Towards Massively Parallel Computations in Algebraic Geometry

Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation hav...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of computational mathematics Vol. 21; no. 3; pp. 767 - 806
Main Authors: Böhm, Janko, Decker, Wolfram, Frühbis-Krüger, Anne, Pfreundt, Franz-Josef, Rahn, Mirko, Ristau, Lukas
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2021
Springer Nature B.V
Subjects:
ISSN:1615-3375, 1615-3383
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation have been a success story for many years. In this paper, we explore the potential of using this principle in the context of computer algebra. More precisely, we combine two well-established systems: The mathematics we are interested in is implemented in the computer algebra system Singular , whose focus is on polynomial computations, while the coordination is left to the workflow management system GPI-Space, which relies on Petri nets as its mathematical modeling language and has been successfully used for coordinating the parallel execution (autoparallelization) of academic codes as well as for commercial software in application areas such as seismic data processing. The result of our efforts is a major step towards a framework for massively parallel computations in the application areas of Singular , specifically in commutative algebra and algebraic geometry. As a first test case for this framework, we have modeled and implemented a hybrid smoothness test for algebraic varieties which combines ideas from Hironaka’s celebrated desingularization proof with the classical Jacobian criterion. Applying our implementation to two examples originating from current research in algebraic geometry, one of which cannot be handled by other means, we illustrate the behavior of the smoothness test within our framework and investigate how the computations scale up to 256 cores.
AbstractList Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation have been a success story for many years. In this paper, we explore the potential of using this principle in the context of computer algebra. More precisely, we combine two well-established systems: The mathematics we are interested in is implemented in the computer algebra system Singular , whose focus is on polynomial computations, while the coordination is left to the workflow management system GPI-Space, which relies on Petri nets as its mathematical modeling language and has been successfully used for coordinating the parallel execution (autoparallelization) of academic codes as well as for commercial software in application areas such as seismic data processing. The result of our efforts is a major step towards a framework for massively parallel computations in the application areas of Singular , specifically in commutative algebra and algebraic geometry. As a first test case for this framework, we have modeled and implemented a hybrid smoothness test for algebraic varieties which combines ideas from Hironaka’s celebrated desingularization proof with the classical Jacobian criterion. Applying our implementation to two examples originating from current research in algebraic geometry, one of which cannot be handled by other means, we illustrate the behavior of the smoothness test within our framework and investigate how the computations scale up to 256 cores.
Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation have been a success story for many years. In this paper, we explore the potential of using this principle in the context of computer algebra. More precisely, we combine two well-established systems: The mathematics we are interested in is implemented in the computer algebra system Singular, whose focus is on polynomial computations, while the coordination is left to the workflow management system GPI-Space, which relies on Petri nets as its mathematical modeling language and has been successfully used for coordinating the parallel execution (autoparallelization) of academic codes as well as for commercial software in application areas such as seismic data processing. The result of our efforts is a major step towards a framework for massively parallel computations in the application areas of Singular, specifically in commutative algebra and algebraic geometry. As a first test case for this framework, we have modeled and implemented a hybrid smoothness test for algebraic varieties which combines ideas from Hironaka’s celebrated desingularization proof with the classical Jacobian criterion. Applying our implementation to two examples originating from current research in algebraic geometry, one of which cannot be handled by other means, we illustrate the behavior of the smoothness test within our framework and investigate how the computations scale up to 256 cores.
Author Decker, Wolfram
Böhm, Janko
Rahn, Mirko
Frühbis-Krüger, Anne
Pfreundt, Franz-Josef
Ristau, Lukas
Author_xml – sequence: 1
  givenname: Janko
  surname: Böhm
  fullname: Böhm, Janko
  organization: Department of Mathematics, Technische Universität Kaiserslautern
– sequence: 2
  givenname: Wolfram
  surname: Decker
  fullname: Decker, Wolfram
  email: decker@mathematik.uni-kl.de
  organization: Department of Mathematics, Technische Universität Kaiserslautern
– sequence: 3
  givenname: Anne
  surname: Frühbis-Krüger
  fullname: Frühbis-Krüger, Anne
  organization: Institute of Mathematics, Carl von Ossietzky Universität Oldenburg, Institut für Algebraische Geometrie, Leibniz Universität Hannover
– sequence: 4
  givenname: Franz-Josef
  surname: Pfreundt
  fullname: Pfreundt, Franz-Josef
  organization: Competence Center High Performance Computing, Fraunhofer ITWM
– sequence: 5
  givenname: Mirko
  surname: Rahn
  fullname: Rahn, Mirko
  organization: Competence Center High Performance Computing, Fraunhofer ITWM
– sequence: 6
  givenname: Lukas
  surname: Ristau
  fullname: Ristau, Lukas
  organization: Department of Mathematics, Technische Universität Kaiserslautern, Competence Center High Performance Computing, Fraunhofer ITWM
BookMark eNp9kD9PwzAQxS1UJNrCF2CKxBzw3zgZGKoKClIRDGW2HOdSpXLjYqfQfHsMQSAxdLm74f3u3r0JGrWuBYQuCb4mGMubQDDFeRpLigue8fRwgsYkIyJlLGej31mKMzQJYYMxEQXhY3S7ch_aVyF50iE072D75EV7bS3YZO62u32nu8a1IWnaZGbXUHrdmGQBbgud78_Raa1tgIufPkWv93er-UO6fF48zmfL1AhMu1SanLJasqyoQWOoJMkMVAYLUhJe5cQQySgtSiEqgLooOK0yXZIy0zLDohBsiq6GvTvv3vYQOrVxe9_Gk4qK-CAVXPCoygeV8S4ED7UyzWC_i66tIlh9haWGsFQs6jssdYgo_YfufLPVvj8OsQEKUdyuwf-5OkJ9AgcbfrM
CitedBy_id crossref_primary_10_1016_j_cpc_2023_108942
crossref_primary_10_1016_j_cpc_2023_108999
crossref_primary_10_1007_JHEP12_2020_054
crossref_primary_10_21468_SciPostPhys_19_1_003
crossref_primary_10_1007_s13366_024_00742_1
crossref_primary_10_1016_j_jsc_2023_102224
crossref_primary_10_1109_TPDS_2024_3406764
Cites_doi 10.1007/978-3-662-29244-0
10.1016/S0022-0000(69)80011-5
10.1093/comjnl/32.2.98
10.1007/978-3-319-70566-8_3
10.1145/129630.129635
10.1016/j.jsc.2017.05.001
10.1017/CBO9780511608681
10.1007/978-3-642-57739-0
10.1007/s00287-006-0107-7
10.24033/asens.1286
10.1007/3-540-11607-9_18
10.1007/s002220050141
10.1145/359576.359579
10.1007/978-1-4615-5499-8_10
10.4171/RMI/425
10.2140/jsag.2012.4.6
10.1007/978-3-662-10427-9_6
10.1177/1094342010391989
10.1090/S0002-9947-09-04716-3
10.1007/978-3-642-20300-8_1
10.1016/0001-8708(82)90048-2
10.2307/1970547
10.1016/0166-218X(91)90114-C
10.1142/9789812706812_0008
10.24033/asens.1573
10.1145/800070.802201
10.1007/PL00012443
10.1016/0304-3975(92)90173-D
10.1145/800076.802477
10.1016/j.jsc.2012.07.002
10.1007/978-1-4612-5350-1
10.1007/978-3-662-06289-0_1
10.1090/mcom/2951
10.1142/S0218196715500332
10.1007/BF01390081
10.1016/0021-8693(83)90096-0
ContentType Journal Article
Copyright The author's 2020
The author's 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The author's 2020
– notice: The author's 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-020-09464-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 806
ExternalDocumentID 10_1007_s10208_020_09464_x
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c502t-7c823f7369fea0ed716cedc051b14d81c173229b55deef9942d6ab1b6a7605953
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000547661600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Fri Jul 25 19:11:59 EDT 2025
Sat Nov 29 06:41:15 EST 2025
Tue Nov 18 21:59:57 EST 2025
Fri Feb 21 02:47:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hironaka desingularization
68W30
Surfaces of general type
Petri nets
14Q99
68W10
Computational algebraic geometry
Smoothness test
Distributed computing
14B05
Singular
GPI-Space
Computer algebra
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-7c823f7369fea0ed716cedc051b14d81c173229b55deef9942d6ab1b6a7605953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10208-020-09464-x
PQID 2538325454
PQPubID 43692
PageCount 40
ParticipantIDs proquest_journals_2538325454
crossref_citationtrail_10_1007_s10208_020_09464_x
crossref_primary_10_1007_s10208_020_09464_x
springer_journals_10_1007_s10208_020_09464_x
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kosaraju, S. R., Decidability of reachability in vector addition systems (preliminary version). STOC, 267–281. ACM (1982).
Zariski, O.; Samuel, P., Commutative Algebra. Vols. I and II. Corr. 2nd printing of the 1958–1960 edition. Springer (1975–1976).
Mayr, E. W., An algorithm for the general Petri net reachability problem, STOC, 238–246. ACM (1981).
EncinasSHauserHStrong resolution of singularities in characteristic zeroComment. Math. Helv.200277821845194911510.1007/PL00012443
Jensen, K., Coloured Petri Nets. Volume 1. Springer (1992).
Labarta, J., The OmpSs Programming Model, http://www.par.univie.ac.at/project/peppher/hipeac12/slides/Jesus_Labarta.pdf (2012).
Böhm, J.; Frühbis-Krüger, A., smoothtst.lib - A Singular library for determining smoothness of algebraic varieties. Singular distribution, http://www.singular.uni-kl.de.
Backus, J., Can Programming Be Liberated from the von Neumann Style? A functional Style and Its Algebra of Programs, 1977 Turing Award Lecture, Comm. ACM 21(8), 613–641 (1978).
KustinAMillerMConstructing big Gorenstein ideals from small onesJ. Algebra19838530332272508410.1016/0021-8693(83)90096-0
Software for Exascale Computing. Proposal to the German research Foundation to establish a Priority Program in the multidisciplinary field of High Performance Computing.
Petri, C. A., Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für instrumentelle Mathematik, Bonn (1962).
Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H., Singular 4-1-3 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de.
Böhm J.; Papadakis S., KustinMiller – The Kustin-Miller complex construction and resolutions of Gorenstein rings, Macaulay2 package (2012).
KarpRMMillerREParallel program schemataJ. Comput. Syst. Sci.19693214719524672010.1016/S0022-0000(69)80011-5
Frühbis-Krüger, A., Computational Aspects of Singularities, in J.-P. Brasselet, J. Damon et al.: Singularities in Geometry and Topology, World Scientific Publishing, 253–327 (2007).
van der Aalst, W. M. P., Three Good reasons for Using a Petri-net-based Workflow Management System, Proc. of the International Working Conference on Information and Process Integration in Enterprises (IPIC’96), 161–182 (1996).
Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79, 109–203, 205–326 (1964).
DongarraJBeckmannPThe international Exascale Software RoadmapInternational Journal of High Performance Computer Applications.201125136010.1177/1094342010391989
BöhmJPapadakisSImplementing the Kustin–Miller complex constructionJ. Softw. Algebra Geom.20124611294766810.2140/jsag.2012.4.6
BrunsWHerzogJCohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics 391998CambridgeCambridge University Press10.1017/CBO9780511608681
BierstoneEMilmanPCanonical Desingularization in Characteristic Zero by Blowing up the Maximum Strata of a Local InvariantInvent. Math.1997128207302144030610.1007/s002220050141
HironakaHOn the charactersν⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\star $$\end{document} and τ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^\star $$\end{document}of singularitiesJ. Math. Kyoto Univ.1967711943215842
BrauerWReisigWCarl Adam Petri und die “Petrinetze”Informatik-Spektrum200629536938110.1007/s00287-006-0107-7
GelernterDCarrieroNCoordination languages and their significanceComm. ACM19923529710710.1145/129630.129635
Mora, T., La queste del Saint Gra(AL): A computational approach to local algebra, Discrete Appl. Math. 33, 161–190 (1991).
Greuel, G.-M.; Pfister, G., A Singular Introduction to Commutative Algebra. Springer (2008).
BöhmJDeckerWFiekerCPfisterGThe use of bad primes in rational reconstructionMath. Comp.20158430133027337886010.1090/mcom/2951
Bauer, Ingrid; Catanese, Fabrizio, Surfaces of general type with geometric genus zero: a survey, in Complex and differential geometry. Conference held at Leibniz Universität Hannover, Germany, September 14–18, 2009. Proceedings, Springer Proc. Math. 8, 1–48 (2011)
Priese, L.; Wimmel, H., Petri-Netze. Springer (2003).
Heiner, M.; Popova-Zeugmann, L., Worst Case Analysis of Concurrent Systems with Duration Interval Petri Nets, Professoren des Inst. für Informatik; 1997 May.
HughesJWhy Functional Programming MattersComputer Journal19893229810710.1093/comjnl/32.2.98
Barth, W. P.; Hulek, K.; Peters, Chris A. M.; Van de Ven, A., Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 4. Springer (2004).
MayrEWMeyerARThe complexity of the word problems for commutative semigroups and polynomial idealsAdv. Math19824630532968320410.1016/0001-8708(82)90048-2
BravoAMEncinasSVillamayorOA Simplified Proof of Desingularization and ApplicationsRev. Mat. Iberoamericana2005212349458217491210.4171/RMI/425
GiesekerDGlobal moduli for surfaces of general typeInvent. Math.197743323328249859610.1007/BF01390081
Mora, T., An algorithm to compute the equations of tangent cones, in: Proceedings EUROCAM 82, Springer, 158–165 (1982).
University of Tennessee, PaRSEC, http://icl.cs.utk.edu/parsec/overview/index.html (2016).
Hauser, H., Why the characteristic zero proof of resolution of singularities fails in positive characteristic, Manuscript (2003), https://homepage.univie.ac.at/herwig.hauser
Eisenbud, D., Commutative algebra. With a view toward algebraic geometry. Springer (1995).
MaraisMSRenYMora’s holy grail: Algorithms for computing in localizations at prime idealsInternat. J. Algebra Comput.2015250711251143343222210.1142/S0218196715500332
NevesJPapadakisSA construction of numerical Campedelli surfaces with ZZ/6 torsionTrans. Amer. Math. Soc.200936149995021250643410.1090/S0002-9947-09-04716-3
BöhmJFrühbis-KrügerAA smoothness test for higher codimensionsJ. Symbolic Comput.201886153165372521810.1016/j.jsc.2017.05.001
Böhm, J.; Decker, W.; Laplagne, S.; Pfister, G., Local to global algorithms for the Gorenstein adjoint ideal of a curve in Böckle et al. (ed.) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, 51–96, Springer (2018).
Reid, M., Godeaux and Campedelli surfaces, https://homepages.warwick.ac.uk/~masda/surf/more/Godeaux.pdf
Villamayor, O., Constructiveness of Hironaka’s resolution, Ann. Sci. Ecole Norm Sup. (4) 22, no. 1, 1–32 (1989).
LambertJLA structure to decide reachability in Petri netsTCS199299179104116801110.1016/0304-3975(92)90173-D
BöhmJDeckerWLaplagneSPfisterGSteenpaßASteidelSParallel Algorithms for NormalizationJ. Symbolic Comput.20135199114300578410.1016/j.jsc.2012.07.002
Schreyer, F.-O., An experimental approach to numerical Godeaux surfaces, in Oberwolfach Report 7/2005, Komplexe Algebraische Geometrie, 434–436 (2005).
Pfreundt, F.-J.; Rahn, M.; et al., GPI-space, Fraunhofer ITWM Kaiserslautern, http://www.gpi-space.de/.
INRIA, StarPU, http://starpu.gforge.inria.fr (2016).
Giraud, J., Contact maximal en caractéristique positive, Ann. Sci. Éc. Norm. Sup.4e`me\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4^{\grave{e}\text{me}}$$\end{document} série 8, 201–234 (1975).
J Böhm (9464_CR8) 2018; 86
D Gelernter (9464_CR20) 1992; 35
J Neves (9464_CR41) 2009; 361
9464_CR50
J Böhm (9464_CR5) 2015; 84
9464_CR9
9464_CR51
9464_CR6
J Dongarra (9464_CR16) 2011; 25
9464_CR11
A Kustin (9464_CR33) 1983; 85
EW Mayr (9464_CR38) 1982; 46
9464_CR15
9464_CR17
J Böhm (9464_CR7) 2013; 51
9464_CR19
JL Lambert (9464_CR35) 1992; 99
D Gieseker (9464_CR21) 1977; 43
9464_CR40
9464_CR42
9464_CR43
9464_CR44
9464_CR45
9464_CR46
9464_CR47
9464_CR48
9464_CR49
J Hughes (9464_CR28) 1989; 32
S Encinas (9464_CR18) 2002; 77
W Brauer (9464_CR12) 2006; 29
AM Bravo (9464_CR13) 2005; 21
9464_CR30
9464_CR32
9464_CR34
MS Marais (9464_CR36) 2015; 25
9464_CR37
9464_CR39
E Bierstone (9464_CR4) 1997; 128
RM Karp (9464_CR31) 1969; 3
J Böhm (9464_CR10) 2012; 4
9464_CR2
9464_CR1
9464_CR3
W Bruns (9464_CR14) 1998
9464_CR22
9464_CR23
9464_CR24
9464_CR25
9464_CR26
9464_CR29
H Hironaka (9464_CR27) 1967; 7
References_xml – reference: Hauser, H., Why the characteristic zero proof of resolution of singularities fails in positive characteristic, Manuscript (2003), https://homepage.univie.ac.at/herwig.hauser/
– reference: Böhm J.; Papadakis S., KustinMiller – The Kustin-Miller complex construction and resolutions of Gorenstein rings, Macaulay2 package (2012).
– reference: Jensen, K., Coloured Petri Nets. Volume 1. Springer (1992).
– reference: BöhmJFrühbis-KrügerAA smoothness test for higher codimensionsJ. Symbolic Comput.201886153165372521810.1016/j.jsc.2017.05.001
– reference: EncinasSHauserHStrong resolution of singularities in characteristic zeroComment. Math. Helv.200277821845194911510.1007/PL00012443
– reference: BöhmJDeckerWFiekerCPfisterGThe use of bad primes in rational reconstructionMath. Comp.20158430133027337886010.1090/mcom/2951
– reference: LambertJLA structure to decide reachability in Petri netsTCS199299179104116801110.1016/0304-3975(92)90173-D
– reference: BöhmJPapadakisSImplementing the Kustin–Miller complex constructionJ. Softw. Algebra Geom.20124611294766810.2140/jsag.2012.4.6
– reference: GiesekerDGlobal moduli for surfaces of general typeInvent. Math.197743323328249859610.1007/BF01390081
– reference: BravoAMEncinasSVillamayorOA Simplified Proof of Desingularization and ApplicationsRev. Mat. Iberoamericana2005212349458217491210.4171/RMI/425
– reference: Barth, W. P.; Hulek, K.; Peters, Chris A. M.; Van de Ven, A., Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 4. Springer (2004).
– reference: BrunsWHerzogJCohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics 391998CambridgeCambridge University Press10.1017/CBO9780511608681
– reference: Mora, T., An algorithm to compute the equations of tangent cones, in: Proceedings EUROCAM 82, Springer, 158–165 (1982).
– reference: Böhm, J.; Decker, W.; Laplagne, S.; Pfister, G., Local to global algorithms for the Gorenstein adjoint ideal of a curve in Böckle et al. (ed.) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, 51–96, Springer (2018).
– reference: Bauer, Ingrid; Catanese, Fabrizio, Surfaces of general type with geometric genus zero: a survey, in Complex and differential geometry. Conference held at Leibniz Universität Hannover, Germany, September 14–18, 2009. Proceedings, Springer Proc. Math. 8, 1–48 (2011)
– reference: Mayr, E. W., An algorithm for the general Petri net reachability problem, STOC, 238–246. ACM (1981).
– reference: Heiner, M.; Popova-Zeugmann, L., Worst Case Analysis of Concurrent Systems with Duration Interval Petri Nets, Professoren des Inst. für Informatik; 1997 May.
– reference: Giraud, J., Contact maximal en caractéristique positive, Ann. Sci. Éc. Norm. Sup.4e`me\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4^{\grave{e}\text{me}}$$\end{document} série 8, 201–234 (1975).
– reference: KustinAMillerMConstructing big Gorenstein ideals from small onesJ. Algebra19838530332272508410.1016/0021-8693(83)90096-0
– reference: Villamayor, O., Constructiveness of Hironaka’s resolution, Ann. Sci. Ecole Norm Sup. (4) 22, no. 1, 1–32 (1989).
– reference: BöhmJDeckerWLaplagneSPfisterGSteenpaßASteidelSParallel Algorithms for NormalizationJ. Symbolic Comput.20135199114300578410.1016/j.jsc.2012.07.002
– reference: MayrEWMeyerARThe complexity of the word problems for commutative semigroups and polynomial idealsAdv. Math19824630532968320410.1016/0001-8708(82)90048-2
– reference: University of Tennessee, PaRSEC, http://icl.cs.utk.edu/parsec/overview/index.html (2016).
– reference: Greuel, G.-M.; Pfister, G., A Singular Introduction to Commutative Algebra. Springer (2008).
– reference: HughesJWhy Functional Programming MattersComputer Journal19893229810710.1093/comjnl/32.2.98
– reference: Backus, J., Can Programming Be Liberated from the von Neumann Style? A functional Style and Its Algebra of Programs, 1977 Turing Award Lecture, Comm. ACM 21(8), 613–641 (1978).
– reference: GelernterDCarrieroNCoordination languages and their significanceComm. ACM19923529710710.1145/129630.129635
– reference: Pfreundt, F.-J.; Rahn, M.; et al., GPI-space, Fraunhofer ITWM Kaiserslautern, http://www.gpi-space.de/.
– reference: Schreyer, F.-O., An experimental approach to numerical Godeaux surfaces, in Oberwolfach Report 7/2005, Komplexe Algebraische Geometrie, 434–436 (2005).
– reference: Mora, T., La queste del Saint Gra(AL): A computational approach to local algebra, Discrete Appl. Math. 33, 161–190 (1991).
– reference: Eisenbud, D., Commutative algebra. With a view toward algebraic geometry. Springer (1995).
– reference: MaraisMSRenYMora’s holy grail: Algorithms for computing in localizations at prime idealsInternat. J. Algebra Comput.2015250711251143343222210.1142/S0218196715500332
– reference: BierstoneEMilmanPCanonical Desingularization in Characteristic Zero by Blowing up the Maximum Strata of a Local InvariantInvent. Math.1997128207302144030610.1007/s002220050141
– reference: Reid, M., Godeaux and Campedelli surfaces, https://homepages.warwick.ac.uk/~masda/surf/more/Godeaux.pdf
– reference: Zariski, O.; Samuel, P., Commutative Algebra. Vols. I and II. Corr. 2nd printing of the 1958–1960 edition. Springer (1975–1976).
– reference: HironakaHOn the charactersν⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\star $$\end{document} and τ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^\star $$\end{document}of singularitiesJ. Math. Kyoto Univ.1967711943215842
– reference: Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H., Singular 4-1-3 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de.
– reference: INRIA, StarPU, http://starpu.gforge.inria.fr (2016).
– reference: Frühbis-Krüger, A., Computational Aspects of Singularities, in J.-P. Brasselet, J. Damon et al.: Singularities in Geometry and Topology, World Scientific Publishing, 253–327 (2007).
– reference: Priese, L.; Wimmel, H., Petri-Netze. Springer (2003).
– reference: van der Aalst, W. M. P., Three Good reasons for Using a Petri-net-based Workflow Management System, Proc. of the International Working Conference on Information and Process Integration in Enterprises (IPIC’96), 161–182 (1996).
– reference: Software for Exascale Computing. Proposal to the German research Foundation to establish a Priority Program in the multidisciplinary field of High Performance Computing.
– reference: Kosaraju, S. R., Decidability of reachability in vector addition systems (preliminary version). STOC, 267–281. ACM (1982).
– reference: NevesJPapadakisSA construction of numerical Campedelli surfaces with ZZ/6 torsionTrans. Amer. Math. Soc.200936149995021250643410.1090/S0002-9947-09-04716-3
– reference: BrauerWReisigWCarl Adam Petri und die “Petrinetze”Informatik-Spektrum200629536938110.1007/s00287-006-0107-7
– reference: Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79, 109–203, 205–326 (1964).
– reference: Böhm, J.; Frühbis-Krüger, A., smoothtst.lib - A Singular library for determining smoothness of algebraic varieties. Singular distribution, http://www.singular.uni-kl.de.
– reference: Petri, C. A., Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für instrumentelle Mathematik, Bonn (1962).
– reference: KarpRMMillerREParallel program schemataJ. Comput. Syst. Sci.19693214719524672010.1016/S0022-0000(69)80011-5
– reference: DongarraJBeckmannPThe international Exascale Software RoadmapInternational Journal of High Performance Computer Applications.201125136010.1177/1094342010391989
– reference: Labarta, J., The OmpSs Programming Model, http://www.par.univie.ac.at/project/peppher/hipeac12/slides/Jesus_Labarta.pdf (2012).
– ident: 9464_CR45
– ident: 9464_CR51
  doi: 10.1007/978-3-662-29244-0
– volume: 7
  start-page: 19
  issue: 1
  year: 1967
  ident: 9464_CR27
  publication-title: J. Math. Kyoto Univ.
– volume: 3
  start-page: 147
  issue: 2
  year: 1969
  ident: 9464_CR31
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(69)80011-5
– volume: 32
  start-page: 98
  issue: 2
  year: 1989
  ident: 9464_CR28
  publication-title: Computer Journal
  doi: 10.1093/comjnl/32.2.98
– ident: 9464_CR6
  doi: 10.1007/978-3-319-70566-8_3
– volume: 35
  start-page: 97
  issue: 2
  year: 1992
  ident: 9464_CR20
  publication-title: Comm. ACM
  doi: 10.1145/129630.129635
– volume: 86
  start-page: 153
  year: 2018
  ident: 9464_CR8
  publication-title: J. Symbolic Comput.
  doi: 10.1016/j.jsc.2017.05.001
– volume-title: Cohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics 39
  year: 1998
  ident: 9464_CR14
  doi: 10.1017/CBO9780511608681
– ident: 9464_CR9
– ident: 9464_CR2
  doi: 10.1007/978-3-642-57739-0
– ident: 9464_CR29
– ident: 9464_CR42
– ident: 9464_CR48
– ident: 9464_CR25
– volume: 29
  start-page: 369
  issue: 5
  year: 2006
  ident: 9464_CR12
  publication-title: Informatik-Spektrum
  doi: 10.1007/s00287-006-0107-7
– ident: 9464_CR22
  doi: 10.24033/asens.1286
– ident: 9464_CR39
  doi: 10.1007/3-540-11607-9_18
– ident: 9464_CR34
– volume: 128
  start-page: 207
  year: 1997
  ident: 9464_CR4
  publication-title: Invent. Math.
  doi: 10.1007/s002220050141
– ident: 9464_CR1
  doi: 10.1145/359576.359579
– ident: 9464_CR49
  doi: 10.1007/978-1-4615-5499-8_10
– volume: 21
  start-page: 349
  issue: 2
  year: 2005
  ident: 9464_CR13
  publication-title: Rev. Mat. Iberoamericana
  doi: 10.4171/RMI/425
– volume: 4
  start-page: 6
  year: 2012
  ident: 9464_CR10
  publication-title: J. Softw. Algebra Geom.
  doi: 10.2140/jsag.2012.4.6
– ident: 9464_CR44
  doi: 10.1007/978-3-662-10427-9_6
– ident: 9464_CR24
– volume: 25
  start-page: 3
  issue: 1
  year: 2011
  ident: 9464_CR16
  publication-title: International Journal of High Performance Computer Applications.
  doi: 10.1177/1094342010391989
– volume: 361
  start-page: 4999
  year: 2009
  ident: 9464_CR41
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-09-04716-3
– ident: 9464_CR3
  doi: 10.1007/978-3-642-20300-8_1
– volume: 46
  start-page: 305
  year: 1982
  ident: 9464_CR38
  publication-title: Adv. Math
  doi: 10.1016/0001-8708(82)90048-2
– ident: 9464_CR11
– ident: 9464_CR26
  doi: 10.2307/1970547
– ident: 9464_CR40
  doi: 10.1016/0166-218X(91)90114-C
– ident: 9464_CR23
– ident: 9464_CR46
– ident: 9464_CR19
  doi: 10.1142/9789812706812_0008
– ident: 9464_CR50
  doi: 10.24033/asens.1573
– ident: 9464_CR32
  doi: 10.1145/800070.802201
– ident: 9464_CR15
– volume: 77
  start-page: 821
  year: 2002
  ident: 9464_CR18
  publication-title: Comment. Math. Helv.
  doi: 10.1007/PL00012443
– volume: 99
  start-page: 79
  issue: 1
  year: 1992
  ident: 9464_CR35
  publication-title: TCS
  doi: 10.1016/0304-3975(92)90173-D
– ident: 9464_CR37
  doi: 10.1145/800076.802477
– volume: 51
  start-page: 99
  year: 2013
  ident: 9464_CR7
  publication-title: J. Symbolic Comput.
  doi: 10.1016/j.jsc.2012.07.002
– ident: 9464_CR17
  doi: 10.1007/978-1-4612-5350-1
– ident: 9464_CR30
  doi: 10.1007/978-3-662-06289-0_1
– volume: 84
  start-page: 3013
  year: 2015
  ident: 9464_CR5
  publication-title: Math. Comp.
  doi: 10.1090/mcom/2951
– volume: 25
  start-page: 1125
  issue: 07
  year: 2015
  ident: 9464_CR36
  publication-title: Internat. J. Algebra Comput.
  doi: 10.1142/S0218196715500332
– volume: 43
  start-page: 233
  issue: 3
  year: 1977
  ident: 9464_CR21
  publication-title: Invent. Math.
  doi: 10.1007/BF01390081
– volume: 85
  start-page: 303
  year: 1983
  ident: 9464_CR33
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(83)90096-0
– ident: 9464_CR47
– ident: 9464_CR43
SSID ssj0015914
ssib031263371
Score 2.3377576
Snippet Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 767
SubjectTerms Algebra
Applications of Mathematics
Computer algebra
Computer models
Computer networks
Computer Science
Coordination
Data processing
Distributed processing
Economics
Geometry
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Petri nets
Polynomials
Programming languages
Smoothness
Workflow management systems
Title Towards Massively Parallel Computations in Algebraic Geometry
URI https://link.springer.com/article/10.1007/s10208-020-09464-x
https://www.proquest.com/docview/2538325454
Volume 21
WOSCitedRecordID wos000547661600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yBfXgdCpOp-TgTQNL27TNcYjTi2PgB7uVJk1lUDtpq7j_3pc22VRU0EsP-aK8JC-_X17eewidAgSiqeKCJEqlxBMsJMJjDuEyhQMmZYrxpE42EYxG4WTCx8YprLSv3a1JstbUH5zdHG2qB7oDlMT3CCDHVaajzWiOfvuwsB0wXkf01lCGuG7AjKvM92N8Po6WGPOLWbQ-bYbt__3nNtoy6BIPmuWwg1ZU3kFtgzSx2cclFNlkDrasg9atizJUb94sgrmWu0jfQGvXLHwDQBuUYzbH47jQOVgy3IzT3PrhaY4H2aO2RE8lvlKzJ1UV8z10P7y8u7gmJusCkazvVCSQoeOmgevzVMV9lQChkiqRsHkF9ZKQShqAEuCCMT29nHtO4seCCj8OgBpx5u6jVj7L1QHCrkwT5seSSsE8KpzQd4GuwjLgymfKk11ErfAjaUKS68wYWbQMpqyFGcEnqoUZvXXR2aLPcxOQ49fWPTunkdmcZeSAkneBGDOvi87tHC6rfx7t8G_Nj9CGo1_A1Hc2PdSqihd1jNbkazUti5N60b4DWqPmIw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5EhemD06k4nZoH3zSwtknbPA5xTtzGwCl7K02ayqBusk5x_72Xrt1UVNCXPuQX5ZJcvi-XuwM4QwhkxVpIGmkdUya5TyXjNhUqxgMm5pqLKEs24XW7_mAgerlTWFq8di9Mkpmm_uDsZhtTPdIdpCQuo4gc15hJs2M4-t3DwnbARRbR20AZ6jgez11lvh_j83G0xJhfzKLZadMs_-8_t2ErR5ekMV8OO7CiRxUo50iT5Ps4xaIimUNRVoFS4aKM1ZudRTDXdBfMDbRxzSIdBNqoHJMZ6YUTk4MlIfNx5rd-ZDgijeTRWKKHilzr8ZOeTmZ7cN-86l-2aJ51gSpet6fUU77txJ7jiliHdR0hoVI6Urh5pcUi31KWh0pASM7N9ArB7MgNpSXd0ENqJLizD6uj8UgfAHFUHHE3VJaSnFnS9l0H6SouA6FdrpmqglUIP1B5SHKTGSMJlsGUjTAD_ASZMIO3Kpwv-jzPA3L82rpWzGmQb840sFHJO0iMOavCRTGHy-qfRzv8W_NTKLX6nXbQvuneHsGGbV7DZPc3NVidTl70Mayr1-kwnZxkC_gdLJPpBw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hQCwHdkShgA_cwKJJ7CQ-VkABAVXFJm5R7DioUkmrNiD694yztAUBEuKSgzdFHi_vzXhmAA4QAlmxFpJGWseUSe5TybhNhYrxgom55iLKkk14zab_9CRaE1782Wv30iSZ-zSYKE1JetyL4uMJxzfbmO2R-iA9cRlFFDnDkMmYR123d48jOwIXWXRvA2uo43i8cJv5fozPV9MYb34xkWY3T2P5__-8AksF6iT1fJmswpRO1mC5QKCk2N8DLCqTPJRlazBfui5j9eLNKMjrYB2MZtq4bJEbBOB4aHaGpBX2TW6WDsnHybWBpJ2QeufZWKjbipzr7otO-8MNeGic3Z9c0CIbA1W8ZqfUU77txJ7jiliHNR0h0VI6UrippcUi31KWh4eDkJwbsQvB7MgNpSXd0EPKJLizCdNJN9FbQBwVR9wNlaUkZ5a0fddBGovLQ2iXa6YqYJWCCFQRqtxkzOgE4yDLZjID_ATZZAbvFTgc9enlgTp-bV0t5RsUm3YQ2Hj4O0iYOavAUSnPcfXPo23_rfk-zLVOG8H1ZfNqBxZs80gmU-tUYTrtv-pdmFVvaXvQ38vW8geTpvHr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Massively+Parallel+Computations+in+Algebraic+Geometry&rft.jtitle=Foundations+of+computational+mathematics&rft.au=B%C3%B6hm%2C+Janko&rft.au=Decker%2C+Wolfram&rft.au=Fr%C3%BChbis-Kr%C3%BCger%2C+Anne&rft.au=Pfreundt%2C+Franz-Josef&rft.date=2021-06-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=21&rft.issue=3&rft.spage=767&rft.epage=806&rft_id=info:doi/10.1007%2Fs10208-020-09464-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_020_09464_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon