Deep Reinforcement Learning techniques for dynamic task offloading in the 5G edge-cloud continuum

The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained computing and battery resources of IoT devices. Up to now, Cloud Computing (CC) paradigm has been a good approach for tasks where latency is not crit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cloud computing : advances, systems and applications Ročník 13; číslo 1; s. 94 - 24
Hlavní autoři: Nieto, Gorka, de la Iglesia, Idoia, Lopez-Novoa, Unai, Perfecto, Cristina
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2192-113X, 2192-113X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained computing and battery resources of IoT devices. Up to now, Cloud Computing (CC) paradigm has been a good approach for tasks where latency is not critical, but it is not useful when latency matters, so Multi-access Edge Computing (MEC) can be of use. In this work, we propose a distributed Deep Reinforcement Learning (DRL) tool to optimize the binary task offloading decision, this is, the independent decision of where to execute each computing task, depending on many factors. The optimization goal in this work is to maximize the Quality-of-Experience (QoE) when performing tasks, which is defined as a metric related to the battery level of the UE, but subject to satisfying tasks’ latency requirements. This distributed DRL approach, specifically an Actor-Critic (AC) algorithm running on each User Equipment (UE), is evaluated through the simulation of two distinct scenarios and outperforms other analyzed baselines in terms of QoE values and/or energy consumption in dynamic environments, also demonstrating that decisions need to be adapted to the environment’s evolution.
AbstractList The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained computing and battery resources of IoT devices. Up to now, Cloud Computing (CC) paradigm has been a good approach for tasks where latency is not critical, but it is not useful when latency matters, so Multi-access Edge Computing (MEC) can be of use. In this work, we propose a distributed Deep Reinforcement Learning (DRL) tool to optimize the binary task offloading decision, this is, the independent decision of where to execute each computing task, depending on many factors. The optimization goal in this work is to maximize the Quality-of-Experience (QoE) when performing tasks, which is defined as a metric related to the battery level of the UE, but subject to satisfying tasks’ latency requirements. This distributed DRL approach, specifically an Actor-Critic (AC) algorithm running on each User Equipment (UE), is evaluated through the simulation of two distinct scenarios and outperforms other analyzed baselines in terms of QoE values and/or energy consumption in dynamic environments, also demonstrating that decisions need to be adapted to the environment’s evolution.
Abstract The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained computing and battery resources of IoT devices. Up to now, Cloud Computing (CC) paradigm has been a good approach for tasks where latency is not critical, but it is not useful when latency matters, so Multi-access Edge Computing (MEC) can be of use. In this work, we propose a distributed Deep Reinforcement Learning (DRL) tool to optimize the binary task offloading decision, this is, the independent decision of where to execute each computing task, depending on many factors. The optimization goal in this work is to maximize the Quality-of-Experience (QoE) when performing tasks, which is defined as a metric related to the battery level of the UE, but subject to satisfying tasks’ latency requirements. This distributed DRL approach, specifically an Actor-Critic (AC) algorithm running on each User Equipment (UE), is evaluated through the simulation of two distinct scenarios and outperforms other analyzed baselines in terms of QoE values and/or energy consumption in dynamic environments, also demonstrating that decisions need to be adapted to the environment’s evolution.
ArticleNumber 94
Author Nieto, Gorka
Lopez-Novoa, Unai
de la Iglesia, Idoia
Perfecto, Cristina
Author_xml – sequence: 1
  givenname: Gorka
  surname: Nieto
  fullname: Nieto, Gorka
  email: gnieto@ikerlan.es
  organization: Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), University of the Basque Country (UPV/EHU). School of Engineering in Bilbao
– sequence: 2
  givenname: Idoia
  surname: de la Iglesia
  fullname: de la Iglesia, Idoia
  organization: Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA)
– sequence: 3
  givenname: Unai
  surname: Lopez-Novoa
  fullname: Lopez-Novoa, Unai
  organization: University of the Basque Country (UPV/EHU). School of Engineering in Bilbao
– sequence: 4
  givenname: Cristina
  surname: Perfecto
  fullname: Perfecto, Cristina
  organization: University of the Basque Country (UPV/EHU). School of Engineering in Bilbao
BookMark eNp9kU1rVDEYhYNUsNb-AVcB11fzcXOTWUrVWhgQRMFdeJu8mWa8k4xJ7qL_vpleRXHRTT7Pczgv5yU5SzkhIa85e8u5md5VLietBybGgbFJmYE9I-eCb8TAufxx9s_5Bbmsdc8Y44wLafQ5gQ-IR_oVYwq5ODxganSLUFJMO9rQ3aX4a8FK-y_19wkO0dEG9SfNIcwZ_EkWE213SNU1Rb_Dwc158dTl1GJalsMr8jzAXPHy935Bvn_6-O3q87D9cn1z9X47OMVEG0aU4ZZtQl-dMuCDM3oDfNMvkqHwkgc-3oKZRNDaMFBSTOOIxgsDHdPygtysvj7D3h5LPEC5txmifXzIZWehtOhmtHL0fBKOCyP0aLwHo0bupQAVtAchuteb1etY8mn8Zvd5KanHt5IpJhXjk-wqs6pcybUWDNbFBi32yQvE2XJmT_3YtR_b-7GP_VjWUfEf-ifwk5BcodrFaYflb6onqAdewqP2
CitedBy_id crossref_primary_10_1016_j_adhoc_2025_103804
crossref_primary_10_1016_j_simpat_2025_103170
crossref_primary_10_1016_j_cosrev_2025_100782
crossref_primary_10_1007_s11227_024_06596_7
crossref_primary_10_1007_s42979_025_04130_x
crossref_primary_10_1016_j_rineng_2025_105890
crossref_primary_10_1109_TCE_2024_3507158
crossref_primary_10_3390_s25092904
crossref_primary_10_1177_14727978251366564
crossref_primary_10_1016_j_icte_2025_04_015
crossref_primary_10_3390_network5020016
crossref_primary_10_1007_s11227_025_07551_w
Cites_doi 10.32604/cmc.2023.038417
10.1109/JIOT.2021.3091142
10.1109/BMSB58369.2023.10211194
10.1109/IPCCC59175.2023.10253839
10.5281/zenodo.8127026
10.1557/s43577-022-00417-z
10.23919/ICN.2023.0007
10.1109/ACCESS.2021.3071848
10.1109/SAS58821.2023.10254051
10.1007/s10994-021-05961-4
10.1109/JIOT.2022.3143529
10.1007/s10723-023-09667-w
10.3390/app9061160
10.1109/ACCESS.2017.2665971
10.1109/TVT.2018.2881191
10.1109/JSYST.2022.3188997
10.1109/AI4I49448.2020.00014
10.1109/JIOT.2023.3316139
10.1109/MWC.001.2000296
10.1109/IECON49645.2022.9969083
10.1007/s11276-023-03404-7
10.1145/3616388.3617539
10.1109/JIOT.2021.3050804
10.1109/OJCOMS.2022.3189013
10.1007/s11277-020-07446-4
10.1109/TVT.2021.3115899
10.1007/s12083-022-01348-x
10.1109/HPSR57248.2023.10147932
10.1109/ACCESS.2019.2913564
10.1109/CSNDSP.2018.8471762
10.1109/JIOT.2020.3048992
10.1109/JSAC.2015.2478718
10.1109/ICCCE58854.2023.10246081
10.1109/ICC42927.2021.9500520
10.1109/TNSE.2023.3263169
10.1007/s00521-023-08905-2
10.1007/978-3-030-03596-9_15
10.1109/IPCCC59175.2023.10253860
10.1109/TCC.2022.3146615
10.1109/TMC.2019.2928811
10.1016/j.jpdc.2023.02.008
10.1109/TNSM.2023.3316626
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7RQ
7SC
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
MBDVC
P62
PADUT
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
U9A
DOA
DOI 10.1186/s13677-024-00658-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Research Library China
Advanced Technologies Database with Aerospace
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7RQ
  name: Career & Technical Education Database
  url: https://search.proquest.com/career
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2192-113X
EndPage 24
ExternalDocumentID oai_doaj_org_article_34d162c1282748dda8541d32a5f7da22
10_1186_s13677_024_00658_0
GrantInformation_xml – fundername: Basque Government
  grantid: KK-2023/00038; KK-2023/00038
GroupedDBID -A0
0R~
3V.
40G
5VS
7RQ
8FE
8FG
8G5
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
IAO
ISR
ITC
K6V
K7-
KQ8
M0N
M2O
M~E
O9-
OK1
PADUT
PIMPY
PQQKQ
PROAC
RNS
RSV
SCO
SOJ
AASML
AAYXX
AFFHD
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
U9A
ID FETCH-LOGICAL-c502t-4e3fb09f3fbc58adfc879a19c5830e2d31f14ba862f7780a532644e8d28a09f73
IEDL.DBID C24
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221283600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2192-113X
IngestDate Tue Oct 14 19:08:31 EDT 2025
Wed Oct 15 14:30:25 EDT 2025
Sat Nov 29 01:40:30 EST 2025
Tue Nov 18 22:34:09 EST 2025
Fri Feb 21 02:39:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance evaluation
Energy consumption
Internet of Things (IoT)
Quality-of-Experience (QoE)
Multi-access Edge Computing (MEC)
Edge-Cloud-Continuum
Task offloading
Reinforcement Learning (RL)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-4e3fb09f3fbc58adfc879a19c5830e2d31f14ba862f7780a532644e8d28a09f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13677-024-00658-0
PQID 3050350163
PQPubID 2034894
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_34d162c1282748dda8541d32a5f7da22
proquest_journals_3050350163
crossref_citationtrail_10_1186_s13677_024_00658_0
crossref_primary_10_1186_s13677_024_00658_0
springer_journals_10_1186_s13677_024_00658_0
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Advances, Systems and Applications
PublicationTitle Journal of cloud computing : advances, systems and applications
PublicationTitleAbbrev J Cloud Comp
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References MitsisGTsiropoulouEEPapavassiliouSPrice and risk awareness for data offloading decision-making in edge computing systemsIEEE Syst J20221646546655710.1109/JSYST.2022.3188997
ChenCZengYLiHLiuYWanSA multihop task offloading decision model in mec-enabled internet of vehiclesIEEE Internet Things J20231043215323010.1109/JIOT.2022.3143529
DongYAlwakeelAMAlwakeelMMAlharbiLAAlthubitiSAA heuristic deep q learning for offloading in edge devices in 5 g networksJ Grid Comput20232133710.1007/s10723-023-09667-w
KovacevicIHarjulaEGlisicSLorenzoBYlianttilaMCloud and edge computation offloading for latency limited servicesIEEE Access20219557645577610.1109/ACCESS.2021.3071848
Towers M, Terry JK, Kwiatkowski A, Balis JU, Cola Gd, Deleu T, Goulão M, Kallinteris A, KG A, Krimmel M, Perez-Vicente R, Pierré A, Schulhoff S, Tai JJ, Shen ATJ, Younis OG (2023) Gymnasium. https://doi.org/10.5281/zenodo.8127026
Gulde R, Tuscher M, Csiszar A, Riedel O, Verl A (2020) Deep reinforcement learning using cyclical learning rates. In: 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), IEEE, pp 32–35. https://doi.org/10.1109/AI4I49448.2020.00014
JiangTZhangJTangPTianLZhengYDouJAsplundHRaschkowskiLD’ErricoRJämsäT3g pp standardized 5g channel model for IIOT scenarios: A surveyIEEE Internet Things J20218118799881510.1109/JIOT.2020.3048992
Lai P, He Q, Abdelrazek M, Chen F, Hosking J, Grundy J, Yang Y (2018) Optimal edge user allocation in edge computing with variable sized vector bin packing. In: Pahl C, Vukovic M, Yin J, Yu Q (eds) Service-Oriented Computing. Springer International Publishing, Cham, pp 230–245. https://doi.org/10.1007/978-3-030-03596-9_15
ChenXWuCLiuZZhangNJiYComputation offloading in beyond 5g networks: A distributed learning framework and applicationsIEEE Wirel Commun2021282566210.1109/MWC.001.2000296
Plaat A (2022) Deep reinforcement learning, vol 10. Springer. https://link.springer.com/content/pdf/10.1007/978-981-19-0638-1.pdf
Silva C, Magaia N, Grilo A (2023) Task offloading optimization in mobile edge computing based on deep reinforcement learning. In: Proceedings of the Int’l ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems, Association for Computing Machinery, pp 109–118. https://doi.org/10.1145/3616388.3617539
ChoBXiaoYLearning-based decentralized offloading decision making in an adversarial environmentIEEE Trans Veh Technol20217011113081132310.1109/TVT.2021.3115899
LinLZhouWYangZLiuJDeep reinforcement learning-based task scheduling and resource allocation for noma-mec in industrial internet of thingsPeer-to-Peer Netw Appl202316117018810.1007/s12083-022-01348-x
Song Y, Shen Y (2023) Computing offloading based on deep reinforcement learning for virtual reality scene. In: 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp 1–5. https://doi.org/10.1109/BMSB58369.2023.10211194
WangSZaferMLeungKKOnline placement of multi-component applications in edge computing environmentsIEEE Access201752514253310.1109/ACCESS.2017.2665971
Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016) OpenAI Gym. arXiv:1606.01540
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Accessed 26 Mar 2024
BaccarelliEScarpinitiMMomenzadehAEcomobifog-design and dynamic optimization of a 5g mobile-fog-cloud multi-tier ecosystem for the real-time distributed execution of stream applicationsIEEE Access20197555655560810.1109/ACCESS.2019.2913564
HouJWuYCaiJZhouZQoe-guaranteed distributed offloading decision via partially observable deep reinforcement learning for edge-enabled internet of thingsNeural Comput Applic20233529216032161910.1007/s00521-023-08905-2
Xu J, Yang D (2023) Optimal task offloading for edge computing with stochastic task arrivals. In: 2023 IEEE International Performance, Computing, and Communications Conference (IPCCC), pp 24–31. https://doi.org/10.1109/IPCCC59175.2023.10253860
ZhouHJiangKLiuXLiXLeungVCDeep reinforcement learning for energy-efficient computation offloading in mobile-edge computingIEEE Internet Things J2021921517153010.1109/JIOT.2021.3091142
HuangLBiSZhangYJADeep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networksIEEE Trans Mob Comput202019112581259310.1109/TMC.2019.2928811
Dulac-ArnoldGLevineNMankowitzDJLiJPaduraruCGowalSHesterTChallenges of real-world reinforcement learning: definitions, benchmarks and analysisMach Learn2021110924192468430605510.1007/s10994-021-05961-4
KhannaAKaurSInternet of things (iot), applications and challenges: A comprehensive reviewWirel Pers Commun202011421687176210.1007/s11277-020-07446-4
YuanPShaoSZhangJZhaoXCooperative edge offloading strategy for sensory data with delay and energy constraintsWirel Netw20232983469347810.1007/s11276-023-03404-7
Saeed MM, Saeed RA, Mokhtar RA, Khalifa OO, Ahmed ZE, Barakat M, Elnaim AA (2023) Task reverse offloading with deep reinforcement learning in multi-access edge computing. In: 2023 9th International Conference on Computer and Communication Engineering (ICCCE), IEEE, pp 322–327. https://doi.org/10.1109/ICCCE58854.2023.10246081
Chollet F, et al (2015) Keras. https://keras.io. Accessed 26 Mar 2024
ETSI (2024) Multi-access edge computing (mec). https://www.etsi.org/technologies/multi-access-edge-computing. Accessed 26 Jan 2024
KhanBSJangsherSAhmedAAl-DweikAUrllc and embb in 5g industrial iot: A surveyIEEE Open J Commun Soc202231134116310.1109/OJCOMS.2022.3189013
Avgeris M, Mechennef M, Leivadeas A, Lambadaris I (2023) A two-stage cooperative reinforcement learning scheme for energy-aware computational offloading. In: 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR), pp 179–184. https://doi.org/10.1109/HPSR57248.2023.10147932
Jiao X, Ou H, Chen S, Guo S, Qu Y, Xiang C, Shang J (2023) Deep reinforcement learning for time-energy tradeoff online offloading in mec-enabled industrial internet of things. IEEE Trans Netw Sci Eng 1–14. https://doi.org/10.1109/TNSE.2023.3263169
CarboneMRWhen not to use machine learning: A perspective on potential and limitationsMRS Bull202247996897410.1557/s43577-022-00417-z
PanMLiZQianJEnergy-efficient multiuser and multitask computation offloading optimization methodIntell Converged Netw202341769210.23919/ICN.2023.0007
Al Aidaros O, Kardjadja Y, Bouida Z, Ibnkahla M (2023) Energy and time-effective computation offloading for edge computing-enabled iot networks. In: 2023 IEEE Sensors Applications Symposium (SAS), pp 1–6. https://doi.org/10.1109/SAS58821.2023.10254051
ChenXLiuGEnergy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networksIEEE Internet Things J2021813108431085610.1109/JIOT.2021.3050804
CozzolinoVTonettoLMohanNDingAYOttJNimbus: Towards latency-energy efficient task offloading for ar servicesIEEE Trans Cloud Comput20231121530154510.1109/TCC.2022.3146615
Scarpiniti M, Baccarelli E, Momenzadeh A (2019) Virtfogsim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5g mobile-fog-cloud virtualized platforms. Appl Sci 9(6). https://doi.org/10.3390/app9061160
KwakJKimYLeeJChongSDream: Dynamic resource and task allocation for energy minimization in mobile cloud systemsIEEE J Sel Areas Commun201533122510252310.1109/JSAC.2015.2478718
XuAHuZZhangXXiaoHZhengHChenBZhengMZhongPKangYLiKQdrl: Queue-aware online drl for computation offloading in industrial internet of thingsIEEE Internet Things J202310.1109/JIOT.2023.3316139
3GPP (2020) Study on channel model for frequencies from 0.5 to 100 ghz. Technical report (tr), 3rd Generation Partnership Project (3GPP). version 16.1.0. https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf
WuGXuZZhangHShenSYuSMulti-agent drl for joint completion delay and energy consumption with queuing theory in mec-based iiotJ Parallel Distrib Comput2023176809410.1016/j.jpdc.2023.02.008
Sun X, Chen J, Guo C (2022) Semantic-driven computation offloading and resource allocation for uav-assisted monitoring system in vehicular networks. In: IECON 2022-48th Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp 1–6. https://doi.org/10.1109/IECON49645.2022.9969083
TranTXPompiliDJoint task offloading and resource allocation for multi-server mobile-edge computing networksIEEE Trans Veh Technol201968185686810.1109/TVT.2018.2881191
Zhang B, Xiao F, Wu L (2023) Offline reinforcement learning for asynchronous task offloading in mobile edge computing. IEEE Trans Netw Serv Manag. https://doi.org/10.1109/TNSM.2023.3316626
Abdullaev I, Prodanova N, Bhaskar KA, Lydia EL, Kadry S, Kim J (2023) Task offloading and resource allocation in iot based mobile edge computing using deep learning. Comput Mater Continua 76(2). https://doi.org/10.32604/cmc.2023.038417
Bi S, Huang L, Wang H, Zhang YJA (2021) Stable online computation offloading via lyapunov-guided deep reinforcement learning. In: IEEE ICC, pp 1–7. https://doi.org/10.1109/ICC42927.2021.9500520
Farhan L, Kharel R, Kaiwartya O, Quiroz-Castellanos M, Alissa A, Abdulsalam M (2018) A concise review on internet of things (iot) -problems, challenges and opportunities. In: 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), pp 1–6. https://doi.org/10.1109/CSNDSP.2018.8471762
Li H, Xiong K, Fan P, Letaief KB (2023) Deep reinforcement learning based task offloading and resource allocation in small cell mec. In: 2023 IEEE International Performance,
658_CR7
658_CR20
S Wang (658_CR42) 2017; 5
658_CR8
658_CR5
658_CR40
P Yuan (658_CR46) 2023; 29
MR Carbone (658_CR9) 2022; 47
658_CR24
658_CR45
A Khanna (658_CR26) 2020; 114
A Xu (658_CR44) 2023
I Kovacevic (658_CR27) 2021; 9
L Huang (658_CR22) 2020; 19
658_CR47
B Cho (658_CR13) 2021; 70
BS Khan (658_CR25) 2022; 3
L Lin (658_CR31) 2023; 16
C Chen (658_CR10) 2023; 10
658_CR29
T Jiang (658_CR23) 2021; 8
658_CR30
V Cozzolino (658_CR15) 2023; 11
658_CR35
658_CR34
X Chen (658_CR11) 2021; 8
658_CR39
658_CR38
M Pan (658_CR33) 2023; 4
658_CR37
658_CR14
658_CR36
TX Tran (658_CR41) 2019; 68
658_CR19
658_CR18
G Wu (658_CR43) 2023; 176
G Mitsis (658_CR32) 2022; 16
E Baccarelli (658_CR6) 2019; 7
H Zhou (658_CR48) 2021; 9
658_CR3
X Chen (658_CR12) 2021; 28
658_CR4
J Kwak (658_CR28) 2015; 33
658_CR1
G Dulac-Arnold (658_CR17) 2021; 110
658_CR2
Y Dong (658_CR16) 2023; 21
J Hou (658_CR21) 2023; 35
References_xml – reference: 3GPP (2020) Study on channel model for frequencies from 0.5 to 100 ghz. Technical report (tr), 3rd Generation Partnership Project (3GPP). version 16.1.0. https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf
– reference: CozzolinoVTonettoLMohanNDingAYOttJNimbus: Towards latency-energy efficient task offloading for ar servicesIEEE Trans Cloud Comput20231121530154510.1109/TCC.2022.3146615
– reference: ChoBXiaoYLearning-based decentralized offloading decision making in an adversarial environmentIEEE Trans Veh Technol20217011113081132310.1109/TVT.2021.3115899
– reference: BaccarelliEScarpinitiMMomenzadehAEcomobifog-design and dynamic optimization of a 5g mobile-fog-cloud multi-tier ecosystem for the real-time distributed execution of stream applicationsIEEE Access20197555655560810.1109/ACCESS.2019.2913564
– reference: XuAHuZZhangXXiaoHZhengHChenBZhengMZhongPKangYLiKQdrl: Queue-aware online drl for computation offloading in industrial internet of thingsIEEE Internet Things J202310.1109/JIOT.2023.3316139
– reference: Al Aidaros O, Kardjadja Y, Bouida Z, Ibnkahla M (2023) Energy and time-effective computation offloading for edge computing-enabled iot networks. In: 2023 IEEE Sensors Applications Symposium (SAS), pp 1–6. https://doi.org/10.1109/SAS58821.2023.10254051
– reference: WuGXuZZhangHShenSYuSMulti-agent drl for joint completion delay and energy consumption with queuing theory in mec-based iiotJ Parallel Distrib Comput2023176809410.1016/j.jpdc.2023.02.008
– reference: Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016) OpenAI Gym. arXiv:1606.01540
– reference: LinLZhouWYangZLiuJDeep reinforcement learning-based task scheduling and resource allocation for noma-mec in industrial internet of thingsPeer-to-Peer Netw Appl202316117018810.1007/s12083-022-01348-x
– reference: Bi S, Huang L, Wang H, Zhang YJA (2021) Stable online computation offloading via lyapunov-guided deep reinforcement learning. In: IEEE ICC, pp 1–7. https://doi.org/10.1109/ICC42927.2021.9500520
– reference: Dulac-ArnoldGLevineNMankowitzDJLiJPaduraruCGowalSHesterTChallenges of real-world reinforcement learning: definitions, benchmarks and analysisMach Learn2021110924192468430605510.1007/s10994-021-05961-4
– reference: JiangTZhangJTangPTianLZhengYDouJAsplundHRaschkowskiLD’ErricoRJämsäT3g pp standardized 5g channel model for IIOT scenarios: A surveyIEEE Internet Things J20218118799881510.1109/JIOT.2020.3048992
– reference: Li H, Xiong K, Fan P, Letaief KB (2023) Deep reinforcement learning based task offloading and resource allocation in small cell mec. In: 2023 IEEE International Performance, Computing, and Communications Conference (IPCCC), pp 475–480. https://doi.org/10.1109/IPCCC59175.2023.10253839
– reference: Zhang B, Xiao F, Wu L (2023) Offline reinforcement learning for asynchronous task offloading in mobile edge computing. IEEE Trans Netw Serv Manag. https://doi.org/10.1109/TNSM.2023.3316626
– reference: DongYAlwakeelAMAlwakeelMMAlharbiLAAlthubitiSAA heuristic deep q learning for offloading in edge devices in 5 g networksJ Grid Comput20232133710.1007/s10723-023-09667-w
– reference: Avgeris M, Mechennef M, Leivadeas A, Lambadaris I (2023) A two-stage cooperative reinforcement learning scheme for energy-aware computational offloading. In: 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR), pp 179–184. https://doi.org/10.1109/HPSR57248.2023.10147932
– reference: Jiao X, Ou H, Chen S, Guo S, Qu Y, Xiang C, Shang J (2023) Deep reinforcement learning for time-energy tradeoff online offloading in mec-enabled industrial internet of things. IEEE Trans Netw Sci Eng 1–14. https://doi.org/10.1109/TNSE.2023.3263169
– reference: Abdullaev I, Prodanova N, Bhaskar KA, Lydia EL, Kadry S, Kim J (2023) Task offloading and resource allocation in iot based mobile edge computing using deep learning. Comput Mater Continua 76(2). https://doi.org/10.32604/cmc.2023.038417
– reference: MitsisGTsiropoulouEEPapavassiliouSPrice and risk awareness for data offloading decision-making in edge computing systemsIEEE Syst J20221646546655710.1109/JSYST.2022.3188997
– reference: Chollet F, et al (2015) Keras. https://keras.io. Accessed 26 Mar 2024
– reference: Farhan L, Kharel R, Kaiwartya O, Quiroz-Castellanos M, Alissa A, Abdulsalam M (2018) A concise review on internet of things (iot) -problems, challenges and opportunities. In: 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), pp 1–6. https://doi.org/10.1109/CSNDSP.2018.8471762
– reference: Towers M, Terry JK, Kwiatkowski A, Balis JU, Cola Gd, Deleu T, Goulão M, Kallinteris A, KG A, Krimmel M, Perez-Vicente R, Pierré A, Schulhoff S, Tai JJ, Shen ATJ, Younis OG (2023) Gymnasium. https://doi.org/10.5281/zenodo.8127026
– reference: Saeed MM, Saeed RA, Mokhtar RA, Khalifa OO, Ahmed ZE, Barakat M, Elnaim AA (2023) Task reverse offloading with deep reinforcement learning in multi-access edge computing. In: 2023 9th International Conference on Computer and Communication Engineering (ICCCE), IEEE, pp 322–327. https://doi.org/10.1109/ICCCE58854.2023.10246081
– reference: ChenXLiuGEnergy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networksIEEE Internet Things J2021813108431085610.1109/JIOT.2021.3050804
– reference: Scarpiniti M, Baccarelli E, Momenzadeh A (2019) Virtfogsim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5g mobile-fog-cloud virtualized platforms. Appl Sci 9(6). https://doi.org/10.3390/app9061160
– reference: Gulde R, Tuscher M, Csiszar A, Riedel O, Verl A (2020) Deep reinforcement learning using cyclical learning rates. In: 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), IEEE, pp 32–35. https://doi.org/10.1109/AI4I49448.2020.00014
– reference: KovacevicIHarjulaEGlisicSLorenzoBYlianttilaMCloud and edge computation offloading for latency limited servicesIEEE Access20219557645577610.1109/ACCESS.2021.3071848
– reference: Lai P, He Q, Abdelrazek M, Chen F, Hosking J, Grundy J, Yang Y (2018) Optimal edge user allocation in edge computing with variable sized vector bin packing. In: Pahl C, Vukovic M, Yin J, Yu Q (eds) Service-Oriented Computing. Springer International Publishing, Cham, pp 230–245. https://doi.org/10.1007/978-3-030-03596-9_15
– reference: WangSZaferMLeungKKOnline placement of multi-component applications in edge computing environmentsIEEE Access201752514253310.1109/ACCESS.2017.2665971
– reference: KwakJKimYLeeJChongSDream: Dynamic resource and task allocation for energy minimization in mobile cloud systemsIEEE J Sel Areas Commun201533122510252310.1109/JSAC.2015.2478718
– reference: Xu J, Yang D (2023) Optimal task offloading for edge computing with stochastic task arrivals. In: 2023 IEEE International Performance, Computing, and Communications Conference (IPCCC), pp 24–31. https://doi.org/10.1109/IPCCC59175.2023.10253860
– reference: TranTXPompiliDJoint task offloading and resource allocation for multi-server mobile-edge computing networksIEEE Trans Veh Technol201968185686810.1109/TVT.2018.2881191
– reference: YuanPShaoSZhangJZhaoXCooperative edge offloading strategy for sensory data with delay and energy constraintsWirel Netw20232983469347810.1007/s11276-023-03404-7
– reference: CarboneMRWhen not to use machine learning: A perspective on potential and limitationsMRS Bull202247996897410.1557/s43577-022-00417-z
– reference: HuangLBiSZhangYJADeep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networksIEEE Trans Mob Comput202019112581259310.1109/TMC.2019.2928811
– reference: ChenCZengYLiHLiuYWanSA multihop task offloading decision model in mec-enabled internet of vehiclesIEEE Internet Things J20231043215323010.1109/JIOT.2022.3143529
– reference: ChenXWuCLiuZZhangNJiYComputation offloading in beyond 5g networks: A distributed learning framework and applicationsIEEE Wirel Commun2021282566210.1109/MWC.001.2000296
– reference: KhanBSJangsherSAhmedAAl-DweikAUrllc and embb in 5g industrial iot: A surveyIEEE Open J Commun Soc202231134116310.1109/OJCOMS.2022.3189013
– reference: Plaat A (2022) Deep reinforcement learning, vol 10. Springer. https://link.springer.com/content/pdf/10.1007/978-981-19-0638-1.pdf
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Accessed 26 Mar 2024
– reference: ZhouHJiangKLiuXLiXLeungVCDeep reinforcement learning for energy-efficient computation offloading in mobile-edge computingIEEE Internet Things J2021921517153010.1109/JIOT.2021.3091142
– reference: KhannaAKaurSInternet of things (iot), applications and challenges: A comprehensive reviewWirel Pers Commun202011421687176210.1007/s11277-020-07446-4
– reference: Song Y, Shen Y (2023) Computing offloading based on deep reinforcement learning for virtual reality scene. In: 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp 1–5. https://doi.org/10.1109/BMSB58369.2023.10211194
– reference: HouJWuYCaiJZhouZQoe-guaranteed distributed offloading decision via partially observable deep reinforcement learning for edge-enabled internet of thingsNeural Comput Applic20233529216032161910.1007/s00521-023-08905-2
– reference: Silva C, Magaia N, Grilo A (2023) Task offloading optimization in mobile edge computing based on deep reinforcement learning. In: Proceedings of the Int’l ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems, Association for Computing Machinery, pp 109–118. https://doi.org/10.1145/3616388.3617539
– reference: ETSI (2024) Multi-access edge computing (mec). https://www.etsi.org/technologies/multi-access-edge-computing. Accessed 26 Jan 2024
– reference: PanMLiZQianJEnergy-efficient multiuser and multitask computation offloading optimization methodIntell Converged Netw202341769210.23919/ICN.2023.0007
– reference: Sun X, Chen J, Guo C (2022) Semantic-driven computation offloading and resource allocation for uav-assisted monitoring system in vehicular networks. In: IECON 2022-48th Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp 1–6. https://doi.org/10.1109/IECON49645.2022.9969083
– ident: 658_CR3
  doi: 10.32604/cmc.2023.038417
– volume: 9
  start-page: 1517
  issue: 2
  year: 2021
  ident: 658_CR48
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3091142
– ident: 658_CR38
  doi: 10.1109/BMSB58369.2023.10211194
– ident: 658_CR30
  doi: 10.1109/IPCCC59175.2023.10253839
– ident: 658_CR40
  doi: 10.5281/zenodo.8127026
– volume: 47
  start-page: 968
  issue: 9
  year: 2022
  ident: 658_CR9
  publication-title: MRS Bull
  doi: 10.1557/s43577-022-00417-z
– volume: 4
  start-page: 76
  issue: 1
  year: 2023
  ident: 658_CR33
  publication-title: Intell Converged Netw
  doi: 10.23919/ICN.2023.0007
– volume: 9
  start-page: 55764
  year: 2021
  ident: 658_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071848
– ident: 658_CR14
– ident: 658_CR4
  doi: 10.1109/SAS58821.2023.10254051
– volume: 110
  start-page: 2419
  issue: 9
  year: 2021
  ident: 658_CR17
  publication-title: Mach Learn
  doi: 10.1007/s10994-021-05961-4
– ident: 658_CR18
– volume: 10
  start-page: 3215
  issue: 4
  year: 2023
  ident: 658_CR10
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3143529
– volume: 21
  start-page: 37
  issue: 3
  year: 2023
  ident: 658_CR16
  publication-title: J Grid Comput
  doi: 10.1007/s10723-023-09667-w
– ident: 658_CR36
  doi: 10.3390/app9061160
– volume: 5
  start-page: 2514
  year: 2017
  ident: 658_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2665971
– volume: 68
  start-page: 856
  issue: 1
  year: 2019
  ident: 658_CR41
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2881191
– ident: 658_CR1
– volume: 16
  start-page: 6546
  issue: 4
  year: 2022
  ident: 658_CR32
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2022.3188997
– ident: 658_CR20
  doi: 10.1109/AI4I49448.2020.00014
– ident: 658_CR8
– year: 2023
  ident: 658_CR44
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2023.3316139
– volume: 28
  start-page: 56
  issue: 2
  year: 2021
  ident: 658_CR12
  publication-title: IEEE Wirel Commun
  doi: 10.1109/MWC.001.2000296
– ident: 658_CR39
  doi: 10.1109/IECON49645.2022.9969083
– volume: 29
  start-page: 3469
  issue: 8
  year: 2023
  ident: 658_CR46
  publication-title: Wirel Netw
  doi: 10.1007/s11276-023-03404-7
– ident: 658_CR37
  doi: 10.1145/3616388.3617539
– volume: 8
  start-page: 10843
  issue: 13
  year: 2021
  ident: 658_CR11
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3050804
– volume: 3
  start-page: 1134
  year: 2022
  ident: 658_CR25
  publication-title: IEEE Open J Commun Soc
  doi: 10.1109/OJCOMS.2022.3189013
– volume: 114
  start-page: 1687
  issue: 2
  year: 2020
  ident: 658_CR26
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-020-07446-4
– volume: 70
  start-page: 11308
  issue: 11
  year: 2021
  ident: 658_CR13
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3115899
– ident: 658_CR34
– volume: 16
  start-page: 170
  issue: 1
  year: 2023
  ident: 658_CR31
  publication-title: Peer-to-Peer Netw Appl
  doi: 10.1007/s12083-022-01348-x
– ident: 658_CR5
  doi: 10.1109/HPSR57248.2023.10147932
– volume: 7
  start-page: 55565
  year: 2019
  ident: 658_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913564
– ident: 658_CR19
  doi: 10.1109/CSNDSP.2018.8471762
– volume: 8
  start-page: 8799
  issue: 11
  year: 2021
  ident: 658_CR23
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.3048992
– volume: 33
  start-page: 2510
  issue: 12
  year: 2015
  ident: 658_CR28
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2015.2478718
– ident: 658_CR35
  doi: 10.1109/ICCCE58854.2023.10246081
– ident: 658_CR7
  doi: 10.1109/ICC42927.2021.9500520
– ident: 658_CR24
  doi: 10.1109/TNSE.2023.3263169
– volume: 35
  start-page: 21603
  issue: 29
  year: 2023
  ident: 658_CR21
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-023-08905-2
– ident: 658_CR2
– ident: 658_CR29
  doi: 10.1007/978-3-030-03596-9_15
– ident: 658_CR45
  doi: 10.1109/IPCCC59175.2023.10253860
– volume: 11
  start-page: 1530
  issue: 2
  year: 2023
  ident: 658_CR15
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2022.3146615
– volume: 19
  start-page: 2581
  issue: 11
  year: 2020
  ident: 658_CR22
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2019.2928811
– volume: 176
  start-page: 80
  year: 2023
  ident: 658_CR43
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2023.02.008
– ident: 658_CR47
  doi: 10.1109/TNSM.2023.3316626
SSID ssj0001012387
Score 2.4495895
Snippet The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained...
Abstract The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Algorithms
Cloud computing
Computation offloading
Computer Communication Networks
Computer Science
Computer System Implementation
Computer Systems Organization and Communication Networks
Deep learning
Edge computing
Energy consumption
Information Systems Applications (incl.Internet)
Internet of Things
Mobile computing
Mobile Edge Computing Meets AI
Multi-access Edge Computing (MEC)
Performance evaluation
Quality-of-Experience (QoE)
Reinforcement Learning (RL)
Software Engineering/Programming and Operating Systems
Special Purpose and Application-Based Systems
Task offloading
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4Fqur5OBNw7ZN26RHX6sHWURU9hbSPGRxbZdt6-83Sdt1V1AvXgptEggzk8yjM98AcCqINFJim2aoKEERIRhlsVYI84hnPAyizBXSvtyT4ZCORunDQqsvmxPWwAM3hOvjSAZJKMw1avwnKiWncRRIHPJYE8lDd_v6JF1wplx0xZoKlHRVMjTplxabjCCjkpBTu8hf0kQOsH_Jyvz2Y9Tpm8EW2GgNRXjRbHAbrKh8B2x2TRhgeyZ3Ab9WagoflUNAFS7YB1vQ1Fc4R2gtoRmFsmk_DytevsFC60nhMujhOIfGDoTxLbTRNSQmRS2hTWIf53X9vgeeBzdPV3eo7ZuAhKF6hSKFdean2jxFTLnUgpKUB6l5wb4KJQ604QE3vowmhPo8xtYqUlSGlJtlBO-D1bzI1QGAqaQZTVSWUU0jbYt4QyKoT2SaaGy474GgoyETLai47W0xYc65oAlr6M4M3ZmjO_M9cDZfM20gNX6dfWlZM59p4bDdByMkrBUS9peQeKDXMZa1Z7Rk2ELhxMbkxR4475j9Nfzzlg7_Y0tHYD20wugyY3pgtZrV6hisiY9qXM5OnDR_AiOn9HM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Career & Technical Education Database
  dbid: 7RQ
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4ajAMXYANEWUE-7DYsEjuJndO0wWCHqQLEJm6W4x9VRUlK0_L3Y7tOK5DgskukxHZk6Xv2e35-73sAXxXTTkp80QyTFThjjOIqtwZTmclKkjSrQiLtvz9sMOB3d-VVdLi1Mayy2xPDRq0b5X3kp9QTl-TOQKHfJ4_YV43yt6uxhMYafHSKuvByzm6uVz4WbzBw1uXK8OK09QxlDDvFhIPyxckLfRRo-1_Ymq-uR4PWudj-3_nuwFa0N9GPhYB8gg-m_gzbXS0HFJf2LshzYyboxgQiVRV8hihyrw7Rkui1Ra4V6UUVezST7T1qrB03IRAfjWrkzEmUXyLvpMNq3Mw18rHwo3o-f9iDvxe_bs9-41h-ASsH3gxnhtoqKa17qpxLbRVnpUxL90ITQzRNrYNSuiORZYwnMqfeuDJcEy7dMEb3Yb1uanMAqNS84oWpKm55Zn0uMGGKJ0yXhaVOiHqQdiAIFbnJfYmMsQhnFF6IBXDCAScCcCLpwbflmMmCmePd3j89tsuenlU7fGimQxEXqaCZTguinMp2Z3WuteR5lmpKZG6ZloT0oN9hLeJSb8UK6B6cdNKyan57Sofv_-0LbBIvpyF0pg_rs-ncHMGGepqN2ulxEPRnDREDMg
  priority: 102
  providerName: ProQuest
Title Deep Reinforcement Learning techniques for dynamic task offloading in the 5G edge-cloud continuum
URI https://link.springer.com/article/10.1186/s13677-024-00658-0
https://www.proquest.com/docview/3050350163
https://doaj.org/article/34d162c1282748dda8541d32a5f7da22
Volume 13
WOSCitedRecordID wos001221283600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Career & Technical Education Database
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: 7RQ
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/career
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2192-113X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001012387
  issn: 2192-113X
  databaseCode: C24
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5By4EL5akuLSsfuIFFYiexc2xLCwi6LCtA5WQ5flQrlqTa7PL7GXudRUWABBdLiW0pmkdmxp75BuCpERalJDTNcEVFCyE4bUrvKNeFbjTLiyYW0n5-JyYTeXFRT1NRWD9kuw9XkvFPHdVaVi_6AC4mKNoUGu0mxUB9t8xlHRL5TlKNQzxZCW6CFEOFzG-3XrNCEaz_mof5y6VotDVne__3lXfhTvItydFGGO7BDdfeh72hbwNJavwA9EvnrsjMRdBUE88HScJZvSRbUNee4Cyxm471ZKX7r6TzftHFpHsybwm6jqR8RcKBHDWLbm1JyHuft-v1t4fw6ez048lrmlotUIOMWtHCcd9ktcfRlFJbb6SodV7jA88cszz3yDaN4Y8XQma65MGRctIyqXGb4I9gp-1atw-ktrKRlWsa6WXhQ90vE0ZmwtaV5ygwI8gH0iuTcMhDO4yFivGIrNSGhgppqCINVTaCZ9s9VxsUjr-uPg4c3a4MCNrxRbe8VEkhFS9sXjGD5hnjcmmtlmWRW8506YXVjI3gcJAHldS6Vzyg55ToJfMRPB_4_3P6z5_0-N-WH8BtFkQops0cws5quXZP4Jb5vpr3yzHcFLMPY9g9Pp1MZ-Mo_ON4loDjW0FxPGfvcX765nz65Qeb2f_A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlKe60IIPcAKrie3EzgEhSimtdlkhVFBvxvGjWnWbbDe7oP4pfiO2N9lVkeitBy6REtuRE38z_jz2zAC81Nx4lISkGZblmHFOcZk5i6liqlQkZWV0pP0-4MOhODkpvqzB784XJhyr7HRiVNSm1sFGvktD4JLMExT6bnKBQ9aosLvapdBYwKJvL3_5JVvz9mjfj-8rQg4-Hn84xG1WAax9n2aYWerKpHD-qjOhjNOCFyot_A1NLDE0db6HyjN9x7lIVEYDZ7DCEKF8M079e2_BbUYFD3LV53hl0wkERfDON0fku02IiMaxnwhxnOxxcmX-i2kCrnDbv7Zj4yx3sPm__Z_7cK_l0-j9QgAewJqtHsJml6sCtarrEah9ayfoq42BYnW0iaI2tuwpWgaybZAvReayUucjjWaqOUO1c-M6OhqgUYU8XUbZJxSMkFiP67lB4az_qJrPzx_Dtxv50CewXtWV3QJUGFGK3JalcIK54OtMuBYJN0XuqBeSHqTdoEvdxl4PKUDGMq7BRC4XQJEeKDICRSY9eL1sM1lEHrm29l7A0rJmiBoeH9TTU9kqIUmZSXOiPSUhnAljlMhYaihRmeNGEdKD7Q5bslVljVwBqwdvOnSuiv_dpafXv-0F3D08_jyQg6Nh_xlskCAj8ZjQNqzPpnO7A3f0z9momT6PQobgx02j9g9-81-h
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHUJcGJ-iMMAHOIHVxE5i54CmjVKoNqoKARonz_HHVNElpWmZ9q_x12G7SashsdsOXCIl_pCT_N7zz89-7wG8VEw7lPikGSbJcMIYxUVqDaYykYUkcVIER9pvR2w04sfH-XgLfre-MP5YZasTg6LWlfI28h71gUtSR1BozzbHIsb9wd7sJ_YZpPxOa5tOYwWRQ3Nx7pZv9dth3_3rV4QM3n959xE3GQawcuNb4MRQW0S5dVeVcqmt4iyXce5uaGSIprF1o5WO9VvGeCRT6vmD4Zpw6Zox6vq9AduOkiekA9vj4afx942Fx9MVzlpPHZ71ah8fjWE3LeIw9ePo0mwYkgZcYrp_bc6GOW-w8z9_rbtwp2HaaH8lGvdgy5T3YafNYoEapfYAZN-YGfpsQghZFaylqIk6e4rWIW5r5EqRvijl2UShhax_oMraaRVcENCkRI5Io_QD8uZJrKbVUiPvBTApl8uzh_D1Wl70EXTKqjSPAeWaFzwzRcEtT6z3giZM8YjpPLPUiU8X4hYAQjVR2X1ykKkIqzOeiRVohAONCKARURder9vMVjFJrqx94HG1runjiYcH1fxUNOpJ0ETHGVGOrBCWcK0lT5NYUyJTy7QkpAu7Lc5Eo-RqsQFZF960SN0U_3tIT67u7QXccmAVR8PR4VO4Tby4hPNDu9BZzJfmGdxUvxaTev68kTgEJ9cN2z8a0moi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+techniques+for+dynamic+task+offloading+in+the+5G+edge-cloud+continuum&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Nieto%2C+Gorka&rft.au=de%C2%A0la%C2%A0Iglesia%2C+Idoia&rft.au=Lopez-Novoa%2C+Unai&rft.au=Perfecto%2C+Cristina&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-113X&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1186%2Fs13677-024-00658-0&rft.externalDocID=10_1186_s13677_024_00658_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon