Cochran’s Q test for analyzing categorical data under uncertainty
Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset Description This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncer...
Saved in:
| Published in: | Journal of big data Vol. 10; no. 1; pp. 147 - 10 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.12.2023
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 2196-1115, 2196-1115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Motivation
The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset
Description
This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts.
Results
An application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios.
Conclusion
This study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios. |
|---|---|
| AbstractList | Abstract Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset Description This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts. Results An application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios. Conclusion This study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios. Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous dataset Description This paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts. Results An application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios. Conclusion This study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios. MotivationThe Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in a dichotomous datasetDescriptionThis paper introduces a modified version of Cochran’s Q test using neutrosophic statistics to handle uncertainty in practical situations. The neutrosophic Cochran’s Q test determines whether the proportions of a specific outcome are consistent across different groups, considering both determinate and indeterminate parts.ResultsAn application of the proposed test is presented using production data to assess the capabilities of machines during different days of the week. The comparative study demonstrates the advantages of the proposed test over the classical Cochran’s Q test, providing insights into the degree of indeterminacy and enhancing decision-making in uncertain scenarios.ConclusionThis study introduces a modified version of the Cochran test, utilizing neutrosophic statistics to address uncertainty in practical scenarios. The neutrosophic Cochran’s Q test effectively assesses the consistency of outcome proportions across various groups, accounting for both determinate and indeterminate factors. The application of this novel approach to machine capabilities assessment, based on production data collected over different days of the week, unveils its superiority over the traditional Cochran’s Q test. This superiority is reflected in the insights it offers into the degree of indeterminacy, thereby enhancing decision-making in contexts marked by uncertainty. The simulation study further underscores the critical role of indeterminacy in affecting test statistics and decision outcomes, highlighting the significance of the proposed method in capturing real-world complexities. In essence, the neutrosophic Cochran’s Q test presents a refined and pragmatic tool for addressing the uncertainties inherent in diverse datasets, rendering it invaluable in practical decision-making scenarios. |
| ArticleNumber | 147 |
| Author | Aslam, Muhammad |
| Author_xml | – sequence: 1 givenname: Muhammad surname: Aslam fullname: Aslam, Muhammad email: aslam_ravian@hotmail.com organization: Department of Statistics, Faculty of Science, King Abdulaziz University |
| BookMark | eNp9kE1uFDEQhS0UJMKQC7BqiXVDuf3bSzRKQqRICCl7q9p2Dx41drA9i8kq18j1chJMGkHEIpuqklXfe673lpzEFD0h7yl8pFTLT4WDYKqHgfUAulX2ipwOdJQ9pVScPJvfkLNS9gBAWWMkPyXbbbLfM8bH-4fSfeuqL7WbU-4w4nK8C3HXWax-l3KwuHQOK3aH6Hxu1fpcMcR6fEdez7gUf_anb8jNxfnN9kt__fXyavv5urcChtpLPTjBtRpH5-hkNYygYUY2SzVxQcWsQVoOs7YATo5eICpHcRKzmqhWbEOuVlmXcG9uc_iB-WgSBvP0kPLOYK7BLt4wZgEVcKWl4JObNIdhVBo4lU1smprWh1XrNqefh3a02adDbjcXM2g5AlNKi7Y1rFs2p1Kyn_-6UjC_ozdr9KZFb56ib84bov-DbKhYQ4o1Y1heRtmKluYTdz7_-9UL1C-BaJkQ |
| CitedBy_id | crossref_primary_10_1139_apnm_2025_0152 crossref_primary_10_1186_s13027_024_00626_y crossref_primary_10_1136_bmjopen_2024_088632 crossref_primary_10_1007_s00787_025_02822_6 crossref_primary_10_2147_DMSO_S510384 crossref_primary_10_3389_fmicb_2024_1361927 crossref_primary_10_1016_j_envsci_2025_104071 crossref_primary_10_1016_j_pdpdt_2025_104788 crossref_primary_10_4018_IJAET_340933 crossref_primary_10_1016_j_optom_2025_100540 crossref_primary_10_1001_jamapediatrics_2024_3045 crossref_primary_10_1097_MD_0000000000042593 crossref_primary_10_1080_10799893_2025_2491068 crossref_primary_10_1364_JOCN_511863 crossref_primary_10_1080_02713683_2024_2408757 crossref_primary_10_1080_19401493_2024_2422919 crossref_primary_10_1007_s12672_025_02997_z crossref_primary_10_2196_59370 |
| Cites_doi | 10.1016/S0197-2456(03)00026-6 10.3390/sym9100208 10.3390/sym9070123 10.1002/jrsm.1336 10.1007/s11042-023-15313-0 10.2991/jsta.2018.17.2.7 10.1186/s12874-015-0034-x 10.1080/00949655.2022.2108423 10.1186/s40537-023-00700-z 10.1155/2020/7680286 10.1155/2020/2086185 10.14419/ijet.v7i3.18.16662 10.1016/j.jvcir.2023.103776 10.1007/s13042-023-01811-y 10.4135/9781849208499 10.3390/stats5030045 10.5958/2320-3226.2022.00024.8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-023-00823-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Statistics |
| EISSN | 2196-1115 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_33c0a70478654bdb84029780416f7bbb 10_1186_s40537_023_00823_3 |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM 7XB 8AL 8FK JQ2 L.- PHGZT PKEHL POGQB PQEST PQGLB PQUKI PRINS PRQQA Q9U |
| ID | FETCH-LOGICAL-c502t-682d548799dd1bc809080fa3f67b4515f806c40f8c00d69e5aa7d1ab5f7b1873 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073827000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Fri Oct 03 12:43:53 EDT 2025 Sat Nov 15 00:12:11 EST 2025 Tue Nov 18 20:51:55 EST 2025 Sat Nov 29 06:20:05 EST 2025 Fri Feb 21 02:41:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Hypothesis testing Uncertainty quantification Neutrosophic logic Statistical inference Categorical data analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-682d548799dd1bc809080fa3f67b4515f806c40f8c00d69e5aa7d1ab5f7b1873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/33c0a70478654bdb84029780416f7bbb |
| PQID | 2869037785 |
| PQPubID | 2046140 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_33c0a70478654bdb84029780416f7bbb proquest_journals_2869037785 crossref_primary_10_1186_s40537_023_00823_3 crossref_citationtrail_10_1186_s40537_023_00823_3 springer_journals_10_1186_s40537_023_00823_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Shawky, Aslam, Khan (CR19) 2020; 2020 Chen, Ye, Du (CR9) 2017; 9 Chen (CR13) 2023 Aslam, Arif, Sherwani (CR20) 2020; 2020 CR8 Chen (CR12) 2023 Kanji (CR23) 2006 Almarashi, Aslam (CR21) 2021; 2021 Aslam (CR22) 2023; 10 Smarandache (CR7) 2014 Chen (CR14) 2023; 35 Alhabib, Salama (CR18) 2020; 33 Chen (CR10) 2017; 9 Stephen, Shahren Ahmad Zaidi (CR4) 2018; 7 Aslam (CR17) 2022; 5 Song, Wassell (CR1) 2003; 24 Chakrabarti, Bandyopadhyay (CR6) 2018; 17 Chen (CR11) 2023; 91 Okeh, Oyeka, Igwenagu (CR3) 2016; 4 Van Aert, Van Assen, Viechtbauer (CR5) 2019; 10 AlAita, Aslam (CR15) 2022 Polymenis (CR16) 2021; 2 Kulinskaya, Dollinger (CR2) 2015; 15 Y Chen (823_CR13) 2023 JX Song (823_CR1) 2003; 24 AI Shawky (823_CR19) 2020; 2020 Y Chen (823_CR14) 2023; 35 823_CR8 Y Chen (823_CR11) 2023; 91 D Stephen (823_CR4) 2018; 7 Y Chen (823_CR12) 2023 RC Van Aert (823_CR5) 2019; 10 U Okeh (823_CR3) 2016; 4 F Smarandache (823_CR7) 2014 M Aslam (823_CR17) 2022; 5 P Chakrabarti (823_CR6) 2018; 17 J Chen (823_CR9) 2017; 9 A AlAita (823_CR15) 2022 AM Almarashi (823_CR21) 2021; 2021 M Aslam (823_CR22) 2023; 10 M Aslam (823_CR20) 2020; 2020 E Kulinskaya (823_CR2) 2015; 15 J Chen (823_CR10) 2017; 9 R Alhabib (823_CR18) 2020; 33 GK Kanji (823_CR23) 2006 A Polymenis (823_CR16) 2021; 2 |
| References_xml | – volume: 24 start-page: 378 issue: 4 year: 2003 end-page: 389 ident: CR1 article-title: Sample size for K 2× 2 tables in equivalence studies using Cochran’s statistic publication-title: Control Clin Trials doi: 10.1016/S0197-2456(03)00026-6 – volume: 9 start-page: 208 issue: 10 year: 2017 ident: CR9 article-title: Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics publication-title: Symmetry doi: 10.3390/sym9100208 – volume: 9 start-page: 123 issue: 7 year: 2017 ident: CR10 article-title: Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers publication-title: Symmetry doi: 10.3390/sym9070123 – volume: 10 start-page: 225 issue: 2 year: 2019 end-page: 239 ident: CR5 article-title: Statistical properties of methods based on the Q-statistic for constructing a confidence interval for the between-study variance in meta-analysis publication-title: Res Synth Methods doi: 10.1002/jrsm.1336 – year: 2023 ident: CR13 article-title: DGCA: high resolution image inpainting via DR-GAN and contextual attention publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-15313-0 – volume: 2021 start-page: 1 year: 2021 end-page: 12 ident: CR21 article-title: Process monitoring for gamma distributed product under neutrosophic statistics using resampling scheme publication-title: J Math – volume: 35 start-page: 101567 issue: 6 year: 2023 ident: CR14 article-title: DARGS: Image inpainting algorithm via deep attention residuals group and semantics publication-title: J King Saud Univy-Comput Inf Sci – volume: 17 start-page: 271 issue: 2 year: 2018 end-page: 282 ident: CR6 article-title: A new test for simple tree alternative in a 2 x k table publication-title: J Stat Theory Appl doi: 10.2991/jsta.2018.17.2.7 – volume: 15 start-page: 1 year: 2015 end-page: 19 ident: CR2 article-title: An accurate test for homogeneity of odds ratios based on Cochran’s Q-statistic publication-title: BMC Med Res Methodol doi: 10.1186/s12874-015-0034-x – year: 2022 ident: CR15 article-title: Analysis of covariance under neutrosophic statistics publication-title: J Stat Comput Simul doi: 10.1080/00949655.2022.2108423 – volume: 10 start-page: 24 issue: 1 year: 2023 ident: CR22 article-title: Data analysis for sequential contingencies under uncertainty publication-title: J Big Data doi: 10.1186/s40537-023-00700-z – volume: 2020 start-page: 1 year: 2020 end-page: 14 ident: CR19 article-title: Multiple dependent state sampling-based chart using belief statistic under neutrosophic statistics publication-title: J Math doi: 10.1155/2020/7680286 – volume: 2020 start-page: 1 year: 2020 end-page: 7 ident: CR20 article-title: New diagnosis test under the neutrosophic statistics: an application to diabetic patients publication-title: BioMed Res Int doi: 10.1155/2020/2086185 – volume: 7 start-page: 4 issue: 3 year: 2018 end-page: 6 ident: CR4 article-title: Cochran’s Q with pairwise McNemar for dichotomous multiple responses data: a practical approach publication-title: Int J Eng Technol doi: 10.14419/ijet.v7i3.18.16662 – volume: 91 start-page: 103776 year: 2023 ident: CR11 article-title: FFTI: image inpainting algorithm via features fusion and two-steps inpainting publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2023.103776 – ident: CR8 – year: 2023 ident: CR12 article-title: RNON: image inpainting via repair network and optimization network publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-023-01811-y – year: 2014 ident: CR7 publication-title: Introduction to neutrosophic statistics – year: 2006 ident: CR23 publication-title: 100 statistical test doi: 10.4135/9781849208499 – volume: 33 start-page: 105 year: 2020 end-page: 115 ident: CR18 article-title: The neutrosophic time series-study its models (linear-logarithmic) and test the coefficients significance of its linear model publication-title: Neutrosophic Sets Syst – volume: 2 start-page: 388 issue: 4 year: 2021 end-page: 393 ident: CR16 article-title: A neutrosophic student’st–type of statistic for AR (1) random processes publication-title: J Fuzzy Ext Appl – volume: 4 start-page: 1 issue: 4 year: 2016 end-page: 4 ident: CR3 article-title: An alternative approach to Cochran Q test for dichotomous data publication-title: MOJ Public Health – volume: 5 start-page: 773 issue: 3 year: 2022 end-page: 783 ident: CR17 article-title: Neutrosophic F-test for two counts of data from the Poisson distribution with application in climatology publication-title: Stats doi: 10.3390/stats5030045 – volume: 15 start-page: 1 year: 2015 ident: 823_CR2 publication-title: BMC Med Res Methodol doi: 10.1186/s12874-015-0034-x – volume: 2 start-page: 388 issue: 4 year: 2021 ident: 823_CR16 publication-title: J Fuzzy Ext Appl – volume: 2020 start-page: 1 year: 2020 ident: 823_CR19 publication-title: J Math doi: 10.1155/2020/7680286 – volume: 10 start-page: 24 issue: 1 year: 2023 ident: 823_CR22 publication-title: J Big Data doi: 10.1186/s40537-023-00700-z – volume: 10 start-page: 225 issue: 2 year: 2019 ident: 823_CR5 publication-title: Res Synth Methods doi: 10.1002/jrsm.1336 – ident: 823_CR8 doi: 10.5958/2320-3226.2022.00024.8 – year: 2022 ident: 823_CR15 publication-title: J Stat Comput Simul doi: 10.1080/00949655.2022.2108423 – volume: 7 start-page: 4 issue: 3 year: 2018 ident: 823_CR4 publication-title: Int J Eng Technol doi: 10.14419/ijet.v7i3.18.16662 – year: 2023 ident: 823_CR13 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-15313-0 – volume: 4 start-page: 1 issue: 4 year: 2016 ident: 823_CR3 publication-title: MOJ Public Health – year: 2023 ident: 823_CR12 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-023-01811-y – volume: 24 start-page: 378 issue: 4 year: 2003 ident: 823_CR1 publication-title: Control Clin Trials doi: 10.1016/S0197-2456(03)00026-6 – volume: 17 start-page: 271 issue: 2 year: 2018 ident: 823_CR6 publication-title: J Stat Theory Appl doi: 10.2991/jsta.2018.17.2.7 – volume: 33 start-page: 105 year: 2020 ident: 823_CR18 publication-title: Neutrosophic Sets Syst – volume: 2021 start-page: 1 year: 2021 ident: 823_CR21 publication-title: J Math – volume-title: 100 statistical test year: 2006 ident: 823_CR23 doi: 10.4135/9781849208499 – volume-title: Introduction to neutrosophic statistics year: 2014 ident: 823_CR7 – volume: 9 start-page: 123 issue: 7 year: 2017 ident: 823_CR10 publication-title: Symmetry doi: 10.3390/sym9070123 – volume: 9 start-page: 208 issue: 10 year: 2017 ident: 823_CR9 publication-title: Symmetry doi: 10.3390/sym9100208 – volume: 91 start-page: 103776 year: 2023 ident: 823_CR11 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2023.103776 – volume: 35 start-page: 101567 issue: 6 year: 2023 ident: 823_CR14 publication-title: J King Saud Univy-Comput Inf Sci – volume: 2020 start-page: 1 year: 2020 ident: 823_CR20 publication-title: BioMed Res Int doi: 10.1155/2020/2086185 – volume: 5 start-page: 773 issue: 3 year: 2022 ident: 823_CR17 publication-title: Stats doi: 10.3390/stats5030045 |
| SSID | ssj0001340564 |
| Score | 2.3669248 |
| Snippet | Motivation
The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in... MotivationThe Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple groups in... Abstract Motivation The Cochran test, also known as Cochran’s Q test, is a statistical procedure used to assess the consistency of proportions across multiple... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 147 |
| SubjectTerms | Ambiguity Big Data Categorical data analysis Communications Engineering Comparative analysis Comparative studies Computational Science and Engineering Computer Science Consistency Data Data Mining and Knowledge Discovery Database Management Datasets Decision making Determinate Dominance Evaluation Hypothesis testing Information Storage and Retrieval Machinery Mathematical Applications in Computer Science Motivation Networks Neutrosophic logic Nominal measurement Production Simulation Statistical inference Statistical tests Statistics Tests Uncertainty Uncertainty quantification |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4dBLCwXEQkE-cAOr_ortnBCsqJCQKpB66M3yR1wOaLfsLkjlxN_g7_FL8DhOV0WiFy45JE7kZMaeN_bkPYAXgmudeWRU2U5Q1QlLPesz9Sp4pZIsEcRWsQlzcmLPzvqPbcFt3coqpzmxTtRpGXGN_EigdJI0xnavL75SVI3C3dUmoXEb7nAhOPr5B0O3ayyywBGtpn9lrD5aK-QvoSVQ0brHROW1eFRp-69hzb-2R2vUOd7_3_7eg72GN8mb0UHuw61hcQD7k5YDaUP7AHYRdY6kzQ9gPl_GzyWI_f75a00-kYJGN6SAW-KRweRH6SjBOqrzkV6EYJEpwX_RVuUYxxKDzeVDOD1-dzp_T5vaAo0dExuqrUiYvvR9SjxEy_oCJrOXWZugCurJlumoWLaRsaT7ofPeJO5Dl03g1shHsLNYLobHQHhOIaQcSi43qBjLlJCl0gXn-WBZkGkGfPrkLjYmchTE-OJqRmK1G83kiplcNZOTM3h5dc_FyMNxY-u3aMmrlsihXU8sV-euDUknZWTeIDuR7lRIoaS6YuRj0uWVQpjB4WRZ1wb22m3NOoNXk29sL_-7S09uftpT2EUh-7FQ5hB2NqtvwzO4G78X06-eV7f-A-Vc_Hs priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58Hbz4FldXycGbBtMmTdOjLoqnRcGDt5BHo4LsyrYKevJv-Pf8JSZpqygq6KWHdkLbSabzTTPzDcBumnDuEkMwE1mKWZYKrEjhsGJaMWap9yAiNpvIh0NxeVmctUVhVZft3m1Jxi91NGvBDyoWqEew9zE4bg9hOg2zWSKKsK4HbY1D_LNCvSRnXYXMt0M_eaFI1v8JYX7ZFI2-5mTxf0-5BAsttkSHzWJYhqlytAKLXd8G1JrxKgwGY3PtfdTr80uFzpEHmzXy2BWpQFDy5O-GQprUVcMegkIOKQqlZhN_NE0GQf24BhcnxxeDU9w2U8AmI2mNuUhtiE6KwtpEG0EKjxWdoo7nmnlQ4wThhhEnDCGWF2WmVG4TpTOX60TkdB1mRuNRuQEocVZr67QP1UpmjLd4Rxn3ME5pQTS1PUg63UrTEo2Hfhe3MgYcgstGSdIrSUYlSdqDvfcxdw3Nxq_SR2HK3iUDRXY8MZ5cydbiJKWGqDyQD_GMaat9JJs2dEvcv5LWPeh3Ey5bu61kGhp00TwXWQ_2uwn-uPzzI23-TXwL5kPf-iYvpg8z9eS-3IY581DfVJOduJ7fAI137cI priority: 102 providerName: Springer Nature |
| Title | Cochran’s Q test for analyzing categorical data under uncertainty |
| URI | https://link.springer.com/article/10.1186/s40537-023-00823-3 https://www.proquest.com/docview/2869037785 https://doaj.org/article/33c0a70478654bdb84029780416f7bbb |
| Volume | 10 |
| WOSCitedRecordID | wos001073827000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagcODCP2KhrHzgBlYd27GdI422AqFdBVSJlovlnxiQ0BbtBiQ4IF6D1-NJGNtJaZGAC5eREjuRNR5nvonH3yD0kFVSxspTInTNiKiZJpY2kVjhrBCBgwfRudiEWq300VHTnSn1lXLCCj1wUdwe555alThkZC1ccBCQsMKaI6NyzqWvL6CeM8FU_rvCAYhIMZ2S0XJvKxJzCQEXRfLuEuHnPFEm7D-HMn_bGM3-5uA6ujoCRfykDPAGutCvb6JrUxEGPK7JW6htT_xbcDg_vn3f4hcYkOOAAYhim9hGvsCrccp5elOoQHBKCMXp3NgGpC_pAMPn2-jwYHHYPiVjZQTia8oGIjULKdRomhAq5zVtQAXR8iiVE4BQoqbSCxq1pzTIpq-tVaGyrgaVVVrxO2hnfbLu7yJcxeBciA7irl54D8s3ciEBk1mnqeNhhqpJScaPrOGpeMV7k6MHLU1RrAHFmqxYw2fo0ekzHwpnxl977yfdn_ZMfNf5BliBGa3A_MsKZmh3mjkzLsKtYanaFldK1zP0eJrNX81_HtK9_zGk--hKKk1fUl920c6w-dg_QJf9p-HddjNHF9Wr4zm6tL9YdS_hqmVink0Y5HNFQC5pmyRLrcuvC5Bd_Rqe6J4tu-OfxlTzJA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQvFAqoCwV8gBNYdWzHcQ4IwULVqmUF0h56s_wTl0O1W3YXUHvqa_AQvBRPwthJuioSvfXAJYfEiWL788xne_wNwHNeKBULz6jUJaey5JpaVkdqpbNSBoEeROdkE9VopA8P608r8Ks_C5PCKnubmA11mPq0Rr7NU-okUVW6fHPylaasUWl3tU-h0cJivzn9gVO2-eu999i_Lzjf-TAe7tIuqwD1JeMLqjQPiabXdQiF85rVSJqiFVFVTqJ3j5opL1nUnrGg6qa0tgqFdWWsXKErgZ-9ATelxNGQIgXZcLmkI5D9KNkfzdFqey6TXApFv0jzlhYVl9xfzhJwidr-tRubndzO-n_WPHfhTsemydsW_vdgpZlswHqfqYJ0hmsD1hKnbiWp78NwOPVf0EX_Pv85J58Jcu0FQepObNJnOcN2ISlK7KgVTyEphJakk3YzvPo2gGJx-gDG11Gth7A6mU6aTSBFDM6F6HCm2kjv0eBFIRWyWOs0cyIMoOh72PhOZz2l-zg2eb6llWlRYRAVJqPCiAG8vHjnpFUZubL0uwSci5JJITzfmM6OTGdwjBCe2SppL6lSuuBwIs9btSmFVXJuAFs9kExntuZmiaIBvOqhuHz87196dPXXnsHt3fHHA3OwN9p_DGs8DYgcErQFq4vZt-YJ3PLfEQazp3lEETDXDNE_APtXqg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VihCXUh4V20LxobdirRM7jnMsC6tWRSsqceBm-REvSNXuajcgtaf-jf69_pL6kUBBFAlxySEZK86MRzOTmfkG4EOece4yQzATRY5ZkQusSOWwYloxZqm3ICIOmyhHI3F-Xp3-08Ufq927lGTqaQgoTZOmP7Muqbjg_QULMCTY2xscU0WYLsHLkJEK4deg7XeIf1mop-Ss65Z5cOkdixSB--94m_cSpNHuDNefv-PX8Kr1OdGndEg24EU92YT1bp4DatV7CwaDqbnwtuvPr98L9A15J7RB3qdFKgCX_PRvRqF8apxQRVCoLUWhBW3uryZVFjQ_tuFseHw2-IzbIQvYFCRvMBe5DVFLVVmbaSNI5X1Ip6jjpWbe2XGCcMOIE4YQy6u6UKq0mdKFK3UmSvoGlifTSb0DKHNWa-u0D-FqZowXhqOMe_dOaUE0tT3IOj5L0wKQhzkY32UMRASXiUnSM0lGJknag483a2YJfuNR6sMgvhvKAJ0db0znY9lqoqTUEFUGUCJeMG21j3DzBMPE_Sdp3YPdTviy1eeFzMPgLlqWoujBQSfs28f_39Lbp5Hvw-rp0VCefBl9fQdrYbR9Kp3ZheVmflXvwYq5bi4X8_fxmP8F_Mb5iw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cochran%E2%80%99s+Q+test+for+analyzing+categorical+data+under+uncertainty&rft.jtitle=Journal+of+big+data&rft.au=Muhammad+Aslam&rft.date=2023-12-01&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1186%2Fs40537-023-00823-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_33c0a70478654bdb84029780416f7bbb |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |