Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods

Classifications of coniferous forest stands regarding tree species and age classes were performed using hyperspectral remote sensing data (HyMap) of a forest in western Germany. Spectral angle mapper (SAM) and maximum likelihood (ML) classifications were used to classify the images. Classification w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of remote sensing Ročník 26; číslo 24; s. 5453 - 5465
Hlavní autori: Buddenbaum, H., Schlerf, M., Hill, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 20.12.2005
Taylor and Francis
Predmet:
ISSN:0143-1161, 1366-5901
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Classifications of coniferous forest stands regarding tree species and age classes were performed using hyperspectral remote sensing data (HyMap) of a forest in western Germany. Spectral angle mapper (SAM) and maximum likelihood (ML) classifications were used to classify the images. Classification was performed using (i) spectral information alone, (ii) spectral information and stem density, (iii) spectral and textural information, (iv) all data together, and results were compared. Geostatistical and grey level co-occurrence matrix based texture channels were derived from the HyMap data. Variograms, cross variograms, pseudo-cross variograms, madograms, and pseudo-cross madograms were tested as geostatistical texture measures. Pseudo-cross madograms, a newly introduced geostatistical texture measure, performed best. The classification accuracy (kappa) using hyperspectral data alone was 0.66. Application of pseudo-cross madograms increased it to 0.74, a result comparable to that obtained with stem density information derived from high spatial resolution imagery.
AbstractList Classifications of coniferous forest stands regarding tree species and age classes were performed using hyperspectral remote sensing data (HyMap) of a forest in western Germany. Spectral angle mapper (SAM) and maximum likelihood (ML) classifications were used to classify the images. Classification was performed using (i) spectral information alone, (ii) spectral information and stem density, (iii) spectral and textural information, (iv) all data together, and results were compared. Geostatistical and grey level co-occurrence matrix based texture channels were derived from the HyMap data. Variograms, cross variograms, pseudo-cross variograms, madograms, and pseudo-cross madograms were tested as geostatistical texture measures. Pseudo-cross madograms, a newly introduced geostatistical texture measure, performed best. The classification accuracy (kappa) using hyperspectral data alone was 0.66. Application of pseudo-cross madograms increased it to 0.74, a result comparable to that obtained with stem density information derived from high spatial resolution imagery.
Author Hill, J.
Schlerf, M.
Buddenbaum, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Buddenbaum
  fullname: Buddenbaum, H.
  email: henning@buddenbaum.de
  organization: Remote Sensing Department , University of Trier
– sequence: 2
  givenname: M.
  surname: Schlerf
  fullname: Schlerf, M.
  organization: Remote Sensing Department , University of Trier
– sequence: 3
  givenname: J.
  surname: Hill
  fullname: Hill, J.
  organization: Remote Sensing Department , University of Trier
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17361910$$DView record in Pascal Francis
BookMark eNqFkUFvVCEQx4mpidvqB_DGRW9PByi8t4kXs7HapIkXPRMWhi2GByuw0f325XWrB5vU04TM7_fPDHNOzlJOSMhrBu8YTPAe2KVgTIEE4JOEUT0jKyaUGuQa2BlZLf2hA-wFOa_1BwCoUY4rMm-iqTX4YE0LOdHsqc0peCz5UGkriLTu0Qas1CRHzQ6pXYz-PtSQdvT2uMeyIK2YSJ1p5h7cYa6tR9bWkyOdsd1mV1-S597Eiq8e6gX5fvXp2-bLcPP18_Xm481gJfA2TGLinnGHDiW_VKMwzHGJcutga7gBxdEzy3Btt3LaokIhuPLcgReSGyHEBXl7yt2X_POAtek5VIsxmoR9L83XTExCQgffPICm9jl9McmGqvclzKYcNRuFYmu2cOOJsyXXWtBrG9r9j_W1Q9QM9HIG_egM3WT_mH_Dn3A-nJyQfC6z-ZVLdLqZY8zlz4jiKX38r_7I0u13E3fNjrHw
CODEN IJSEDK
CitedBy_id crossref_primary_10_1016_j_jag_2010_11_007
crossref_primary_10_5589_cjrs34_suppl2fi
crossref_primary_10_1007_s10531_019_01698_8
crossref_primary_10_1016_j_rse_2008_02_004
crossref_primary_10_3390_f10010001
crossref_primary_10_1186_s40663_020_00274_9
crossref_primary_10_14358_PERS_80_8_773
crossref_primary_10_1109_JSTARS_2015_2477780
crossref_primary_10_1016_j_ophoto_2022_100016
crossref_primary_10_1109_LGRS_2023_3282973
crossref_primary_10_17221_86_2011_JFS
crossref_primary_10_1080_01431160801891887
crossref_primary_10_3390_fire7020058
crossref_primary_10_1016_j_jag_2013_01_005
crossref_primary_10_1016_j_rse_2012_01_015
crossref_primary_10_3390_su14148273
crossref_primary_10_1016_j_ecoleng_2016_12_004
crossref_primary_10_1890_07_0783_1
crossref_primary_10_1016_j_ecolmodel_2011_11_027
crossref_primary_10_3390_rs16040686
crossref_primary_10_1080_01431160802555820
crossref_primary_10_1117_1_JRS_16_034521
crossref_primary_10_3390_app9183926
crossref_primary_10_3390_rs12213570
crossref_primary_10_3390_f10090746
crossref_primary_10_1080_10106049_2011_562308
crossref_primary_10_1016_j_geoderma_2012_11_011
crossref_primary_10_1177_0309133307079054
crossref_primary_10_1109_JSTARS_2014_2329390
crossref_primary_10_1109_JSTARS_2016_2596040
crossref_primary_10_3390_rs8121001
crossref_primary_10_3390_s19071543
crossref_primary_10_1080_10106049_2015_1094527
crossref_primary_10_1080_01431161_2018_1530813
crossref_primary_10_1007_s10661_021_09429_9
crossref_primary_10_1080_07038992_2015_1065708
crossref_primary_10_26833_ijeg_298951
crossref_primary_10_1016_j_jag_2019_101908
crossref_primary_10_1371_journal_pone_0150808
crossref_primary_10_3390_rs8060445
crossref_primary_10_1080_01431161003674618
crossref_primary_10_1080_14498596_2016_1212414
crossref_primary_10_3390_rs14163992
crossref_primary_10_1007_s10666_021_09785_3
crossref_primary_10_3390_rs70912009
crossref_primary_10_1016_j_jag_2020_102173
crossref_primary_10_3390_rs11202337
crossref_primary_10_7780_kjrs_2025_41_2_1_1
crossref_primary_10_1080_10106049_2014_883439
crossref_primary_10_3390_rs11232865
crossref_primary_10_1007_s12524_024_01887_1
crossref_primary_10_1016_j_isprsjprs_2017_01_016
crossref_primary_10_1109_JSTARS_2013_2272212
crossref_primary_10_1111_cag_12930
crossref_primary_10_3390_rs12071199
crossref_primary_10_3390_ijgi6090275
crossref_primary_10_1016_j_rse_2011_12_003
crossref_primary_10_1007_s11676_025_01870_7
crossref_primary_10_1016_j_rse_2011_04_004
crossref_primary_10_1080_01431160701442138
crossref_primary_10_3390_rs15051341
crossref_primary_10_1139_cjfr_2024_0302
crossref_primary_10_1016_j_rsase_2023_101136
crossref_primary_10_1016_j_isprsjprs_2010_09_001
crossref_primary_10_1080_01431160802592518
crossref_primary_10_1109_JSTARS_2018_2837884
crossref_primary_10_1007_s11258_018_0865_8
crossref_primary_10_1016_j_jag_2017_04_008
crossref_primary_10_1080_01431161003692040
crossref_primary_10_1080_01431161_2013_776721
crossref_primary_10_1016_j_ufug_2009_06_006
crossref_primary_10_3390_f6061982
crossref_primary_10_1002_ggge_20157
crossref_primary_10_1016_j_jag_2017_03_007
crossref_primary_10_1016_j_isprsjprs_2008_06_006
crossref_primary_10_1016_j_rse_2019_111232
crossref_primary_10_3390_rs17091491
crossref_primary_10_1108_AGJSR_02_2023_0056
crossref_primary_10_1080_01431161_2013_822601
crossref_primary_10_1080_10106049_2012_710653
crossref_primary_10_14358_PERS_78_10_1079
crossref_primary_10_5589_m08_057
crossref_primary_10_1080_01431161_2011_584077
crossref_primary_10_1016_j_isprsjprs_2020_11_005
Cites_doi 10.1080/01431169608948761
10.1080/014311697218764
10.1016/0034-4257(95)00189-1
10.1016/S0034-4257(00)00159-0
10.1016/S0098-3004(99)00118-1
10.1109/TSMC.1973.4309314
10.1016/0034-4257(93)90013-N
10.1016/0304-3800(88)90112-3
10.1080/01431160118269
10.1016/j.rse.2004.04.010
10.1016/0034-4257(90)90032-H
10.1080/014311600210993
10.1080/01431160110115825
10.1016/0034-4257(88)90109-5
10.2307/1941930
10.1080/01431169008955048
10.1109/36.3001
10.1016/0034-4257(88)90021-1
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2005
2006 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2005
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
FR3
H8D
KR7
L7M
DOI 10.1080/01431160500285076
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 5465
ExternalDocumentID 17361910
10_1080_01431160500285076
128490
GeographicLocations Central Europe
Germany
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
6TJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDPE
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFBWG
AFION
AFKVX
AFRVT
AGDLA
AGMYJ
AGVKY
AGWUF
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
BWMZZ
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
H~9
IPNFZ
J.P
KYCEM
M4Z
OPCYK
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
VOH
ZGOLN
ZY4
~02
~S~
AAYXX
CITATION
07I
1TA
4B5
ABFMO
ADXEU
ADYSH
AEHZU
AEZBV
AGBLW
AI.
AIDBO
AKHJE
AKMBP
ALXIB
BGSSV
C0-
C5H
DEXXA
FETWF
HF~
IFELN
IQODW
L8C
LJTGL
TAP
UB6
VH1
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c502t-8382f12dede524673a1d25e5bd0ba2a062ef1c1e9cb58be6e3326f2d0f352a333
IEDL.DBID TFW
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000234653800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
IngestDate Fri Sep 05 13:25:15 EDT 2025
Mon Jul 21 09:14:58 EDT 2025
Sat Nov 29 03:33:27 EST 2025
Tue Nov 18 21:44:04 EST 2025
Mon Oct 20 23:34:39 EDT 2025
Mon May 13 12:08:30 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords textures
variograms
accuracy
vegetation
trees
Stem
Hyperspectral imaging sensor
imagery
maximum likelihood
spatial resolution
geostatistics
Introduced species
Forest stand
density
gymnosperms
Europe
Plantae
remote sensing
classification
forests
airborne methods
channels
Gray scale
Spermatophyta
Coniferales
age
Coniferous forest
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-8382f12dede524673a1d25e5bd0ba2a062ef1c1e9cb58be6e3326f2d0f352a333
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29138350
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_29138350
pascalfrancis_primary_17361910
crossref_citationtrail_10_1080_01431160500285076
informaworld_taylorfrancis_310_1080_01431160500285076
crossref_primary_10_1080_01431160500285076
PublicationCentury 2000
PublicationDate 2005-12-20
PublicationDateYYYYMMDD 2005-12-20
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-20
  day: 20
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of remote sensing
PublicationYear 2005
Publisher Taylor & Francis
Taylor and Francis
Publisher_xml – name: Taylor & Francis
– name: Taylor and Francis
References Köhl M. (ref18) 2001; 2
Atzberger C. E. (ref1a) 2002; 3
Kruse F. A. (ref19) 1993; 44
Running W. (ref25b) 1988; 42
Lillesand T. M. (ref22) 2000
Running W. (ref25a) 1994; 4
Coleman T. L. (ref2) 1990; 33
Schläpfer D. (ref26) 1998
Woodcock C. E. (ref31) 1988; 25
Vohland M. (ref30) 1997
Hildebrandt G. (ref11) 1996
Foody G. M. (ref5) 1997; 18
Isaaks E. H. (ref14) 1989
Chica‐Olmo M. (ref1) 2000; 26
Research Systems (ref24) 2000
Koch B. (ref17) 1993; 4
Franklin S. E. (ref6) 1994; 60
Ustin S. L. (ref29) 2001; 22
Deutsch C. V. (ref4) 1998
Key T. (ref16) 2001; 75
Lark R. M. (ref21a) 1996; 17
Niemann K. O. (ref23) 1995; 61
ref20
Lee K.‐S. (ref21) 2004; 91
Green A. A. (ref8) 1988; 26
Haralick R. M. (ref9) 1973; 3
Tanré D. (ref28) 1990; 11
Schläpfer D. (ref25) 2002; 23
Schlerf M. (ref27) 2003
Curran P. J. (ref3) 1988; 37
Hay G. J. (ref10) 1996; 55
Franklin S. E. (ref7) 2000; 21
Hill J. (ref12) 2003; 1
Hill J. (ref13) 1995
Journel A. G. (ref15) 1978
References_xml – volume-title: Einsatz von Satellitenbilddaten (Landsat TM) zur Ableitung forstlicher Bestandsparameter und Waldschadensindikatoren.
  year: 1997
  ident: ref30
– start-page: pp. 143
  volume-title: Sensors and environmental applications of remote sensing,
  year: 1995
  ident: ref13
– volume: 17
  start-page: pp. 2115
  year: 1996
  ident: ref21a
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431169608948761
– volume: 61
  start-page: pp. 1119
  year: 1995
  ident: ref23
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 3
  start-page: pp. 171
  year: 2002
  ident: ref1a
  publication-title: Photogrammetrie, Fernerkundung, Geoinformation
– volume: 18
  start-page: pp. 799
  year: 1997
  ident: ref5
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311697218764
– volume: 55
  start-page: pp. 108
  year: 1996
  ident: ref10
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00189-1
– ident: ref20
– volume: 75
  start-page: pp. 100
  year: 2001
  ident: ref16
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(00)00159-0
– volume: 26
  start-page: pp. 373
  year: 2000
  ident: ref1
  publication-title: Computers and Geosciences
  doi: 10.1016/S0098-3004(99)00118-1
– volume: 2
  start-page: pp. 107
  year: 2001
  ident: ref18
  publication-title: Photogrammetrie, Fernerkundung, Geoinformation
– volume-title: Fernerkundung und Luftbildmessung für Forstwirtschaft, Vegetationskartierung und Landschaftsökologie
  year: 1996
  ident: ref11
– volume: 3
  start-page: pp. 610
  year: 1973
  ident: ref9
  publication-title: IEEE Transactions on Sytems, Man and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
– volume: 1
  start-page: pp. 7
  year: 2003
  ident: ref12
  publication-title: Photogrammetrie, Fernerkundung, Geoinformation
– volume: 44
  start-page: pp. 145
  year: 1993
  ident: ref19
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(93)90013-N
– volume-title: GSLIB—Geostatistical Software Library and User's Guide
  year: 1998
  ident: ref4
– volume: 42
  start-page: pp. 125
  year: 1988
  ident: ref25b
  publication-title: Ecological Modeling
  doi: 10.1016/0304-3800(88)90112-3
– volume: 22
  start-page: pp. 1779
  year: 2001
  ident: ref29
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160118269
– volume-title: Remote Sensing and Image Interpretation,
  year: 2000
  ident: ref22
– volume: 91
  start-page: pp. 508
  year: 2004
  ident: ref21
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.04.010
– volume: 33
  start-page: pp. 211
  year: 1990
  ident: ref2
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(90)90032-H
– volume: 21
  start-page: pp. 61
  year: 2000
  ident: ref7
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311600210993
– start-page: pp. 334
  volume-title: SPIE International Symposium on Optical Sciences, Engineering, and Instrumentation, San Diego,
  year: 1998
  ident: ref26
– start-page: pp. 413
  volume-title: Proceedings 22nd EARSeL Symposium Geoinformation for European‐wide integration, 4–6 June 2002, Prague,
  year: 2003
  ident: ref27
– volume-title: ENVI User's Guide
  year: 2000
  ident: ref24
– volume-title: Mining Geostatistics
  year: 1978
  ident: ref15
– volume: 23
  start-page: pp. 2609
  year: 2002
  ident: ref25
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160110115825
– volume: 25
  start-page: pp. 349
  year: 1988
  ident: ref31
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(88)90109-5
– volume: 4
  start-page: pp. 238
  year: 1994
  ident: ref25a
  publication-title: Ecological Applications
  doi: 10.2307/1941930
– volume: 11
  start-page: pp. 659
  year: 1990
  ident: ref28
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431169008955048
– volume-title: An Introduction to Applied Geostatistics
  year: 1989
  ident: ref14
– volume: 26
  start-page: pp. 65
  year: 1988
  ident: ref8
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.3001
– volume: 60
  start-page: pp. 1233
  year: 1994
  ident: ref6
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 4
  start-page: pp. 143
  year: 1993
  ident: ref17
  publication-title: Zeitschrift für Photogrammetrie und Fernerkundung
– volume: 37
  start-page: pp. 493
  year: 1988
  ident: ref3
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(88)90021-1
SSID ssj0006757
Score 2.1468897
Snippet Classifications of coniferous forest stands regarding tree species and age classes were performed using hyperspectral remote sensing data (HyMap) of a forest...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5453
SubjectTerms Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
Teledetection and vegetation maps
Title Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods
URI https://www.tandfonline.com/doi/abs/10.1080/01431160500285076
https://www.proquest.com/docview/29138350
Volume 26
WOSCitedRecordID wos000234653800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQQoKFNyI8igcmpAg_kjQZEaJiqhiK6BY5sd0OkKImRfDvuXOSQinqAGMiO0589t138d13hFzyPFJSJ9ZXYB79IA64n2RG-1aDsVO5jhRTrthEt9-Ph8PkoYnNKZuwSvShbU0U4XQ1bm6VlW1E3DVS0nEOOBwdBsAzSLgNqB7X96D3NNfDAIXrZGkk4QRg055p_vaEBau0wFmKwZKqhPmydaGLJZ3tDFFv55-fsEu2GwRKb-ols0fWTLFPNpti6OOPA_LiCmViCJGTGp1YCk4zhsBMZiXFU2yK-ZngYlMYn4JCojn2gGuMoh_RMfi2dQrnFAbCGFTXcGQmmL7kmKHhfl27ujwkj727we2931Rl8POQicqPZSwsF9poEwpQs1JxLUITZpplSigWCWN5zk2SZ2GcmchIQIhWaGYB6ykp5RFZLyaFOSbwApEKrVSZNnGQdJkCWylNoEELiUhZ4xHWSiXNG8pyrJzxnPKW2fTnPHrkat7ltebrWNWYfRd1WrmfJI2gl5un1XvlkXBFF7liqM7CMvp6ua4EH5Yzj1y06yqFHY7HNqowINdUJFwCTmYnfxz6lGzVfLMCVOIZWa-mM3NONvI3EPi04_bMJ2KZFL0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xkmDhjShPD0xIEX40aTIiRAUCKoYi2CIntmGAFrUpgn_PnZMABdQBxkR27Pjsu-_s83cAByKPtDKJCzSax6AZN0WQZNYEzqCx07mJNNc-2USr04nv7pLrasNtWIVVkg_tSqIIr6tpcdNmdB0Sd0ScdEIgECePAQFNNA2zIdpZCunrtm8_NDGC4fK6NNFwIrSpTzV_-8SYXRpjLaVwST3EEXNlqosfWtubovbSf39iGRYrEMqOy1mzAlO2twrzVT70h7c1ePK5MimKyAuO9R1Dv5miYPqjIaODbEZXNNHLZtgBhjqJ5VQDnymQ_p49oHtb3uIcYEMUhuoL3ts-3WDy5ND4vkxfPVyHm_Zp9-QsqBIzBHnIZRHEKpZOSGONDSVqWqWFkaENM8MzLTWPpHUiFzbJszDObGQVgkQnDXcI97RSagNmev2e3QTsQKRDp3RmbNxMWlyjuVS2aVARyUg72wBeiyXNK9ZySp7xmIqa3PT7ODbg8KPKc0nZMakw_yrrtPD7JJWkfxZPi9eiAeGEKmpCU3tj8-izcy2FbqzgDdivJ1aKi5xObnTPolxTmQiFUJlv_bHpfZg_615dppfnnYttWCjpZyVqyB2YKQYjuwtz-QsKf7DnF9A7uGAY3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQcDCGxEexQMTUoQfSZqMCKhAoKoDCLbIiW06QIvagODfc3aSQgF1gDGRnUt853vEd98BHLI8kkIlxpdoHv0gDpifZFr5RqGxk7mKJJWu2USr04nv75NulZszqtIqbQxtSqAIp6vt5n5Wps6IO7aQdIyhH24DBvRnolmYc8BYKM437buxIkZfuKyWtiic6NnUh5q_PWLCLE2AltpsSTnCBTNlp4sfSttZovbKP79hFZYrF5SclDKzBjO6vw6LVTf03vsGPLlOmTaHyLGNDAzBqNnmwAxeRsQeYxNboIkxNkH6BDUSye0MvLZp9A-kh8FtWcM5REI2CdUNfNADW7_koKHxftm8erQJt-3zm9MLv2rL4Och5YUfi5gbxpVWOuSoZ4Vkioc6zBTNJJc04tqwnOkkz8I405EW6CIarqhBZ08KIbag0R_09TbgC0QyNEJmSsdB0qISjaXQgUI1xCNptAe05kqaV5jltnXGY8pqaNPv6-jB0XjKcwnYMW0w_crqtHB_SSpG_xyeFm-FB-GUKWIKqeaEGH2-XEtgEMuoBwe1XKW4xe25jexr5GvKEybQUaY7fyR9AAvds3Z6fdm52oWlEnuWo3rcg0YxfNH7MJ-_Iu-HTbd9PgAqYheC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+coniferous+tree+species+and+age+classes+using+hyperspectral+data+and+geostatistical+methods&rft.jtitle=International+journal+of+remote+sensing&rft.au=Buddenbaum%2C+H.&rft.au=Schlerf%2C+M.&rft.au=Hill%2C+J.&rft.date=2005-12-20&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=26&rft.issue=24&rft.spage=5453&rft.epage=5465&rft_id=info:doi/10.1080%2F01431160500285076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431160500285076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon