A sample decreasing threshold greedy-based algorithm for big data summarisation

As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-nega...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of big data Ročník 8; číslo 1; s. 1 - 21
Hlavní autori: Li, Teng, Shin, Hyo-Sang, Tsourdos, Antonios
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 09.02.2021
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:2196-1115, 2196-1115
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k -extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of 1 1 + k - ϵ for maximising monotone submodular functions and of k ( 1 + k ) 2 - ϵ in non-monotone cases with expected computational complexity of O n ( 1 + k ) ϵ ln r ϵ . Here, r is the largest size of feasible solutions, and ϵ ∈ 0 , 1 1 + k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database.
AbstractList Abstract As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k-extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of $$\frac{1}{1+k}-\epsilon $$ 1 1 + k - ϵ for maximising monotone submodular functions and of $$\frac{k}{(1+k)^2}-\epsilon $$ k ( 1 + k ) 2 - ϵ in non-monotone cases with expected computational complexity of $$O\left(\frac{n}{(1+k)\epsilon }\ln \frac{r}{\epsilon }\right)$$ O n ( 1 + k ) ϵ ln r ϵ . Here, r is the largest size of feasible solutions, and $$\epsilon \in \left(0, \frac{1}{1+k}\right)$$ ϵ ∈ 0 , 1 1 + k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database.
As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k-extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of 11+k-ϵ for maximising monotone submodular functions and of k(1+k)2-ϵ in non-monotone cases with expected computational complexity of On(1+k)ϵlnrϵ. Here, r is the largest size of feasible solutions, and ϵ∈0,11+k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database.
As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k -extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of $$\frac{1}{1+k}-\epsilon $$ 1 1 + k - ϵ for maximising monotone submodular functions and of $$\frac{k}{(1+k)^2}-\epsilon $$ k ( 1 + k ) 2 - ϵ in non-monotone cases with expected computational complexity of $$O\left(\frac{n}{(1+k)\epsilon }\ln \frac{r}{\epsilon }\right)$$ O n ( 1 + k ) ϵ ln r ϵ . Here, r is the largest size of feasible solutions, and $$\epsilon \in \left(0, \frac{1}{1+k}\right)$$ ϵ ∈ 0 , 1 1 + k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database.
As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to k -extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of 1 1 + k - ϵ for maximising monotone submodular functions and of k ( 1 + k ) 2 - ϵ in non-monotone cases with expected computational complexity of O n ( 1 + k ) ϵ ln r ϵ . Here, r is the largest size of feasible solutions, and ϵ ∈ 0 , 1 1 + k is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database.
ArticleNumber 30
Author Tsourdos, Antonios
Li, Teng
Shin, Hyo-Sang
Author_xml – sequence: 1
  givenname: Teng
  surname: Li
  fullname: Li, Teng
  organization: School of Aerospace, Transport and Manufacturing, Cranfield University
– sequence: 2
  givenname: Hyo-Sang
  orcidid: 0000-0001-9938-0370
  surname: Shin
  fullname: Shin, Hyo-Sang
  email: h.shin@cranfield.ac.uk
  organization: School of Aerospace, Transport and Manufacturing, Cranfield University
– sequence: 3
  givenname: Antonios
  surname: Tsourdos
  fullname: Tsourdos, Antonios
  organization: School of Aerospace, Transport and Manufacturing, Cranfield University
BookMark eNp9kcFu1DAURS1UJErpD7CyxDrwbMdJvKwqoJUqdQNr6yV-zniUiQfbs5i_x0xAIBZd2bLuuTrWfcuu1rgSY-8FfBRi6D7lFrTqG5CiAWhF15xfsWspTNcIIfTVP_c37DbnPQAIVZmuvWbPdzzj4bgQdzQlwhzWmZddoryLi-NzInLnZsRMjuMyxxTK7sB9THwMM3dYkOfT4YApZCwhru_Ya49Lptvf5w37_uXzt_uH5un56-P93VMzaZClQeU0ULXokaAFcgBqlDAS9aYbnADv1WTAjE57R8Zp53snCUdliLwR6oY9br0u4t4eU6gKZxsx2MtDTLPFVMK0kB2MrJQTZpKi7aRH6UeB1Gp0xrVC1a4PW9cxxR8nysXu4ymtVd_Kdui7Tule19SwpaYUc07k7RTK5c8lYVisAPtrDbutYesa9rKGPVdU_of-EX4RUhuUa3idKf21eoH6CUR0n-s
CitedBy_id crossref_primary_10_3233_JIFS_221236
Cites_doi 10.1287/moor.2016.0809
10.1007/BF01588971
10.1016/j.bdr.2015.01.006
10.1137/080733991
10.1287/moor.3.3.177
10.1007/BFb0006528
10.1145/2827872
10.1137/1.9781611975673.45
10.1109/GlobalSIP.2016.7906050
10.1609/aaai.v29i1.9486
10.1145/2623330.2623637
10.1109/FOCS.2011.46
10.1137/1.9781611973402.110
10.1109/CVPR.2015.7298836
10.1137/1.9781611973730.80
10.1007/11841036_48
10.1007/978-3-642-17572-5_20
10.1017/CBO9781139177801.004
10.1109/CVPR.2015.7298928
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOA
DOI 10.1186/s40537-021-00416-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2196-1115
EndPage 21
ExternalDocumentID oai_doaj_org_article_89239ed19c21462fa2fb1ae45ad9d413
10_1186_s40537_021_00416_y
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
PRQQA
7XB
8AL
8FK
JQ2
L.-
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c502t-a3d50e1347ae040ed003b20bee7968d10ff3c909bd5fde9d5df7d2eab39eef913
IEDL.DBID M0C
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618346700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-1115
IngestDate Tue Oct 14 18:59:45 EDT 2025
Fri Nov 14 18:45:43 EST 2025
Sat Nov 29 06:20:02 EST 2025
Tue Nov 18 22:12:54 EST 2025
Fri Feb 21 02:48:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Personalised recommendation
extendible system constraints
Submodular maximisation
Big data summarisation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-a3d50e1347ae040ed003b20bee7968d10ff3c909bd5fde9d5df7d2eab39eef913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9938-0370
OpenAccessLink https://www.proquest.com/docview/2487663575?pq-origsite=%requestingapplication%
PQID 2487663575
PQPubID 2046140
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_89239ed19c21462fa2fb1ae45ad9d413
proquest_journals_2487663575
crossref_citationtrail_10_1186_s40537_021_00416_y
crossref_primary_10_1186_s40537_021_00416_y
springer_journals_10_1186_s40537_021_00416_y
PublicationCentury 2000
PublicationDate 2021-02-09
PublicationDateYYYYMMDD 2021-02-09
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-09
  day: 09
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Calinescu, Chekuri, Pál, Vondrák (CR28) 2011; 40
Nemhauser, Wolsey (CR27) 1978; 3
CR18
CR17
CR16
CR15
CR37
CR14
CR13
CR35
CR12
Buchbinder, Feldman, Schwartz (CR25) 2016; 42
CR34
CR11
CR33
CR10
CR32
CR31
CR30
Minoux (CR38) 1978
Nemhauser, Wolsey, Fisher (CR19) 1978; 14
Krause, Golovin (CR36) 2014; 3
Mirzasoleiman, Karbasi, Sarkar, Krause (CR8) 2016; 17
CR2
CR4
CR3
CR6
CR5
CR7
CR29
CR9
CR26
CR24
CR22
CR21
CR20
Harper, Konstan (CR23) 2016; 5
Jin, Wah, Cheng, Wang (CR1) 2015; 2
416_CR9
416_CR7
416_CR5
416_CR6
X Jin (416_CR1) 2015; 2
416_CR29
416_CR26
FM Harper (416_CR23) 2016; 5
416_CR24
416_CR21
416_CR22
N Buchbinder (416_CR25) 2016; 42
416_CR20
G Calinescu (416_CR28) 2011; 40
GL Nemhauser (416_CR27) 1978; 3
B Mirzasoleiman (416_CR8) 2016; 17
416_CR18
416_CR16
416_CR17
416_CR14
416_CR15
416_CR37
M Minoux (416_CR38) 1978
416_CR3
416_CR12
416_CR34
416_CR4
416_CR13
GL Nemhauser (416_CR19) 1978; 14
416_CR35
416_CR10
416_CR32
416_CR2
416_CR11
416_CR33
A Krause (416_CR36) 2014; 3
416_CR30
416_CR31
References_xml – ident: CR22
– ident: CR18
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR37
– ident: CR12
– ident: CR30
– volume: 3
  start-page: 71
  year: 2014
  end-page: 104
  ident: CR36
  article-title: Submodular function maximization
  publication-title: Tractability.
– ident: CR10
– ident: CR33
– volume: 42
  start-page: 308
  issue: 2
  year: 2016
  end-page: 329
  ident: CR25
  article-title: Comparing apples and oranges: query trade-off in submodular maximization
  publication-title: Math Oper Res
  doi: 10.1287/moor.2016.0809
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  end-page: 294
  ident: CR19
  article-title: An analysis of approximations for maximizing submodular set functions—I
  publication-title: Math Program
  doi: 10.1007/BF01588971
– ident: CR21
– ident: CR3
– ident: CR15
– volume: 2
  start-page: 59
  issue: 2
  year: 2015
  end-page: 64
  ident: CR1
  article-title: Significance and challenges of big data research
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2015.01.006
– ident: CR17
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  end-page: 1766
  ident: CR28
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR32
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  end-page: 188
  ident: CR27
  article-title: Best algorithms for approximating the maximum of a submodular set function
  publication-title: Math Oper Res
  doi: 10.1287/moor.3.3.177
– ident: CR34
– start-page: 234
  year: 1978
  end-page: 243
  ident: CR38
  article-title: Accelerated greedy algorithms for maximizing submodular set functions
  publication-title: Optimization techniques
  doi: 10.1007/BFb0006528
– ident: CR5
– ident: CR7
– volume: 5
  start-page: 1
  issue: 4
  year: 2016
  end-page: 19
  ident: CR23
  article-title: The movielens datasets: history and context
  publication-title: ACM Trans Interac Intell Syst (TIIS)
  doi: 10.1145/2827872
– ident: CR26
– ident: CR24
– volume: 17
  start-page: 8330
  issue: 1
  year: 2016
  end-page: 8373
  ident: CR8
  article-title: Distributed submodular maximization
  publication-title: J Mach Learn Res
– ident: CR20
– ident: 416_CR11
  doi: 10.1137/1.9781611975673.45
– start-page: 234
  volume-title: Optimization techniques
  year: 1978
  ident: 416_CR38
  doi: 10.1007/BFb0006528
– volume: 17
  start-page: 8330
  issue: 1
  year: 2016
  ident: 416_CR8
  publication-title: J Mach Learn Res
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  ident: 416_CR27
  publication-title: Math Oper Res
  doi: 10.1287/moor.3.3.177
– ident: 416_CR4
  doi: 10.1109/GlobalSIP.2016.7906050
– ident: 416_CR21
– ident: 416_CR24
  doi: 10.1609/aaai.v29i1.9486
– ident: 416_CR2
– ident: 416_CR15
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 416_CR28
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– ident: 416_CR12
  doi: 10.1145/2623330.2623637
– ident: 416_CR13
– volume: 5
  start-page: 1
  issue: 4
  year: 2016
  ident: 416_CR23
  publication-title: ACM Trans Interac Intell Syst (TIIS)
  doi: 10.1145/2827872
– volume: 2
  start-page: 59
  issue: 2
  year: 2015
  ident: 416_CR1
  publication-title: Big Data Res
  doi: 10.1016/j.bdr.2015.01.006
– ident: 416_CR34
– volume: 42
  start-page: 308
  issue: 2
  year: 2016
  ident: 416_CR25
  publication-title: Math Oper Res
  doi: 10.1287/moor.2016.0809
– ident: 416_CR30
– ident: 416_CR29
  doi: 10.1109/FOCS.2011.46
– ident: 416_CR22
  doi: 10.1137/1.9781611973402.110
– ident: 416_CR6
– ident: 416_CR16
  doi: 10.1109/CVPR.2015.7298836
– ident: 416_CR37
  doi: 10.1137/1.9781611973730.80
– ident: 416_CR26
– ident: 416_CR20
  doi: 10.1007/11841036_48
– ident: 416_CR32
  doi: 10.1007/978-3-642-17572-5_20
– volume: 3
  start-page: 71
  year: 2014
  ident: 416_CR36
  publication-title: Tractability.
  doi: 10.1017/CBO9781139177801.004
– ident: 416_CR14
– ident: 416_CR35
– ident: 416_CR18
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 416_CR19
  publication-title: Math Program
  doi: 10.1007/BF01588971
– ident: 416_CR7
– ident: 416_CR17
  doi: 10.1109/CVPR.2015.7298928
– ident: 416_CR33
– ident: 416_CR9
– ident: 416_CR31
– ident: 416_CR10
– ident: 416_CR3
– ident: 416_CR5
SSID ssj0001340564
Score 2.1611998
Snippet As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses...
Abstract As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
Big Data
Big data summarisation
Communications Engineering
Complexity
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Database Management
Experiments
Greedy algorithms
Information Storage and Retrieval
k-extendible system constraints
Mathematical Applications in Computer Science
Maximization
Networks
Optimization
Personalised recommendation
Random sampling
Recommender systems
Sampling
Submodular maximisation
Summarization
Thresholds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQqgcu9IOibkuRD9zAwnHsxD5uK1YcKsoBpL1ZdjyBlehSbQLS_vuOnWTZrQS99JoPyXozk3kTj98QciyCicJEjlWgCiZBKGZ4LdEgGgr0Ich9svSP8vJSz2bmamPUV-wJ6-SBO-DONDIQAyEzVRxBLWonap85kMoFE2SaVyt4aTaKqfR3JUciUsjhlIwuzhoZlUtY7EiIGlMFW21loiTYv8Uy_9oYTflm-o7s9USRTroFvic7sPhA3g5DGGgfk_vk54Q2Lkr80pAYYKz9aYsWauLGEsVyGr-jLCarQN397cNy3t79okhVqZ_f0tggSrsDbH1fz0dyMz2__n7B-ikJrFJctMzlQXGIJ0IdYERCwDj1gnuA0hQ6ZLyu88pw44OqA5igQl0GAc4jrFCbLD8go8XDAj4RCgKDELjwmdcS8dWyUqXjWpoS85grxiQbELNVLyEeJ1nc21RK6MJ2KFtE2SaU7WpMTtbv_O4ENF59-ls0xPrJKH6dLqBL2N4l7L9cYkwOBzPaPiIbK7Ayi-yqVGNyOpj2-fbLS_r8P5b0heyK5HqCcXNIRu3yEb6SN9VTO2-WR8l3_wD3LvB9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VlEMvDS1UBELlAzew8HrXu_YxRK16qNIeQOrNstezIVKboOyClH9f2_G2CoJK5bo7lqx5eGbsmW8APnKnAjCRoTWKkhbIBVWsKbxAJJZehzC3UdKX1Wwmb27UdWoKa_tq9_5JMp7U0axl-aUtAvQIDSUFASSqpJsXsC8yWYWUa5p6HOLNSu4py6LvkPnr0h0vFMH6dyLMPx5Fo685H_7fLl_BYYotyWSrDEewh8tjGPZzG0gy49dwNSGtCajAxMWgMVwXkM4LtQ1vUcRn4P7opcG_OWJu56v1ovtxR3x0S-xiTkJNKdn2vKVSoDfw_fzs2_SCpsEKtBaMd9TkTjAMTaQGvRGj86ZtObOIlSqly1jT5LViyjrROFROuKZyHI3NFWKjsvwEBsvVEt8CQe7tFhm3mZWFcUoWtagMk4WqvOsz5QiyntG6TqjjYfjFrY7Zhyz1lmPac0xHjunNCD49rPm5xdx4kvprkN8DZcDLjh9W67lO5qelj2MVukzVYZA5bwxvbGawEH7LzvvxEYx76etkxK3mPpkLAVklRvC5l_bj739v6d3zyN_DAY8KwylTYxh061_4AV7Wv7tFuz6Nyn0PdgH0qg
  priority: 102
  providerName: Springer Nature
Title A sample decreasing threshold greedy-based algorithm for big data summarisation
URI https://link.springer.com/article/10.1186/s40537-021-00416-y
https://www.proquest.com/docview/2487663575
https://doaj.org/article/89239ed19c21462fa2fb1ae45ad9d413
Volume 8
WOSCitedRecordID wos000618346700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M0C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: P5Z
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: K7-
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: 7WY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Social Science Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M2R
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/socscijournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoy4EL5VNdKCsfuIFVx4mT-ITaVatW0CVCIFoulhNPlkplt2wCUv89M16nqyLRCxdLiZ3EypvxjMf2G8ZeK2-ImMiJBnQuMlBaGNlmCEgJOcoQpHVA-kMxnZZnZ6aKAbcubqscxsQwUPtFQzHyPYWeNVnHQr-7-ikoaxStrsYUGhtsizwb4s4_lZN1jCVFdyTPhrMyZb7XZcRfImhfAjFN5eL6lj0KtP23fM2_lkeD1Tna_t_-PmIPo7_J91cC8pjdg_kTtj3kcuBRtZ-yj_u8c8QUzH1wJCmEwHsEuqP1KY6zchyOBdk8z93lDL_Uf__B0ePl9cWM0z5TvjoHF7cHPWNfjg4_T45FTLYgGi1VL1zqtQQ6WOoAFRs8qnutZA1QmLz0iWzbtDHS1F63HozXvi28AlenBqA1Sfqcbc4Xc9hhHBTqMkhVJ3WZOW_KrNGFk2VmCjSHLh-xZPjltolM5JQQ49KGGUmZ2xVMFmGyASZ7PWJvbp65WvFw3Nn6gJC8aUkc2uHGYjmzUSVtib6tAZ-YhpKbq9aptk4cZBq77NG2j9jugKyNit3ZNawj9naQjXX1v7v04u63vWQPVJBKJaTZZZv98he8Yveb3_1FtxyzjeLr-ZhtHRxOq094NVHZOEQPsHxfiHEQeyoV1Vb6G7atTk6r8z8zLAdY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFPABTmA1ceIkPiBUHlWrLksPRaq4GCeeLJXKbtkE0P4pfiMzTtJVkeitB66JY9mZzzOf7XkAPFPecGIiJyvUmUxRaWmiOiWBFJgRhjApg6TH-WRSHB2ZgzX4PcTCsFvloBODovbzis_ItxQxa7aOuX59-l1y1Si-XR1KaHSw2MflL9qyNa_23pF8nyu18_7w7a7sqwrISkeqlS7xOkKOoHRICEZPuC5VVCLmJit8HNV1UpnIlF7XHo3Xvs69QlcmBrE2cUL9XoGrRCMMK4ID_Xl1ppMQ_cnSITanyLaalPOlSPaD4MxWmVyes3-hTMA5bvvXdWywcjsb_9v_uQU3ez4ttrsFcBvWcHYHNoZaFaJXXXfh47ZoHGdCFj4QZT4iES0BueH7NzFdkBVfSrbpXriTKc2s_fpNEKMX5fFUsB-t6OL8evene_DpUqZ1H9Zn8xk-AIGKdBVGqozLInXeFGmlcxcVqcnJ3LtsBPEgYlv1mda54MeJDTuuIrMdLCzBwgZY2OUIXpx9c9rlGbmw9RtGzllLzhEeHswXU9urHFsQdzfoY1Nx8XZVO1WXscNU05A9cZcRbA5Isr3iauwKRiN4OWBx9frfQ3p4cW9P4fru4YexHe9N9h_BDRVWhJKR2YT1dvEDH8O16md73CyehCUl4MtlY_QPS9ZeoQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL5SkWCvjADawmjp3Yx_JYgaiWHkDqzbLj8XalslttAlL_PR4nKRQBEuKajCVrHp6xZ-YbgOciGAImcrxFVXOJQnFTRJkEorFOOoSVz5I-bBYLfXxsjn7q4s_V7lNKcuhpIJSmdb9_FuJg4rre7yTBkHAqLyDAqJqfX4VrkpJKlK4d-x3yK0uVKGs5dcv8duklj5SB-y9Fm78kSLPfme_-_45vw60x5mQHg5LcgSu4vgu70zwHNpr3Pfh4wDpHaMEs5GCSnhFYn4TdUY6KpZt5OpI5-b3A3Olys131J19YinqZXy0Z1ZqyoRduLBG6D5_nbz-9fsfHgQu8VYXouauCKpCaSx0m48aQTN6LwiM2ptahLGKsWlMYH1QMaIIKsQkCna8MYjRl9QB21ps1PgSGItkzFsKXXksXjJatalyhpWmSS3T1DMqJ6bYd0chpKMapzbcSXduBYzZxzGaO2fMZvLhYczZgcfyV-hXJ8oKScLTzh812aUeztDrFtwZDaVoacC6iE9GXDqVKWw7Jv89gb9IEOxp3Z0W65FGg1qgZvJwk_-P3n7f06N_In8GNozdze_h-8eEx3BRZdwQvzB7s9Nuv-ASut9_6Vbd9mnX-O7XTAII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sample+decreasing+threshold+greedy-based+algorithm+for+big+data+summarisation&rft.jtitle=Journal+of+big+data&rft.au=Li%2C+Teng&rft.au=Shin+Hyo-Sang&rft.au=Tsourdos+Antonios&rft.date=2021-02-09&rft.pub=Springer+Nature+B.V&rft.eissn=2196-1115&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-021-00416-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon