDL_Uf__B0ePl9cWM0z5TvjoHF7cHPWNfjg4_T45FTLYgGi1VL1zqtQQ6WOoAFRs8qnutZA1QmLz0iWzbtDHS1F63HozXvi28AlenBqA1Sfqcbc4Xc9hhHBTqMkhVJ3WZOW_KrNGFk2VmCjSHLh-xZPjltolM5JQQ49KGGUmZ2xVMFmGyASZ7PWJvbp65WvFw3Nn6gJC8aUkc2uHGYjmzUSVtib6tAZ-YhpKbq9aptk4cZBq77NG2j9jugKyNit3ZNawj9naQjXX1v7v04u63vWQPVJBKJaTZZZv98he8Yveb3_1FtxyzjeLr-ZhtHRxOq094NVHZOEQPsHxfiHEQeyoV1Vb6G7atTk6r8z8zLAdY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFPABTmA1ceIkPiBUHlWrLksPRaq4GCeeLJXKbtkE0P4pfiMzTtJVkeitB66JY9mZzzOf7XkAPFPecGIiJyvUmUxRaWmiOiWBFJgRhjApg6TH-WRSHB2ZgzX4PcTCsFvloBODovbzis_ItxQxa7aOuX59-l1y1Si-XR1KaHSw2MflL9qyNa_23pF8nyu18_7w7a7sqwrISkeqlS7xOkKOoHRICEZPuC5VVCLmJit8HNV1UpnIlF7XHo3Xvs69QlcmBrE2cUL9XoGrRCMMK4ID_Xl1ppMQ_cnSITanyLaalPOlSPaD4MxWmVyes3-hTMA5bvvXdWywcjsb_9v_uQU3ez4ttrsFcBvWcHYHNoZaFaJXXXfh47ZoHGdCFj4QZT4iES0BueH7NzFdkBVfSrbpXriTKc2s_fpNEKMX5fFUsB-t6OL8evene_DpUqZ1H9Zn8xk-AIGKdBVGqozLInXeFGmlcxcVqcnJ3LtsBPEgYlv1mda54MeJDTuuIrMdLCzBwgZY2OUIXpx9c9rlGbmw9RtGzllLzhEeHswXU9urHFsQdzfoY1Nx8XZVO1WXscNU05A9cZcRbA5Isr3iauwKRiN4OWBx9frfQ3p4cW9P4fru4YexHe9N9h_BDRVWhJKR2YT1dvEDH8O16md73CyehCUl4MtlY_QPS9ZeoQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL5SkWCvjADawmjp3Yx_JYgaiWHkDqzbLj8XalslttAlL_PR4nKRQBEuKajCVrHp6xZ-YbgOciGAImcrxFVXOJQnFTRJkEorFOOoSVz5I-bBYLfXxsjn7q4s_V7lNKcuhpIJSmdb9_FuJg4rre7yTBkHAqLyDAqJqfX4VrkpJKlK4d-x3yK0uVKGs5dcv8duklj5SB-y9Fm78kSLPfme_-_45vw60x5mQHg5LcgSu4vgu70zwHNpr3Pfh4wDpHaMEs5GCSnhFYn4TdUY6KpZt5OpI5-b3A3Olys131J19YinqZXy0Z1ZqyoRduLBG6D5_nbz-9fsfHgQu8VYXouauCKpCaSx0m48aQTN6LwiM2ptahLGKsWlMYH1QMaIIKsQkCna8MYjRl9QB21ps1PgSGItkzFsKXXksXjJatalyhpWmSS3T1DMqJ6bYd0chpKMapzbcSXduBYzZxzGaO2fMZvLhYczZgcfyV-hXJ8oKScLTzh812aUeztDrFtwZDaVoacC6iE9GXDqVKWw7Jv89gb9IEOxp3Z0W65FGg1qgZvJwk_-P3n7f06N_In8GNozdze_h-8eEx3BRZdwQvzB7s9Nuv-ASut9_6Vbd9mnX-O7XTAII |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sample+decreasing+threshold+greedy-based+algorithm+for+big+data+summarisation&rft.jtitle=Journal+of+big+data&rft.au=Li%2C+Teng&rft.au=Shin+Hyo-Sang&rft.au=Tsourdos+Antonios&rft.date=2021-02-09&rft.pub=Springer+Nature+B.V&rft.eissn=2196-1115&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-021-00416-y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |