Quadratic reformulations of nonlinear binary optimization problems
Very large nonlinear unconstrained binary optimization problems arise in a broad array of applications. Several exact or heuristic techniques have proved quite successful for solving many of these problems when the objective function is a quadratic polynomial. However, no similarly efficient methods...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 162; H. 1-2; S. 115 - 144 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2017
Springer Nature B.V Springer |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Very large nonlinear unconstrained binary optimization problems arise in a broad array of applications. Several exact or heuristic techniques have proved quite successful for solving many of these problems when the objective function is a quadratic polynomial. However, no similarly efficient methods are available for the higher degree case. Since high degree objectives are becoming increasingly important in certain application areas, such as computer vision, various techniques have been recently developed to reduce the general case to the quadratic one, at the cost of increasing the number of variables by introducing additional auxiliary variables. In this paper we initiate a systematic study of these
quadratization
approaches. We provide tight lower and upper bounds on the number of auxiliary variables needed in the worst-case for general objective functions, for bounded-degree functions, and for a restricted class of quadratizations. Our upper bounds are constructive, thus yielding new quadratization procedures. Finally, we completely characterize all “minimal” quadratizations of negative monomials. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84973103255 PAI P7/36 Comex |
| ISSN: | 0025-5610 1436-4646 1436-4646 |
| DOI: | 10.1007/s10107-016-1032-4 |