A sample decreasing threshold greedy-based algorithm for big data summarisation
As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-nega...
Gespeichert in:
| Veröffentlicht in: | Journal of big data Jg. 8; H. 1; S. 1 - 21 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
09.02.2021
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 2196-1115, 2196-1115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | As the scale of datasets used for big data applications expands rapidly, there have been increased efforts to develop faster algorithms. This paper addresses big data summarisation problems using the submodular maximisation approach and proposes an efficient algorithm for maximising general non-negative submodular objective functions subject to
k
-extendible system constraints. Leveraging a random sampling process and a decreasing threshold strategy, this work proposes an algorithm, named Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an expected approximation guarantee of
1
1
+
k
-
ϵ
for maximising monotone submodular functions and of
k
(
1
+
k
)
2
-
ϵ
in non-monotone cases with expected computational complexity of
O
n
(
1
+
k
)
ϵ
ln
r
ϵ
. Here,
r
is the largest size of feasible solutions, and
ϵ
∈
0
,
1
1
+
k
is an adjustable designing parameter for the trade-off between the approximation ratio and the computational complexity. The performance of the proposed algorithm is validated and compared with that of benchmark algorithms through experiments with a movie recommendation system based on a real database. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2196-1115 2196-1115 |
| DOI: | 10.1186/s40537-021-00416-y |