Towards Massively Parallel Computations in Algebraic Geometry
Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation hav...
Saved in:
| Published in: | Foundations of computational mathematics Vol. 21; no. 3; pp. 767 - 806 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.06.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1615-3375, 1615-3383 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation have been a success story for many years. In this paper, we explore the potential of using this principle in the context of computer algebra. More precisely, we combine two well-established systems: The mathematics we are interested in is implemented in the computer algebra system
Singular
, whose focus is on polynomial computations, while the coordination is left to the workflow management system GPI-Space, which relies on Petri nets as its mathematical modeling language and has been successfully used for coordinating the parallel execution (autoparallelization) of academic codes as well as for commercial software in application areas such as seismic data processing. The result of our efforts is a major step towards a framework for massively parallel computations in the application areas of
Singular
, specifically in commutative algebra and algebraic geometry. As a first test case for this framework, we have modeled and implemented a hybrid smoothness test for algebraic varieties which combines ideas from Hironaka’s celebrated desingularization proof with the classical Jacobian criterion. Applying our implementation to two examples originating from current research in algebraic geometry, one of which cannot be handled by other means, we illustrate the behavior of the smoothness test within our framework and investigate how the computations scale up to 256 cores. |
|---|---|
| AbstractList | Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation have been a success story for many years. In this paper, we explore the potential of using this principle in the context of computer algebra. More precisely, we combine two well-established systems: The mathematics we are interested in is implemented in the computer algebra system
Singular
, whose focus is on polynomial computations, while the coordination is left to the workflow management system GPI-Space, which relies on Petri nets as its mathematical modeling language and has been successfully used for coordinating the parallel execution (autoparallelization) of academic codes as well as for commercial software in application areas such as seismic data processing. The result of our efforts is a major step towards a framework for massively parallel computations in the application areas of
Singular
, specifically in commutative algebra and algebraic geometry. As a first test case for this framework, we have modeled and implemented a hybrid smoothness test for algebraic varieties which combines ideas from Hironaka’s celebrated desingularization proof with the classical Jacobian criterion. Applying our implementation to two examples originating from current research in algebraic geometry, one of which cannot be handled by other means, we illustrate the behavior of the smoothness test within our framework and investigate how the computations scale up to 256 cores. Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on the other hand, transparent environments for distributed computing which follow the principle of separating coordination and computation have been a success story for many years. In this paper, we explore the potential of using this principle in the context of computer algebra. More precisely, we combine two well-established systems: The mathematics we are interested in is implemented in the computer algebra system Singular, whose focus is on polynomial computations, while the coordination is left to the workflow management system GPI-Space, which relies on Petri nets as its mathematical modeling language and has been successfully used for coordinating the parallel execution (autoparallelization) of academic codes as well as for commercial software in application areas such as seismic data processing. The result of our efforts is a major step towards a framework for massively parallel computations in the application areas of Singular, specifically in commutative algebra and algebraic geometry. As a first test case for this framework, we have modeled and implemented a hybrid smoothness test for algebraic varieties which combines ideas from Hironaka’s celebrated desingularization proof with the classical Jacobian criterion. Applying our implementation to two examples originating from current research in algebraic geometry, one of which cannot be handled by other means, we illustrate the behavior of the smoothness test within our framework and investigate how the computations scale up to 256 cores. |
| Author | Decker, Wolfram Böhm, Janko Rahn, Mirko Frühbis-Krüger, Anne Pfreundt, Franz-Josef Ristau, Lukas |
| Author_xml | – sequence: 1 givenname: Janko surname: Böhm fullname: Böhm, Janko organization: Department of Mathematics, Technische Universität Kaiserslautern – sequence: 2 givenname: Wolfram surname: Decker fullname: Decker, Wolfram email: decker@mathematik.uni-kl.de organization: Department of Mathematics, Technische Universität Kaiserslautern – sequence: 3 givenname: Anne surname: Frühbis-Krüger fullname: Frühbis-Krüger, Anne organization: Institute of Mathematics, Carl von Ossietzky Universität Oldenburg, Institut für Algebraische Geometrie, Leibniz Universität Hannover – sequence: 4 givenname: Franz-Josef surname: Pfreundt fullname: Pfreundt, Franz-Josef organization: Competence Center High Performance Computing, Fraunhofer ITWM – sequence: 5 givenname: Mirko surname: Rahn fullname: Rahn, Mirko organization: Competence Center High Performance Computing, Fraunhofer ITWM – sequence: 6 givenname: Lukas surname: Ristau fullname: Ristau, Lukas organization: Department of Mathematics, Technische Universität Kaiserslautern, Competence Center High Performance Computing, Fraunhofer ITWM |
| BookMark | eNp9kD9PwzAQxS1UJNrCF2CKxBzw3zgZGKoKClIRDGW2HOdSpXLjYqfQfHsMQSAxdLm74f3u3r0JGrWuBYQuCb4mGMubQDDFeRpLigue8fRwgsYkIyJlLGej31mKMzQJYYMxEQXhY3S7ch_aVyF50iE072D75EV7bS3YZO62u32nu8a1IWnaZGbXUHrdmGQBbgud78_Raa1tgIufPkWv93er-UO6fF48zmfL1AhMu1SanLJasqyoQWOoJMkMVAYLUhJe5cQQySgtSiEqgLooOK0yXZIy0zLDohBsiq6GvTvv3vYQOrVxe9_Gk4qK-CAVXPCoygeV8S4ED7UyzWC_i66tIlh9haWGsFQs6jssdYgo_YfufLPVvj8OsQEKUdyuwf-5OkJ9AgcbfrM |
| CitedBy_id | crossref_primary_10_1016_j_cpc_2023_108942 crossref_primary_10_1016_j_cpc_2023_108999 crossref_primary_10_1007_JHEP12_2020_054 crossref_primary_10_21468_SciPostPhys_19_1_003 crossref_primary_10_1007_s13366_024_00742_1 crossref_primary_10_1016_j_jsc_2023_102224 crossref_primary_10_1109_TPDS_2024_3406764 |
| Cites_doi | 10.1007/978-3-662-29244-0 10.1016/S0022-0000(69)80011-5 10.1093/comjnl/32.2.98 10.1007/978-3-319-70566-8_3 10.1145/129630.129635 10.1016/j.jsc.2017.05.001 10.1017/CBO9780511608681 10.1007/978-3-642-57739-0 10.1007/s00287-006-0107-7 10.24033/asens.1286 10.1007/3-540-11607-9_18 10.1007/s002220050141 10.1145/359576.359579 10.1007/978-1-4615-5499-8_10 10.4171/RMI/425 10.2140/jsag.2012.4.6 10.1007/978-3-662-10427-9_6 10.1177/1094342010391989 10.1090/S0002-9947-09-04716-3 10.1007/978-3-642-20300-8_1 10.1016/0001-8708(82)90048-2 10.2307/1970547 10.1016/0166-218X(91)90114-C 10.1142/9789812706812_0008 10.24033/asens.1573 10.1145/800070.802201 10.1007/PL00012443 10.1016/0304-3975(92)90173-D 10.1145/800076.802477 10.1016/j.jsc.2012.07.002 10.1007/978-1-4612-5350-1 10.1007/978-3-662-06289-0_1 10.1090/mcom/2951 10.1142/S0218196715500332 10.1007/BF01390081 10.1016/0021-8693(83)90096-0 |
| ContentType | Journal Article |
| Copyright | The author's 2020 The author's 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The author's 2020 – notice: The author's 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-020-09464-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 806 |
| ExternalDocumentID | 10_1007_s10208_020_09464_x |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c502t-7c823f7369fea0ed716cedc051b14d81c173229b55deef9942d6ab1b6a7605953 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000547661600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Fri Jul 25 19:11:59 EDT 2025 Sat Nov 29 06:41:15 EST 2025 Tue Nov 18 21:59:57 EST 2025 Fri Feb 21 02:47:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Hironaka desingularization 68W30 Surfaces of general type Petri nets 14Q99 68W10 Computational algebraic geometry Smoothness test Distributed computing 14B05 Singular GPI-Space Computer algebra |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-7c823f7369fea0ed716cedc051b14d81c173229b55deef9942d6ab1b6a7605953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10208-020-09464-x |
| PQID | 2538325454 |
| PQPubID | 43692 |
| PageCount | 40 |
| ParticipantIDs | proquest_journals_2538325454 crossref_citationtrail_10_1007_s10208_020_09464_x crossref_primary_10_1007_s10208_020_09464_x springer_journals_10_1007_s10208_020_09464_x |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Kosaraju, S. R., Decidability of reachability in vector addition systems (preliminary version). STOC, 267–281. ACM (1982). Zariski, O.; Samuel, P., Commutative Algebra. Vols. I and II. Corr. 2nd printing of the 1958–1960 edition. Springer (1975–1976). Mayr, E. W., An algorithm for the general Petri net reachability problem, STOC, 238–246. ACM (1981). EncinasSHauserHStrong resolution of singularities in characteristic zeroComment. Math. Helv.200277821845194911510.1007/PL00012443 Jensen, K., Coloured Petri Nets. Volume 1. Springer (1992). Labarta, J., The OmpSs Programming Model, http://www.par.univie.ac.at/project/peppher/hipeac12/slides/Jesus_Labarta.pdf (2012). Böhm, J.; Frühbis-Krüger, A., smoothtst.lib - A Singular library for determining smoothness of algebraic varieties. Singular distribution, http://www.singular.uni-kl.de. Backus, J., Can Programming Be Liberated from the von Neumann Style? A functional Style and Its Algebra of Programs, 1977 Turing Award Lecture, Comm. ACM 21(8), 613–641 (1978). KustinAMillerMConstructing big Gorenstein ideals from small onesJ. Algebra19838530332272508410.1016/0021-8693(83)90096-0 Software for Exascale Computing. Proposal to the German research Foundation to establish a Priority Program in the multidisciplinary field of High Performance Computing. Petri, C. A., Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für instrumentelle Mathematik, Bonn (1962). Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H., Singular 4-1-3 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. Böhm J.; Papadakis S., KustinMiller – The Kustin-Miller complex construction and resolutions of Gorenstein rings, Macaulay2 package (2012). KarpRMMillerREParallel program schemataJ. Comput. Syst. Sci.19693214719524672010.1016/S0022-0000(69)80011-5 Frühbis-Krüger, A., Computational Aspects of Singularities, in J.-P. Brasselet, J. Damon et al.: Singularities in Geometry and Topology, World Scientific Publishing, 253–327 (2007). van der Aalst, W. M. P., Three Good reasons for Using a Petri-net-based Workflow Management System, Proc. of the International Working Conference on Information and Process Integration in Enterprises (IPIC’96), 161–182 (1996). Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79, 109–203, 205–326 (1964). DongarraJBeckmannPThe international Exascale Software RoadmapInternational Journal of High Performance Computer Applications.201125136010.1177/1094342010391989 BöhmJPapadakisSImplementing the Kustin–Miller complex constructionJ. Softw. Algebra Geom.20124611294766810.2140/jsag.2012.4.6 BrunsWHerzogJCohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics 391998CambridgeCambridge University Press10.1017/CBO9780511608681 BierstoneEMilmanPCanonical Desingularization in Characteristic Zero by Blowing up the Maximum Strata of a Local InvariantInvent. Math.1997128207302144030610.1007/s002220050141 HironakaHOn the charactersν⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\star $$\end{document} and τ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^\star $$\end{document}of singularitiesJ. Math. Kyoto Univ.1967711943215842 BrauerWReisigWCarl Adam Petri und die “Petrinetze”Informatik-Spektrum200629536938110.1007/s00287-006-0107-7 GelernterDCarrieroNCoordination languages and their significanceComm. ACM19923529710710.1145/129630.129635 Mora, T., La queste del Saint Gra(AL): A computational approach to local algebra, Discrete Appl. Math. 33, 161–190 (1991). Greuel, G.-M.; Pfister, G., A Singular Introduction to Commutative Algebra. Springer (2008). BöhmJDeckerWFiekerCPfisterGThe use of bad primes in rational reconstructionMath. Comp.20158430133027337886010.1090/mcom/2951 Bauer, Ingrid; Catanese, Fabrizio, Surfaces of general type with geometric genus zero: a survey, in Complex and differential geometry. Conference held at Leibniz Universität Hannover, Germany, September 14–18, 2009. Proceedings, Springer Proc. Math. 8, 1–48 (2011) Priese, L.; Wimmel, H., Petri-Netze. Springer (2003). Heiner, M.; Popova-Zeugmann, L., Worst Case Analysis of Concurrent Systems with Duration Interval Petri Nets, Professoren des Inst. für Informatik; 1997 May. HughesJWhy Functional Programming MattersComputer Journal19893229810710.1093/comjnl/32.2.98 Barth, W. P.; Hulek, K.; Peters, Chris A. M.; Van de Ven, A., Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 4. Springer (2004). MayrEWMeyerARThe complexity of the word problems for commutative semigroups and polynomial idealsAdv. Math19824630532968320410.1016/0001-8708(82)90048-2 BravoAMEncinasSVillamayorOA Simplified Proof of Desingularization and ApplicationsRev. Mat. Iberoamericana2005212349458217491210.4171/RMI/425 GiesekerDGlobal moduli for surfaces of general typeInvent. Math.197743323328249859610.1007/BF01390081 Mora, T., An algorithm to compute the equations of tangent cones, in: Proceedings EUROCAM 82, Springer, 158–165 (1982). University of Tennessee, PaRSEC, http://icl.cs.utk.edu/parsec/overview/index.html (2016). Hauser, H., Why the characteristic zero proof of resolution of singularities fails in positive characteristic, Manuscript (2003), https://homepage.univie.ac.at/herwig.hauser Eisenbud, D., Commutative algebra. With a view toward algebraic geometry. Springer (1995). MaraisMSRenYMora’s holy grail: Algorithms for computing in localizations at prime idealsInternat. J. Algebra Comput.2015250711251143343222210.1142/S0218196715500332 NevesJPapadakisSA construction of numerical Campedelli surfaces with ZZ/6 torsionTrans. Amer. Math. Soc.200936149995021250643410.1090/S0002-9947-09-04716-3 BöhmJFrühbis-KrügerAA smoothness test for higher codimensionsJ. Symbolic Comput.201886153165372521810.1016/j.jsc.2017.05.001 Böhm, J.; Decker, W.; Laplagne, S.; Pfister, G., Local to global algorithms for the Gorenstein adjoint ideal of a curve in Böckle et al. (ed.) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, 51–96, Springer (2018). Reid, M., Godeaux and Campedelli surfaces, https://homepages.warwick.ac.uk/~masda/surf/more/Godeaux.pdf Villamayor, O., Constructiveness of Hironaka’s resolution, Ann. Sci. Ecole Norm Sup. (4) 22, no. 1, 1–32 (1989). LambertJLA structure to decide reachability in Petri netsTCS199299179104116801110.1016/0304-3975(92)90173-D BöhmJDeckerWLaplagneSPfisterGSteenpaßASteidelSParallel Algorithms for NormalizationJ. Symbolic Comput.20135199114300578410.1016/j.jsc.2012.07.002 Schreyer, F.-O., An experimental approach to numerical Godeaux surfaces, in Oberwolfach Report 7/2005, Komplexe Algebraische Geometrie, 434–436 (2005). Pfreundt, F.-J.; Rahn, M.; et al., GPI-space, Fraunhofer ITWM Kaiserslautern, http://www.gpi-space.de/. INRIA, StarPU, http://starpu.gforge.inria.fr (2016). Giraud, J., Contact maximal en caractéristique positive, Ann. Sci. Éc. Norm. Sup.4e`me\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4^{\grave{e}\text{me}}$$\end{document} série 8, 201–234 (1975). J Böhm (9464_CR8) 2018; 86 D Gelernter (9464_CR20) 1992; 35 J Neves (9464_CR41) 2009; 361 9464_CR50 J Böhm (9464_CR5) 2015; 84 9464_CR9 9464_CR51 9464_CR6 J Dongarra (9464_CR16) 2011; 25 9464_CR11 A Kustin (9464_CR33) 1983; 85 EW Mayr (9464_CR38) 1982; 46 9464_CR15 9464_CR17 J Böhm (9464_CR7) 2013; 51 9464_CR19 JL Lambert (9464_CR35) 1992; 99 D Gieseker (9464_CR21) 1977; 43 9464_CR40 9464_CR42 9464_CR43 9464_CR44 9464_CR45 9464_CR46 9464_CR47 9464_CR48 9464_CR49 J Hughes (9464_CR28) 1989; 32 S Encinas (9464_CR18) 2002; 77 W Brauer (9464_CR12) 2006; 29 AM Bravo (9464_CR13) 2005; 21 9464_CR30 9464_CR32 9464_CR34 MS Marais (9464_CR36) 2015; 25 9464_CR37 9464_CR39 E Bierstone (9464_CR4) 1997; 128 RM Karp (9464_CR31) 1969; 3 J Böhm (9464_CR10) 2012; 4 9464_CR2 9464_CR1 9464_CR3 W Bruns (9464_CR14) 1998 9464_CR22 9464_CR23 9464_CR24 9464_CR25 9464_CR26 9464_CR29 H Hironaka (9464_CR27) 1967; 7 |
| References_xml | – reference: Hauser, H., Why the characteristic zero proof of resolution of singularities fails in positive characteristic, Manuscript (2003), https://homepage.univie.ac.at/herwig.hauser/ – reference: Böhm J.; Papadakis S., KustinMiller – The Kustin-Miller complex construction and resolutions of Gorenstein rings, Macaulay2 package (2012). – reference: Jensen, K., Coloured Petri Nets. Volume 1. Springer (1992). – reference: BöhmJFrühbis-KrügerAA smoothness test for higher codimensionsJ. Symbolic Comput.201886153165372521810.1016/j.jsc.2017.05.001 – reference: EncinasSHauserHStrong resolution of singularities in characteristic zeroComment. Math. Helv.200277821845194911510.1007/PL00012443 – reference: BöhmJDeckerWFiekerCPfisterGThe use of bad primes in rational reconstructionMath. Comp.20158430133027337886010.1090/mcom/2951 – reference: LambertJLA structure to decide reachability in Petri netsTCS199299179104116801110.1016/0304-3975(92)90173-D – reference: BöhmJPapadakisSImplementing the Kustin–Miller complex constructionJ. Softw. Algebra Geom.20124611294766810.2140/jsag.2012.4.6 – reference: GiesekerDGlobal moduli for surfaces of general typeInvent. Math.197743323328249859610.1007/BF01390081 – reference: BravoAMEncinasSVillamayorOA Simplified Proof of Desingularization and ApplicationsRev. Mat. Iberoamericana2005212349458217491210.4171/RMI/425 – reference: Barth, W. P.; Hulek, K.; Peters, Chris A. M.; Van de Ven, A., Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 4. Springer (2004). – reference: BrunsWHerzogJCohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics 391998CambridgeCambridge University Press10.1017/CBO9780511608681 – reference: Mora, T., An algorithm to compute the equations of tangent cones, in: Proceedings EUROCAM 82, Springer, 158–165 (1982). – reference: Böhm, J.; Decker, W.; Laplagne, S.; Pfister, G., Local to global algorithms for the Gorenstein adjoint ideal of a curve in Böckle et al. (ed.) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, 51–96, Springer (2018). – reference: Bauer, Ingrid; Catanese, Fabrizio, Surfaces of general type with geometric genus zero: a survey, in Complex and differential geometry. Conference held at Leibniz Universität Hannover, Germany, September 14–18, 2009. Proceedings, Springer Proc. Math. 8, 1–48 (2011) – reference: Mayr, E. W., An algorithm for the general Petri net reachability problem, STOC, 238–246. ACM (1981). – reference: Heiner, M.; Popova-Zeugmann, L., Worst Case Analysis of Concurrent Systems with Duration Interval Petri Nets, Professoren des Inst. für Informatik; 1997 May. – reference: Giraud, J., Contact maximal en caractéristique positive, Ann. Sci. Éc. Norm. Sup.4e`me\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4^{\grave{e}\text{me}}$$\end{document} série 8, 201–234 (1975). – reference: KustinAMillerMConstructing big Gorenstein ideals from small onesJ. Algebra19838530332272508410.1016/0021-8693(83)90096-0 – reference: Villamayor, O., Constructiveness of Hironaka’s resolution, Ann. Sci. Ecole Norm Sup. (4) 22, no. 1, 1–32 (1989). – reference: BöhmJDeckerWLaplagneSPfisterGSteenpaßASteidelSParallel Algorithms for NormalizationJ. Symbolic Comput.20135199114300578410.1016/j.jsc.2012.07.002 – reference: MayrEWMeyerARThe complexity of the word problems for commutative semigroups and polynomial idealsAdv. Math19824630532968320410.1016/0001-8708(82)90048-2 – reference: University of Tennessee, PaRSEC, http://icl.cs.utk.edu/parsec/overview/index.html (2016). – reference: Greuel, G.-M.; Pfister, G., A Singular Introduction to Commutative Algebra. Springer (2008). – reference: HughesJWhy Functional Programming MattersComputer Journal19893229810710.1093/comjnl/32.2.98 – reference: Backus, J., Can Programming Be Liberated from the von Neumann Style? A functional Style and Its Algebra of Programs, 1977 Turing Award Lecture, Comm. ACM 21(8), 613–641 (1978). – reference: GelernterDCarrieroNCoordination languages and their significanceComm. ACM19923529710710.1145/129630.129635 – reference: Pfreundt, F.-J.; Rahn, M.; et al., GPI-space, Fraunhofer ITWM Kaiserslautern, http://www.gpi-space.de/. – reference: Schreyer, F.-O., An experimental approach to numerical Godeaux surfaces, in Oberwolfach Report 7/2005, Komplexe Algebraische Geometrie, 434–436 (2005). – reference: Mora, T., La queste del Saint Gra(AL): A computational approach to local algebra, Discrete Appl. Math. 33, 161–190 (1991). – reference: Eisenbud, D., Commutative algebra. With a view toward algebraic geometry. Springer (1995). – reference: MaraisMSRenYMora’s holy grail: Algorithms for computing in localizations at prime idealsInternat. J. Algebra Comput.2015250711251143343222210.1142/S0218196715500332 – reference: BierstoneEMilmanPCanonical Desingularization in Characteristic Zero by Blowing up the Maximum Strata of a Local InvariantInvent. Math.1997128207302144030610.1007/s002220050141 – reference: Reid, M., Godeaux and Campedelli surfaces, https://homepages.warwick.ac.uk/~masda/surf/more/Godeaux.pdf – reference: Zariski, O.; Samuel, P., Commutative Algebra. Vols. I and II. Corr. 2nd printing of the 1958–1960 edition. Springer (1975–1976). – reference: HironakaHOn the charactersν⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\star $$\end{document} and τ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^\star $$\end{document}of singularitiesJ. Math. Kyoto Univ.1967711943215842 – reference: Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H., Singular 4-1-3 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. – reference: INRIA, StarPU, http://starpu.gforge.inria.fr (2016). – reference: Frühbis-Krüger, A., Computational Aspects of Singularities, in J.-P. Brasselet, J. Damon et al.: Singularities in Geometry and Topology, World Scientific Publishing, 253–327 (2007). – reference: Priese, L.; Wimmel, H., Petri-Netze. Springer (2003). – reference: van der Aalst, W. M. P., Three Good reasons for Using a Petri-net-based Workflow Management System, Proc. of the International Working Conference on Information and Process Integration in Enterprises (IPIC’96), 161–182 (1996). – reference: Software for Exascale Computing. Proposal to the German research Foundation to establish a Priority Program in the multidisciplinary field of High Performance Computing. – reference: Kosaraju, S. R., Decidability of reachability in vector addition systems (preliminary version). STOC, 267–281. ACM (1982). – reference: NevesJPapadakisSA construction of numerical Campedelli surfaces with ZZ/6 torsionTrans. Amer. Math. Soc.200936149995021250643410.1090/S0002-9947-09-04716-3 – reference: BrauerWReisigWCarl Adam Petri und die “Petrinetze”Informatik-Spektrum200629536938110.1007/s00287-006-0107-7 – reference: Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79, 109–203, 205–326 (1964). – reference: Böhm, J.; Frühbis-Krüger, A., smoothtst.lib - A Singular library for determining smoothness of algebraic varieties. Singular distribution, http://www.singular.uni-kl.de. – reference: Petri, C. A., Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für instrumentelle Mathematik, Bonn (1962). – reference: KarpRMMillerREParallel program schemataJ. Comput. Syst. Sci.19693214719524672010.1016/S0022-0000(69)80011-5 – reference: DongarraJBeckmannPThe international Exascale Software RoadmapInternational Journal of High Performance Computer Applications.201125136010.1177/1094342010391989 – reference: Labarta, J., The OmpSs Programming Model, http://www.par.univie.ac.at/project/peppher/hipeac12/slides/Jesus_Labarta.pdf (2012). – ident: 9464_CR45 – ident: 9464_CR51 doi: 10.1007/978-3-662-29244-0 – volume: 7 start-page: 19 issue: 1 year: 1967 ident: 9464_CR27 publication-title: J. Math. Kyoto Univ. – volume: 3 start-page: 147 issue: 2 year: 1969 ident: 9464_CR31 publication-title: J. Comput. Syst. Sci. doi: 10.1016/S0022-0000(69)80011-5 – volume: 32 start-page: 98 issue: 2 year: 1989 ident: 9464_CR28 publication-title: Computer Journal doi: 10.1093/comjnl/32.2.98 – ident: 9464_CR6 doi: 10.1007/978-3-319-70566-8_3 – volume: 35 start-page: 97 issue: 2 year: 1992 ident: 9464_CR20 publication-title: Comm. ACM doi: 10.1145/129630.129635 – volume: 86 start-page: 153 year: 2018 ident: 9464_CR8 publication-title: J. Symbolic Comput. doi: 10.1016/j.jsc.2017.05.001 – volume-title: Cohen-Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics 39 year: 1998 ident: 9464_CR14 doi: 10.1017/CBO9780511608681 – ident: 9464_CR9 – ident: 9464_CR2 doi: 10.1007/978-3-642-57739-0 – ident: 9464_CR29 – ident: 9464_CR42 – ident: 9464_CR48 – ident: 9464_CR25 – volume: 29 start-page: 369 issue: 5 year: 2006 ident: 9464_CR12 publication-title: Informatik-Spektrum doi: 10.1007/s00287-006-0107-7 – ident: 9464_CR22 doi: 10.24033/asens.1286 – ident: 9464_CR39 doi: 10.1007/3-540-11607-9_18 – ident: 9464_CR34 – volume: 128 start-page: 207 year: 1997 ident: 9464_CR4 publication-title: Invent. Math. doi: 10.1007/s002220050141 – ident: 9464_CR1 doi: 10.1145/359576.359579 – ident: 9464_CR49 doi: 10.1007/978-1-4615-5499-8_10 – volume: 21 start-page: 349 issue: 2 year: 2005 ident: 9464_CR13 publication-title: Rev. Mat. Iberoamericana doi: 10.4171/RMI/425 – volume: 4 start-page: 6 year: 2012 ident: 9464_CR10 publication-title: J. Softw. Algebra Geom. doi: 10.2140/jsag.2012.4.6 – ident: 9464_CR44 doi: 10.1007/978-3-662-10427-9_6 – ident: 9464_CR24 – volume: 25 start-page: 3 issue: 1 year: 2011 ident: 9464_CR16 publication-title: International Journal of High Performance Computer Applications. doi: 10.1177/1094342010391989 – volume: 361 start-page: 4999 year: 2009 ident: 9464_CR41 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-09-04716-3 – ident: 9464_CR3 doi: 10.1007/978-3-642-20300-8_1 – volume: 46 start-page: 305 year: 1982 ident: 9464_CR38 publication-title: Adv. Math doi: 10.1016/0001-8708(82)90048-2 – ident: 9464_CR11 – ident: 9464_CR26 doi: 10.2307/1970547 – ident: 9464_CR40 doi: 10.1016/0166-218X(91)90114-C – ident: 9464_CR23 – ident: 9464_CR46 – ident: 9464_CR19 doi: 10.1142/9789812706812_0008 – ident: 9464_CR50 doi: 10.24033/asens.1573 – ident: 9464_CR32 doi: 10.1145/800070.802201 – ident: 9464_CR15 – volume: 77 start-page: 821 year: 2002 ident: 9464_CR18 publication-title: Comment. Math. Helv. doi: 10.1007/PL00012443 – volume: 99 start-page: 79 issue: 1 year: 1992 ident: 9464_CR35 publication-title: TCS doi: 10.1016/0304-3975(92)90173-D – ident: 9464_CR37 doi: 10.1145/800076.802477 – volume: 51 start-page: 99 year: 2013 ident: 9464_CR7 publication-title: J. Symbolic Comput. doi: 10.1016/j.jsc.2012.07.002 – ident: 9464_CR17 doi: 10.1007/978-1-4612-5350-1 – ident: 9464_CR30 doi: 10.1007/978-3-662-06289-0_1 – volume: 84 start-page: 3013 year: 2015 ident: 9464_CR5 publication-title: Math. Comp. doi: 10.1090/mcom/2951 – volume: 25 start-page: 1125 issue: 07 year: 2015 ident: 9464_CR36 publication-title: Internat. J. Algebra Comput. doi: 10.1142/S0218196715500332 – volume: 43 start-page: 233 issue: 3 year: 1977 ident: 9464_CR21 publication-title: Invent. Math. doi: 10.1007/BF01390081 – volume: 85 start-page: 303 year: 1983 ident: 9464_CR33 publication-title: J. Algebra doi: 10.1016/0021-8693(83)90096-0 – ident: 9464_CR47 – ident: 9464_CR43 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.3377576 |
| Snippet | Introducing parallelism and exploring its use is still a fundamental challenge for the computer algebra community. In high-performance numerical simulation, on... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 767 |
| SubjectTerms | Algebra Applications of Mathematics Computer algebra Computer models Computer networks Computer Science Coordination Data processing Distributed processing Economics Geometry Linear and Multilinear Algebras Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Petri nets Polynomials Programming languages Smoothness Workflow management systems |
| Title | Towards Massively Parallel Computations in Algebraic Geometry |
| URI | https://link.springer.com/article/10.1007/s10208-020-09464-x https://www.proquest.com/docview/2538325454 |
| Volume | 21 |
| WOSCitedRecordID | wos000547661600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yBfXgdCpOp-TgTQNL27TNcYjTi2PgB7uVJk1lUDtpq7j_3pc22VRU0EsP-aK8JC-_X17eewidAgSiqeKCJEqlxBMsJMJjDuEyhQMmZYrxpE42EYxG4WTCx8YprLSv3a1JstbUH5zdHG2qB7oDlMT3CCDHVaajzWiOfvuwsB0wXkf01lCGuG7AjKvM92N8Po6WGPOLWbQ-bYbt__3nNtoy6BIPmuWwg1ZU3kFtgzSx2cclFNlkDrasg9atizJUb94sgrmWu0jfQGvXLHwDQBuUYzbH47jQOVgy3IzT3PrhaY4H2aO2RE8lvlKzJ1UV8z10P7y8u7gmJusCkazvVCSQoeOmgevzVMV9lQChkiqRsHkF9ZKQShqAEuCCMT29nHtO4seCCj8OgBpx5u6jVj7L1QHCrkwT5seSSsE8KpzQd4GuwjLgymfKk11ErfAjaUKS68wYWbQMpqyFGcEnqoUZvXXR2aLPcxOQ49fWPTunkdmcZeSAkneBGDOvi87tHC6rfx7t8G_Nj9CGo1_A1Hc2PdSqihd1jNbkazUti5N60b4DWqPmIw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5EhemD06k4nZoH3zSwtknbPA5xTtzGwCl7K02ayqBusk5x_72Xrt1UVNCXPuQX5ZJcvi-XuwM4QwhkxVpIGmkdUya5TyXjNhUqxgMm5pqLKEs24XW7_mAgerlTWFq8di9Mkpmm_uDsZhtTPdIdpCQuo4gc15hJs2M4-t3DwnbARRbR20AZ6jgez11lvh_j83G0xJhfzKLZadMs_-8_t2ErR5ekMV8OO7CiRxUo50iT5Ps4xaIimUNRVoFS4aKM1ZudRTDXdBfMDbRxzSIdBNqoHJMZ6YUTk4MlIfNx5rd-ZDgijeTRWKKHilzr8ZOeTmZ7cN-86l-2aJ51gSpet6fUU77txJ7jiliHdR0hoVI6Urh5pcUi31KWh0pASM7N9ArB7MgNpSXd0ENqJLizD6uj8UgfAHFUHHE3VJaSnFnS9l0H6SouA6FdrpmqglUIP1B5SHKTGSMJlsGUjTAD_ASZMIO3Kpwv-jzPA3L82rpWzGmQb840sFHJO0iMOavCRTGHy-qfRzv8W_NTKLX6nXbQvuneHsGGbV7DZPc3NVidTl70Mayr1-kwnZxkC_gdLJPpBw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hQCwHdkShgA_cwKJJ7CQ-VkABAVXFJm5R7DioUkmrNiD694yztAUBEuKSgzdFHi_vzXhmAA4QAlmxFpJGWseUSe5TybhNhYrxgom55iLKkk14zab_9CRaE1782Wv30iSZ-zSYKE1JetyL4uMJxzfbmO2R-iA9cRlFFDnDkMmYR123d48jOwIXWXRvA2uo43i8cJv5fozPV9MYb34xkWY3T2P5__-8AksF6iT1fJmswpRO1mC5QKCk2N8DLCqTPJRlazBfui5j9eLNKMjrYB2MZtq4bJEbBOB4aHaGpBX2TW6WDsnHybWBpJ2QeufZWKjbipzr7otO-8MNeGic3Z9c0CIbA1W8ZqfUU77txJ7jiliHNR0h0VI6UrippcUi31KWh4eDkJwbsQvB7MgNpSXd0EPKJLizCdNJN9FbQBwVR9wNlaUkZ5a0fddBGovLQ2iXa6YqYJWCCFQRqtxkzOgE4yDLZjID_ATZZAbvFTgc9enlgTp-bV0t5RsUm3YQ2Hj4O0iYOavAUSnPcfXPo23_rfk-zLVOG8H1ZfNqBxZs80gmU-tUYTrtv-pdmFVvaXvQ38vW8geTpvHr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Massively+Parallel+Computations+in+Algebraic+Geometry&rft.jtitle=Foundations+of+computational+mathematics&rft.au=B%C3%B6hm%2C+Janko&rft.au=Decker%2C+Wolfram&rft.au=Fr%C3%BChbis-Kr%C3%BCger%2C+Anne&rft.au=Pfreundt%2C+Franz-Josef&rft.date=2021-06-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=21&rft.issue=3&rft.spage=767&rft.epage=806&rft_id=info:doi/10.1007%2Fs10208-020-09464-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_020_09464_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |