A semi-supervised learning technique assisted multi-objective evolutionary algorithm for computationally expensive problems
Existing multi-objective evolutionary algorithms (MOEAs) have demonstrated excellent efficiency when tackling multi-objective tasks. However, its use in computationally expensive multi-objective issues is hindered by the large number of reliable evaluations needed to find Pareto-optimal solutions. T...
Gespeichert in:
| Veröffentlicht in: | Complex & intelligent systems Jg. 11; H. 2; S. 128 - 11 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.02.2025
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 2199-4536, 2198-6053 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Existing multi-objective evolutionary algorithms (MOEAs) have demonstrated excellent efficiency when tackling multi-objective tasks. However, its use in computationally expensive multi-objective issues is hindered by the large number of reliable evaluations needed to find Pareto-optimal solutions. This paper employs the semi-supervised learning technique in model training to aid in evolutionary algorithms for addressing expensive multi-objective issues, resulting in the semi-supervised learning technique assisted multi-objective evolutionary algorithm (SLTA-MOEA). In SLTA-MOEA, the value of every objective function is determined as a weighted mean of values approximated by all surrogate models for that objective function, with the weights optimized through a convex combination problem. Furthermore, the number of unlabelled solutions participating in model training is adaptively determined based on the objective evaluations conducted. A group of tests on DTLZ test problems with 3, 5, and 10 objective functions, combined with a practical application, are conducted to assess the effectiveness of our proposed method. Comparative experimental results versus six state-of-the-art evolutionary algorithms for expensive problems show high efficiency of SLTA-MOEA, particularly for problems with irregular Pareto fronts. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2199-4536 2198-6053 |
| DOI: | 10.1007/s40747-024-01715-6 |