Cochran’s Q test for analyzing categorical data under uncertainty

Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset Description This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data Vol. 10; no. 1; pp. 147 - 10
Main Author: Aslam, Muhammad
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2196-1115, 2196-1115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset Description This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts. Results An application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios. Conclusion This study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios.
AbstractList Abstract Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset Description This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts. Results An application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios. Conclusion This study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios.
Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset Description This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts. Results An application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios. Conclusion This study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios.
MotivationThe Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous datasetDescriptionThis paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts.ResultsAn application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios.ConclusionThis study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios.
ArticleNumber 147
Author Aslam, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Aslam
  fullname: Aslam, Muhammad
  email: aslam_ravian@hotmail.com
  organization: Department of Statistics, Faculty of Science, King Abdulaziz University
BookMark eNp9kE1uFDEQhS0UJMKQC7BqiXVDuf3bSzRKQqRICCl7q9p2Dx41drA9i8kq18j1chJMGkHEIpuqklXfe673lpzEFD0h7yl8pFTLT4WDYKqHgfUAulX2ipwOdJQ9pVScPJvfkLNS9gBAWWMkPyXbbbLfM8bH-4fSfeuqL7WbU-4w4nK8C3HXWax-l3KwuHQOK3aH6Hxu1fpcMcR6fEdez7gUf_anb8jNxfnN9kt__fXyavv5urcChtpLPTjBtRpH5-hkNYygYUY2SzVxQcWsQVoOs7YATo5eICpHcRKzmqhWbEOuVlmXcG9uc_iB-WgSBvP0kPLOYK7BLt4wZgEVcKWl4JObNIdhVBo4lU1smprWh1XrNqefh3a02adDbjcXM2g5AlNKi7Y1rFs2p1Kyn_-6UjC_ozdr9KZFb56ib84bov-DbKhYQ4o1Y1heRtmKluYTdz7_-9UL1C-BaJkQ
CitedBy_id crossref_primary_10_1139_apnm_2025_0152
crossref_primary_10_1186_s13027_024_00626_y
crossref_primary_10_1136_bmjopen_2024_088632
crossref_primary_10_1007_s00787_025_02822_6
crossref_primary_10_2147_DMSO_S510384
crossref_primary_10_3389_fmicb_2024_1361927
crossref_primary_10_1016_j_envsci_2025_104071
crossref_primary_10_1016_j_pdpdt_2025_104788
crossref_primary_10_4018_IJAET_340933
crossref_primary_10_1016_j_optom_2025_100540
crossref_primary_10_1001_jamapediatrics_2024_3045
crossref_primary_10_1097_MD_0000000000042593
crossref_primary_10_1080_10799893_2025_2491068
crossref_primary_10_1364_JOCN_511863
crossref_primary_10_1080_02713683_2024_2408757
crossref_primary_10_1080_19401493_2024_2422919
crossref_primary_10_1007_s12672_025_02997_z
crossref_primary_10_2196_59370
Cites_doi 10.1016/S0197-2456(03)00026-6
10.3390/sym9100208
10.3390/sym9070123
10.1002/jrsm.1336
10.1007/s11042-023-15313-0
10.2991/jsta.2018.17.2.7
10.1186/s12874-015-0034-x
10.1080/00949655.2022.2108423
10.1186/s40537-023-00700-z
10.1155/2020/7680286
10.1155/2020/2086185
10.14419/ijet.v7i3.18.16662
10.1016/j.jvcir.2023.103776
10.1007/s13042-023-01811-y
10.4135/9781849208499
10.3390/stats5030045
10.5958/2320-3226.2022.00024.8
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOA
DOI 10.1186/s40537-023-00823-3
DatabaseName Springer Nature Link
CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Statistics
EISSN 2196-1115
EndPage 10
ExternalDocumentID oai_doaj_org_article_33c0a70478654bdb84029780416f7bbb
10_1186_s40537_023_00823_3
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
7XB
8AL
8FK
JQ2
L.-
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c502t-682d548799dd1bc809080fa3f67b4515f806c40f8c00d69e5aa7d1ab5f7b1873
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073827000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-1115
IngestDate Fri Oct 03 12:43:53 EDT 2025
Sat Nov 15 00:12:11 EST 2025
Tue Nov 18 20:51:55 EST 2025
Sat Nov 29 06:20:05 EST 2025
Fri Feb 21 02:41:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hypothesis testing
Uncertainty quantification
Neutrosophic logic
Statistical inference
Categorical data analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-682d548799dd1bc809080fa3f67b4515f806c40f8c00d69e5aa7d1ab5f7b1873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/33c0a70478654bdb84029780416f7bbb
PQID 2869037785
PQPubID 2046140
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_33c0a70478654bdb84029780416f7bbb
proquest_journals_2869037785
crossref_primary_10_1186_s40537_023_00823_3
crossref_citationtrail_10_1186_s40537_023_00823_3
springer_journals_10_1186_s40537_023_00823_3
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Shawky, Aslam, Khan (CR19) 2020; 2020
Chen, Ye, Du (CR9) 2017; 9
Chen (CR13) 2023
Aslam, Arif, Sherwani (CR20) 2020; 2020
CR8
Chen (CR12) 2023
Kanji (CR23) 2006
Almarashi, Aslam (CR21) 2021; 2021
Aslam (CR22) 2023; 10
Smarandache (CR7) 2014
Chen (CR14) 2023; 35
Alhabib, Salama (CR18) 2020; 33
Chen (CR10) 2017; 9
Stephen, Shahren Ahmad Zaidi (CR4) 2018; 7
Aslam (CR17) 2022; 5
Song, Wassell (CR1) 2003; 24
Chakrabarti, Bandyopadhyay (CR6) 2018; 17
Chen (CR11) 2023; 91
Okeh, Oyeka, Igwenagu (CR3) 2016; 4
Van Aert, Van Assen, Viechtbauer (CR5) 2019; 10
AlAita, Aslam (CR15) 2022
Polymenis (CR16) 2021; 2
Kulinskaya, Dollinger (CR2) 2015; 15
Y Chen (823_CR13) 2023
JX Song (823_CR1) 2003; 24
AI Shawky (823_CR19) 2020; 2020
Y Chen (823_CR14) 2023; 35
823_CR8
Y Chen (823_CR11) 2023; 91
D Stephen (823_CR4) 2018; 7
Y Chen (823_CR12) 2023
RC Van Aert (823_CR5) 2019; 10
U Okeh (823_CR3) 2016; 4
F Smarandache (823_CR7) 2014
M Aslam (823_CR17) 2022; 5
P Chakrabarti (823_CR6) 2018; 17
J Chen (823_CR9) 2017; 9
A AlAita (823_CR15) 2022
AM Almarashi (823_CR21) 2021; 2021
M Aslam (823_CR22) 2023; 10
M Aslam (823_CR20) 2020; 2020
E Kulinskaya (823_CR2) 2015; 15
J Chen (823_CR10) 2017; 9
R Alhabib (823_CR18) 2020; 33
GK Kanji (823_CR23) 2006
A Polymenis (823_CR16) 2021; 2
References_xml – volume: 24
  start-page: 378
  issue: 4
  year: 2003
  end-page: 389
  ident: CR1
  article-title: Sample size for K 2× 2 tables in equivalence studies using Cochran’s statistic
  publication-title: Control Clin Trials
  doi: 10.1016/S0197-2456(03)00026-6
– volume: 9
  start-page: 208
  issue: 10
  year: 2017
  ident: CR9
  article-title: Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics
  publication-title: Symmetry
  doi: 10.3390/sym9100208
– volume: 9
  start-page: 123
  issue: 7
  year: 2017
  ident: CR10
  article-title: Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers
  publication-title: Symmetry
  doi: 10.3390/sym9070123
– volume: 10
  start-page: 225
  issue: 2
  year: 2019
  end-page: 239
  ident: CR5
  article-title: Statistical properties of methods based on the Q-statistic for constructing a confidence interval for the between-study variance in meta-analysis
  publication-title: Res Synth Methods
  doi: 10.1002/jrsm.1336
– year: 2023
  ident: CR13
  article-title: DGCA: high resolution image inpainting via DR-GAN and contextual attention
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15313-0
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 12
  ident: CR21
  article-title: Process monitoring for gamma distributed product under neutrosophic statistics using resampling scheme
  publication-title: J Math
– volume: 35
  start-page: 101567
  issue: 6
  year: 2023
  ident: CR14
  article-title: DARGS: Image inpainting algorithm via deep attention residuals group and semantics
  publication-title: J King Saud Univy-Comput Inf Sci
– volume: 17
  start-page: 271
  issue: 2
  year: 2018
  end-page: 282
  ident: CR6
  article-title: A new test for simple tree alternative in a 2 x k table
  publication-title: J Stat Theory Appl
  doi: 10.2991/jsta.2018.17.2.7
– volume: 15
  start-page: 1
  year: 2015
  end-page: 19
  ident: CR2
  article-title: An accurate test for homogeneity of odds ratios based on Cochran’s Q-statistic
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-015-0034-x
– year: 2022
  ident: CR15
  article-title: Analysis of covariance under neutrosophic statistics
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2022.2108423
– volume: 10
  start-page: 24
  issue: 1
  year: 2023
  ident: CR22
  article-title: Data analysis for sequential contingencies under uncertainty
  publication-title: J Big Data
  doi: 10.1186/s40537-023-00700-z
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR19
  article-title: Multiple dependent state sampling-based chart using belief statistic under neutrosophic statistics
  publication-title: J Math
  doi: 10.1155/2020/7680286
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 7
  ident: CR20
  article-title: New diagnosis test under the neutrosophic statistics: an application to diabetic patients
  publication-title: BioMed Res Int
  doi: 10.1155/2020/2086185
– volume: 7
  start-page: 4
  issue: 3
  year: 2018
  end-page: 6
  ident: CR4
  article-title: Cochran’s Q with pairwise McNemar for dichotomous multiple responses data: a practical approach
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i3.18.16662
– volume: 91
  start-page: 103776
  year: 2023
  ident: CR11
  article-title: FFTI: image inpainting algorithm via features fusion and two-steps inpainting
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2023.103776
– ident: CR8
– year: 2023
  ident: CR12
  article-title: RNON: image inpainting via repair network and optimization network
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-023-01811-y
– year: 2014
  ident: CR7
  publication-title: Introduction to neutrosophic statistics
– year: 2006
  ident: CR23
  publication-title: 100 statistical test
  doi: 10.4135/9781849208499
– volume: 33
  start-page: 105
  year: 2020
  end-page: 115
  ident: CR18
  article-title: The neutrosophic time series-study its models (linear-logarithmic) and test the coefficients significance of its linear model
  publication-title: Neutrosophic Sets Syst
– volume: 2
  start-page: 388
  issue: 4
  year: 2021
  end-page: 393
  ident: CR16
  article-title: A neutrosophic student’st–type of statistic for AR (1) random processes
  publication-title: J Fuzzy Ext Appl
– volume: 4
  start-page: 1
  issue: 4
  year: 2016
  end-page: 4
  ident: CR3
  article-title: An alternative approach to Cochran Q test for dichotomous data
  publication-title: MOJ Public Health
– volume: 5
  start-page: 773
  issue: 3
  year: 2022
  end-page: 783
  ident: CR17
  article-title: Neutrosophic F-test for two counts of data from the Poisson distribution with application in climatology
  publication-title: Stats
  doi: 10.3390/stats5030045
– volume: 15
  start-page: 1
  year: 2015
  ident: 823_CR2
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-015-0034-x
– volume: 2
  start-page: 388
  issue: 4
  year: 2021
  ident: 823_CR16
  publication-title: J Fuzzy Ext Appl
– volume: 2020
  start-page: 1
  year: 2020
  ident: 823_CR19
  publication-title: J Math
  doi: 10.1155/2020/7680286
– volume: 10
  start-page: 24
  issue: 1
  year: 2023
  ident: 823_CR22
  publication-title: J Big Data
  doi: 10.1186/s40537-023-00700-z
– volume: 10
  start-page: 225
  issue: 2
  year: 2019
  ident: 823_CR5
  publication-title: Res Synth Methods
  doi: 10.1002/jrsm.1336
– ident: 823_CR8
  doi: 10.5958/2320-3226.2022.00024.8
– year: 2022
  ident: 823_CR15
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2022.2108423
– volume: 7
  start-page: 4
  issue: 3
  year: 2018
  ident: 823_CR4
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i3.18.16662
– year: 2023
  ident: 823_CR13
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15313-0
– volume: 4
  start-page: 1
  issue: 4
  year: 2016
  ident: 823_CR3
  publication-title: MOJ Public Health
– year: 2023
  ident: 823_CR12
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-023-01811-y
– volume: 24
  start-page: 378
  issue: 4
  year: 2003
  ident: 823_CR1
  publication-title: Control Clin Trials
  doi: 10.1016/S0197-2456(03)00026-6
– volume: 17
  start-page: 271
  issue: 2
  year: 2018
  ident: 823_CR6
  publication-title: J Stat Theory Appl
  doi: 10.2991/jsta.2018.17.2.7
– volume: 33
  start-page: 105
  year: 2020
  ident: 823_CR18
  publication-title: Neutrosophic Sets Syst
– volume: 2021
  start-page: 1
  year: 2021
  ident: 823_CR21
  publication-title: J Math
– volume-title: 100 statistical test
  year: 2006
  ident: 823_CR23
  doi: 10.4135/9781849208499
– volume-title: Introduction to neutrosophic statistics
  year: 2014
  ident: 823_CR7
– volume: 9
  start-page: 123
  issue: 7
  year: 2017
  ident: 823_CR10
  publication-title: Symmetry
  doi: 10.3390/sym9070123
– volume: 9
  start-page: 208
  issue: 10
  year: 2017
  ident: 823_CR9
  publication-title: Symmetry
  doi: 10.3390/sym9100208
– volume: 91
  start-page: 103776
  year: 2023
  ident: 823_CR11
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2023.103776
– volume: 35
  start-page: 101567
  issue: 6
  year: 2023
  ident: 823_CR14
  publication-title: J King Saud Univy-Comput Inf Sci
– volume: 2020
  start-page: 1
  year: 2020
  ident: 823_CR20
  publication-title: BioMed Res Int
  doi: 10.1155/2020/2086185
– volume: 5
  start-page: 773
  issue: 3
  year: 2022
  ident: 823_CR17
  publication-title: Stats
  doi: 10.3390/stats5030045
SSID ssj0001340564
Score 2.3669248
Snippet Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in...
MotivationThe Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in...
Abstract Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms Ambiguity
Big Data
Categorical data analysis
Communications Engineering
Comparative analysis
Comparative studies
Computational Science and Engineering
Computer Science
Consistency
Data
Data Mining and Knowledge Discovery
Database Management
Datasets
Decision making
Determinate
Dominance
Evaluation
Hypothesis testing
Information Storage and Retrieval
Machinery
Mathematical Applications in Computer Science
Motivation
Networks
Neutrosophic logic
Nominal measurement
Production
Simulation
Statistical inference
Statistical tests
Statistics
Tests
Uncertainty
Uncertainty quantification
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VlkMvlLYgFgrygRu1aseOP04IVlRIraoiVag3y3acckC7ZXdBghN_g7_HL8HjOF0ViV645JA40SRvnHm2x28AXvrIIu_bnmrBA5XBSGq4t1SqFHmXGplKbs7HU312Zi4v7XmdcFvWtMrxn1h-1N084hz5UYOlk4TWpn19_YVi1ShcXa0lNO7BFm8ajn5-oul6jkVkOqLkuFfGqKOlRP0SmgMVLWtMVNyKR0W2_xbX_Gt5tESd453_tfchPKh8k7wZHGQXNtJsD3bGWg6kdu092EbWOYg278N0Oo-fchD7_fPXknwgmY2uSCa3xKOCyY9sKME8qqtBXoRgkinBvWiLfIxDisHq-yO4OH53MX1Pa7UFGlvWrKgyTYfDF2u7jodomM1ksveiVzrIzHp6w1SUrDeRsU7Z1HqvO-5D2-vAjRaPYXM2n6UnQKzhiVnTBm9biZJzKersAH3GXzNlwgT4-MldrErkWBDjsysjEqPcAJPLMLkCkxMTeHVzz_Wgw3Fn67eI5E1L1NAuJ-aLK1e7pBMiMq9RnUi1MnTZTbGQF-oxqfxKIZt5MCLrasdeujWsEzgcfWN9-d8mPb37ac9gGwvZD4kyB7C5WnxNz-F-_JahX7wobv0HvWb8ag
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZg4cCl2_IQWxbkQ29gYa_fRxp11QNatdIK7c2yHWdBQrsoSSuVE3-jf6-_pLaTLFoESHDJIRkrzjwyY3vmGwBOrMeeVLxCkhKHmFMMKWI1YiJ4UoYZCzk359NHuVio1Upf9EVhzZDtPhxJ5j91Nmsl3jcsQY-g6GNQPh5C9CF4xInSSa-LvsYh76zQSCnYUCHz26F7XiiD9e9FmL8cimZfMx__3ywPwUEfW8IPnTIcgQdh8xSMh74NsDfjZ6Aotv5z9FF3P24beAljsNnCGLtCmwBKvse3wZQmte7QQ2DKIYWp1KyOV99lELQ3z8FyfrYszlHfTAF5jmctEmpWptWJ1mVJnFdYx1ixsrQS0rEY1FQKC89wpTzGpdCBWytLYh2vpCNK0hdgtNluwksAtSIBa8Wd1ZwlRLngZZRvFcUrsVBuAsjAW-N7oPHU7-KryQsOJUzHJBOZZDKTDJ2At7sx3zqYjb9SnyaR7SgTRHa-sa3Xprc4Q6nHVibwIcGZK6MWpj5dCW5JxE9ycZrTQeCmt9vGzFKDLiql4hPwbhDwz8d_ntLxv5G_Ak9S3_ouL2YKRm19FV6Dx_66_dLUb7I-3wNEN-2x
  priority: 102
  providerName: Springer Nature
Title Cochran’s Q test for analyzing categorical data under uncertainty
URI https://link.springer.com/article/10.1186/s40537-023-00823-3
https://www.proquest.com/docview/2869037785
https://doaj.org/article/33c0a70478654bdb84029780416f7bbb
Volume 10
WOSCitedRecordID wos001073827000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOAC5SW2tCsfuIFVJ_HzSKOtQLCrgCpouVi24wAS2la7AQkOqH-jf49fwkwepUUCLlxGSvyQ9c04Hsfjbwh55COPWSMbpossMBGMYCbzlgmVYlanXKQuNufNS71YmMNDW11I9YUxYT09cA_cblFE7jVyyCgpQg2dYbolZM1RjQ4h4NcXvJ4Lm6nu70oBjogS4y0Zo3bXAplLGCxRrDtdYsWllagj7L_kZf52MNqtN_ub5ObgKNKn_QBvkytpeYfcGpMw0GFO3iVleRw_wILz4_RsTV9R8BxbCo4o9cg28g26phjz9L6nAqEYEErx3tgKZOzDAdqv98jB_uygfMaGzAgsSp63TJm8xq2GtXWdhWi4BQgaXzRKBwEeSmO4ioI3JnJeK5uk97rOfJAAWWZ0cZ9sLI-X6QGh1mSJWyODt1IgPVyKGpTVgK40VyZMSDaC5OLAGo7JKz65bvdglOuBdQCs64B1xYQ8Pm9z0nNm_LX2HmJ_XhP5rrsXYAVusAL3LyuYkO1Rc26YhGuXY7atQmsjJ-TJqM1fxX8e0tb_GNJDcgNT0_ehL9tko119TjvkevzSflyvpuSqfns0Jdf2ZovqNTyVuZh2JgzyhWYg57xEmWPp_PsMZCXfQYvq-bw6-glF9vMT
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQvFAoVCwV8gBNYdWLHdg4IwULVqssKpBXqzYodpxzQbtldQOXEa_AQvBRPwoyTdFUkeuuBSw6JY_nnmx_b428AHldBhKwpGm5k5rnyVnGbVSVXOoasjrmKKTbnw8iMx_boqHy3Br_6uzAUVtnrxKSo61mgPfLdnFInSWNs8eLkM6esUXS62qfQaGFxGE-_4ZJt8fzgNc7vkzzfezMZ7vMuqwAPhciXXNu8Jje9LOs688GKEp2mppKNNl6hdW-s0EGJxgYhal3GoqpMnVW-aIzPrJFY7RW4qhRKA0UKiuFqS0ei96NVfzXH6t2FIroUjnaRpyMtLs-Zv5Ql4Jxr-9dpbDJye5v_2fDchBudN81etvC_BWtxugWbfaYK1imuLdggn7qlpL4Nw-EsfEQT_fvHzwV7z9DXXjJ03VlF_CzfcVwYRYkdt-QpjEJoGd20m-MztAEUy9M7MLmMbm3D-nQ2jXeBlTaLorSFr8pCEaFeDAbh3SC6jdDWDyDrZ9iFjmed0n18cmm9ZbVrUeEQFS6hwskBPD3756RlGbmw9CsCzllJYghPL2bzY9cpHCdlEJUh7iVdKF-jEFKaMmKb0tglj83c6YHkOrW1cCsUDeBZD8XV53836d7FtT2C6_uTtyM3Ohgf3oeNnAQihQTtwPpy_iU-gGvhK8Jg_jBJFAN3yRD9A6qDV5k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagXylNdKOADN7Bqrx0_jrCwAlGtilSh3izbsQsS2q12AxKc-Bv8PX4JHicpFAES4pJDMlaceWjGmZlvAB76yCLPTaZa8EBlMJIa7i2VKkXepqlMtTbnzYFeLMzxsT38qYu_VruPKcm-pwFRmpbd_mmbexM3an8jEYaEFn9Da6qIiotwCTNSePyaDf0O9S-LKJRKjt0yv116ziNV4P5z0eYvCdLqd-Y7_7_ja3B1iDnJk15JrsOFtLwBO-M8BzKY902YzVbxbfFd37583ZDXpAShHSkxLfEIXPK5vJlg-dRJjypCsLaUYAvaulxjX1nQfboFR_PnR7MXdBiyQGPDph1VZtriqcXatuUhGmZLDJm9yEoHWYKdbJiKkmUTGWuVTY33uuU-NFkHbrS4DVvL1TLtArGGJ2ZNE7xtJCLNpaiL3HMRu2bKhAnwkc8uDgDkOAfjvasHEaNczyRXmOQqk5yYwKOzNac9_MZfqZ-i-M4oETq73litT9xgiU6IyLxGUCLVyNAW7cT5XQjDpMonhbLNvVH4brDnjZvi4C6htWkm8HgU9o_Hf97SnX8jfwBXDp_N3cHLxau7sI2j7fvSmT3Y6tYf0j24HD927zbr-1XNvwPKO_l6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cochran%E2%80%99s+Q+test+for+analyzing+categorical+data+under+uncertainty&rft.jtitle=Journal+of+big+data&rft.au=Aslam%2C+Muhammad&rft.date=2023-12-01&rft.issn=2196-1115&rft.eissn=2196-1115&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-023-00823-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40537_023_00823_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon