ICESat-2 single photon laser point cloud denoising algorithm based on improved DBSCAN clustering
The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low energy consumption, high repetition frequency, and high measurement sensitivity. However, the weak photon signal emitted by the photon counting lidar...
Uložené v:
| Vydané v: | Earth, planets, and space Ročník 76; číslo 1; s. 128 - 16 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 1880-5981, 1343-8832, 1880-5981 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low energy consumption, high repetition frequency, and high measurement sensitivity. However, the weak photon signal emitted by the photon counting lidar is susceptible to the background noise caused by the sun and the atmosphere, which can seriously affect the processing and application of laser data. This paper proposes an improved DBSCAN clustering algorithm for denoising single photon laser point clouds in mountainous areas. Firstly, a grouping method based on elevation and distance statistics is proposed to reduce the influence of terrain undulations on denoising accuracy. Finally, an automatic radius search method is put forward to determine clustering radius of each group, automatically find the optimal radius, and improve the existing DBSCAN clustering method. The method proposed in this paper is compared with the classical DBSCAN algorithm. The results show that the proposed algorithm significantly improves denoising accuracy in mountainous areas and effectively filters out most background noise.
Graphical Abstract |
|---|---|
| AbstractList | The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low energy consumption, high repetition frequency, and high measurement sensitivity. However, the weak photon signal emitted by the photon counting lidar is susceptible to the background noise caused by the sun and the atmosphere, which can seriously affect the processing and application of laser data. This paper proposes an improved DBSCAN clustering algorithm for denoising single photon laser point clouds in mountainous areas. Firstly, a grouping method based on elevation and distance statistics is proposed to reduce the influence of terrain undulations on denoising accuracy. Finally, an automatic radius search method is put forward to determine clustering radius of each group, automatically find the optimal radius, and improve the existing DBSCAN clustering method. The method proposed in this paper is compared with the classical DBSCAN algorithm. The results show that the proposed algorithm significantly improves denoising accuracy in mountainous areas and effectively filters out most background noise.
Graphical Abstract The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low energy consumption, high repetition frequency, and high measurement sensitivity. However, the weak photon signal emitted by the photon counting lidar is susceptible to the background noise caused by the sun and the atmosphere, which can seriously affect the processing and application of laser data. This paper proposes an improved DBSCAN clustering algorithm for denoising single photon laser point clouds in mountainous areas. Firstly, a grouping method based on elevation and distance statistics is proposed to reduce the influence of terrain undulations on denoising accuracy. Finally, an automatic radius search method is put forward to determine clustering radius of each group, automatically find the optimal radius, and improve the existing DBSCAN clustering method. The method proposed in this paper is compared with the classical DBSCAN algorithm. The results show that the proposed algorithm significantly improves denoising accuracy in mountainous areas and effectively filters out most background noise. Abstract The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low energy consumption, high repetition frequency, and high measurement sensitivity. However, the weak photon signal emitted by the photon counting lidar is susceptible to the background noise caused by the sun and the atmosphere, which can seriously affect the processing and application of laser data. This paper proposes an improved DBSCAN clustering algorithm for denoising single photon laser point clouds in mountainous areas. Firstly, a grouping method based on elevation and distance statistics is proposed to reduce the influence of terrain undulations on denoising accuracy. Finally, an automatic radius search method is put forward to determine clustering radius of each group, automatically find the optimal radius, and improve the existing DBSCAN clustering method. The method proposed in this paper is compared with the classical DBSCAN algorithm. The results show that the proposed algorithm significantly improves denoising accuracy in mountainous areas and effectively filters out most background noise. Graphical Abstract The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low energy consumption, high repetition frequency, and high measurement sensitivity. However, the weak photon signal emitted by the photon counting lidar is susceptible to the background noise caused by the sun and the atmosphere, which can seriously affect the processing and application of laser data. This paper proposes an improved DBSCAN clustering algorithm for denoising single photon laser point clouds in mountainous areas. Firstly, a grouping method based on elevation and distance statistics is proposed to reduce the influence of terrain undulations on denoising accuracy. Finally, an automatic radius search method is put forward to determine clustering radius of each group, automatically find the optimal radius, and improve the existing DBSCAN clustering method. The method proposed in this paper is compared with the classical DBSCAN algorithm. The results show that the proposed algorithm significantly improves denoising accuracy in mountainous areas and effectively filters out most background noise. Graphical |
| ArticleNumber | 128 |
| Audience | Academic |
| Author | Yu, Jiachen Li, Qinghua Liu, Fengying Wang, Dong |
| Author_xml | – sequence: 1 givenname: Dong surname: Wang fullname: Wang, Dong email: sdustwd@163.com organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, National Demonstration Center for Experimental Surveying and Mapping Education (Shandong University of Science and Technology) – sequence: 2 givenname: Jiachen surname: Yu fullname: Yu, Jiachen organization: College of Geodesy and Geomatics, Shandong University of Science and Technology – sequence: 3 givenname: Fengying surname: Liu fullname: Liu, Fengying organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, National Demonstration Center for Experimental Surveying and Mapping Education (Shandong University of Science and Technology) – sequence: 4 givenname: Qinghua surname: Li fullname: Li, Qinghua organization: College of Geodesy and Geomatics, Shandong University of Science and Technology |
| BookMark | eNp9kUtv1DAURiNUJNrCH2AViRWLFL_jLIehwEgVSAyszY0fqUeZeLCdivn3eBoElEVlWb6yzrn21XdRnU1hslX1EqMrjKV4kxgShDaIsLJRi5vjk-ocS4ka3kl89k_9rLpIaYcQRUzQ8-r7Zn29hdyQOvlpGG19uA05TPUIycb6EPyUaz2G2dTGTsGfoBrGIUSfb_d1XyhTF9zvDzHclfrd2-169akoc8o2Fvp59dTBmOyL3-dl9e399df1x-bm84fNenXTaI5IbigB54huaWuFwAhBJ4zuCJEGU8N46xxtO8KRNqJzrO96YjDTBmnBBO-0ppfVZulrAuzUIfo9xKMK4NX9RYiDgpi9Hq0iIDlzreBOasaxg65H1ALHwJntKSq9Xi29ylA_Zpuy2oU5TuX7imLMSIsk5oW6WqgBSlM_uZAj6LKM3Xtd8nG-3K8kxkJI1LIivH4gFCbbn3mAOSW12X55yJKF1TGkFK37MxJG6hS5WiJXJXJ1H7k6Fkn-J2mfIfvyTgQ_Pq7SRU2HU2o2_h35EesXFJzA0g |
| CitedBy_id | crossref_primary_10_2478_amns_2025_0396 crossref_primary_10_1007_s11629_024_9209_4 crossref_primary_10_3390_rs17162885 crossref_primary_10_1109_TGRS_2025_3555628 |
| Cites_doi | 10.1109/TGRS.2021.3051086 10.1051/epjconf/202023701003 10.1029/2020EA001235 10.1029/2020EA001491 10.1007/s11771-022-4896-x 10.1016/j.jhydrol.2021.127257 10.1109/JSTARS.2021.3094195 10.1029/2021GL097448 10.1016/j.rse.2020.112110 10.3390/rs12172827 10.3390/info12060235 10.3390/RS15174260 10.1016/j.rse.2021.112711 10.5555/3001460.3001507 10.3390/RS15153884 10.1109/JSTARS.2022.3189042 10.1364/ao.469584 10.1016/j.rse.2019.111325 10.3390/rs10121962 10.3788/IRLA20200259 10.1109/LGRS.2020.3003191 10.1109/LGRS.2021.3081721 10.1016/j.rse.2021.112571 10.1029/2020EA001538 10.1016/j.rse.2022.112919 10.1016/j.jag.2020.102163 10.3390/rs13050863 10.1109/LGRS.2016.2555308 10.3390/rs14051185 10.3390/rs12132084 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 7TG 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO H8D HCIFZ KL. L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1186/s40623-024-02071-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Astronomy & Astrophysics Physics |
| EISSN | 1880-5981 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_2a854f765f8c451fa9b03ea51a54eb30 A811668074 10_1186_s40623_024_02071_y |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -A0 -~X 0R~ 3K4 4.4 5GY 5VS 7.U 8FE 8FG 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFGXO AFKRA AHBYD AHYZX AIDUJ ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BCNDV BENPR BGLVJ BHPHI BKSAR C24 C6C CCPQU E3Z EBLON EBS EJD FRP GROUPED_DOAJ HCIFZ IAO IGS ISR ITC JSH KQ8 LK5 M7R M~E OK1 P62 PCBAR PIMPY PROAC RSV SC5 SJN SOJ TR2 ~02 AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PQGLB 7TG 8FD ABUWG AZQEC DWQXO H8D KL. L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c502t-32aff2c737e66100a96dc9228d13d457ff379250cd69f4b9b2d14cd0c64659cc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001328504400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1880-5981 1343-8832 |
| IngestDate | Tue Oct 14 19:09:35 EDT 2025 Wed Oct 08 14:21:06 EDT 2025 Sat Nov 29 10:34:38 EST 2025 Wed Nov 26 10:57:52 EST 2025 Sat Nov 29 03:26:20 EST 2025 Tue Nov 18 21:14:35 EST 2025 Fri Feb 21 02:40:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | DBSCAN ICESat-2 Distance statistics Laser altimetry Point cloud denoising |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-32aff2c737e66100a96dc9228d13d457ff379250cd69f4b9b2d14cd0c64659cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/2a854f765f8c451fa9b03ea51a54eb30 |
| PQID | 3114270815 |
| PQPubID | 2034776 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2a854f765f8c451fa9b03ea51a54eb30 proquest_journals_3114270815 gale_infotracacademiconefile_A811668074 gale_incontextgauss_ISR_A811668074 crossref_primary_10_1186_s40623_024_02071_y crossref_citationtrail_10_1186_s40623_024_02071_y springer_journals_10_1186_s40623_024_02071_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Earth, planets, and space |
| PublicationTitleAbbrev | Earth Planets Space |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Xie, Xu, Ye, Jia, Sun, Huang, Li, Liu, Xie, Hao, Tong (CR22) 2021; 14 Vernimmen, Hooijer, Pronk (CR19) 2020; 12 Zhang, Liu, Ma, Xu, Zhang, Li (CR25) 2021; 13 Zhu, Wang, Xi, Nie, Yang, Li (CR28) 2020; 49 Tian, Shan (CR18) 2021; 59 Xing, Huang, Gruen, Qin (CR23) 2020; 12 Zhu, Nie, Wang, Xi, Hu (CR27) 2018; 10 Kacimi, Kwok (CR5) 2022 Li, Gao, Chen, Sun, Liu (CR8) 2021; 12 Neumann, Martino, Markus, Bae, Bock, Brenner, Brunt, Cavanaugh, Fernandes, Hancock, Harbeck, Lee, Kurtz, Luers, Luthcke, Magruder, Pennington, Ramos-Izquierdo, Rebold, Skoog, Thomas (CR16) 2019 Neuenschwander, Guenther, White, Duncanson, Montesano (CR15) 2020; 251 You, Li, Qin, Lei, Chen, Shi (CR24) 2023; 15 Zhu, Nie, Wang, Xi, Wang, Li, Zhou (CR29) 2021; 18 Zhang, Xu, Xing, Li, Zhang, Wang, Dai (CR26) 2022; 19 Wang, Pan, Glennie (CR20) 2016; 13 Liu, Cheng, Chen (CR9) 2021; 264 Hao, Cui, Hai, Qiao, Li, He, Li (CR3) 2022; 15 Herzfeld, Lawson, Trantow, Nylen (CR4) 2022; 14 Zhu, Yang, Li, Xie, Fu (CR30) 2022; 29 Li, Niu, Shang, Qin, Wang, Chen (CR7) 2020; 92 Meng, Li, Tang, Xu, Dong (CR12) 2022; 61 Malambo, Popescu (CR10) 2021; 266 Chen, Song, Luo, Ke, Liu, Zhu (CR1) 2022; 604 Petty, Bagnardi, Kurtz, Tilling, Fons, Armitage, Horvat, Kwok (CR17) 2021 McGarry, Carabajal, Saba, Reese, Holland, Palm, Swinski, Golder, Liiva (CR11) 2021 Mulverhill, Coops, Hermosilla, White, Wulder (CR14) 2022; 271 Michaelides, Bryant, Siegfried, Borsa (CR13) 2021 Xie, Ye, Hai, Tong (CR21) 2020; 237 Kui, Xu, Wang, Cheng (CR6) 2023; 15 Ester, Kriegel, Sander, Xu, Simoudis, Han, Fayyad (CR2) 1996 J Zhu (2071_CR30) 2022; 29 M Ester (2071_CR2) 1996 X Tian (2071_CR18) 2021; 59 JF McGarry (2071_CR11) 2021 X Wang (2071_CR20) 2016; 13 Z Zhang (2071_CR25) 2021; 13 M Kui (2071_CR6) 2023; 15 L Malambo (2071_CR10) 2021; 266 R Vernimmen (2071_CR19) 2020; 12 A Liu (2071_CR9) 2021; 264 RJ Michaelides (2071_CR13) 2021 T Hao (2071_CR3) 2022; 15 X Zhu (2071_CR27) 2018; 10 AA Petty (2071_CR17) 2021 W Li (2071_CR7) 2020; 92 C Mulverhill (2071_CR14) 2022; 271 X Zhu (2071_CR29) 2021; 18 H Xie (2071_CR21) 2020; 237 W Meng (2071_CR12) 2022; 61 X Zhu (2071_CR28) 2020; 49 A Neuenschwander (2071_CR15) 2020; 251 H Xie (2071_CR22) 2021; 14 G Zhang (2071_CR26) 2022; 19 Y Xing (2071_CR23) 2020; 12 UC Herzfeld (2071_CR4) 2022; 14 S Kacimi (2071_CR5) 2022 T Chen (2071_CR1) 2022; 604 X Li (2071_CR8) 2021; 12 H You (2071_CR24) 2023; 15 TA Neumann (2071_CR16) 2019 |
| References_xml | – volume: 59 start-page: 8195 issue: 10 year: 2021 end-page: 8209 ident: CR18 article-title: Comprehensive evaluation of the ICESat-2 ATL08(advanced topographic laser altimeter system level 08) terrain product publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2021.3051086 – volume: 237 start-page: 01003 year: 2020 ident: CR21 article-title: An adaptive filter based on local slope by adjusting elliptic filter kernel for ICESat-2 photon counting laser altimetric data publication-title: EPJ Web Conf doi: 10.1051/epjconf/202023701003 – year: 2021 ident: CR11 article-title: ICESat-2/ATLAS onboard flight science receiver algorithms: purpose, process, and performance publication-title: Earth Sp Sci doi: 10.1029/2020EA001235 – year: 2021 ident: CR17 article-title: Assessment of ICESat-2 sea ice surface classification with Sentinel-2 imagery: Implications for freeboard and new estimates of lead and floe geometry publication-title: Earth Sp Sci doi: 10.1029/2020EA001491 – volume: 29 start-page: 226 year: 2022 end-page: 238 ident: CR30 article-title: Accuracy assessment of ICESat-2 ATL08 terrain estimates: a case study in Spain publication-title: J Cent South Univ doi: 10.1007/s11771-022-4896-x – volume: 604 year: 2022 ident: CR1 article-title: Monitoring global reservoirs using ICESat-2: assessment on spatial coverage and application potential publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127257 – volume: 14 start-page: 7604 year: 2021 end-page: 7623 ident: CR22 article-title: A comparison and review of surface detection methods using MBL, MABEL, and ICESat-2 photon-counting laser altimetry data. IEEE J publication-title: Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2021.3094195 – year: 2022 ident: CR5 article-title: Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018–2021 publication-title: Geophys Res Lett doi: 10.1029/2021GL097448 – volume: 251 year: 2020 ident: CR15 article-title: Validation of ICESat-2 terrain and canopy heights in boreal forests publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.112110 – volume: 12 start-page: 2827 issue: 17 year: 2020 ident: CR19 article-title: New ICESat-2 satellite LiDAR data allow first global lowland DTM suitable for accurate coastal flood risk assessment publication-title: Remote Sens doi: 10.3390/rs12172827 – volume: 12 start-page: 235 issue: 6 year: 2021 ident: CR8 article-title: Research on estimation method of geometric features of structured negative obstacle based on single-frame 3D laser point cloud publication-title: Inf doi: 10.3390/info12060235 – volume: 15 start-page: 4260 issue: 17 year: 2023 ident: CR24 article-title: Research on multilevel filtering algorithm used for denoising strong and weak beams of daytime photon cloud data with high background noise publication-title: Remote Sens doi: 10.3390/RS15174260 – volume: 266 year: 2021 ident: CR10 article-title: Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones publication-title: Remote Sens Environ doi: 10.1016/j.rse.2021.112711 – year: 1996 ident: CR2 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: KDD’96: Proc Second Int Conf Knowlede Disc Data Mining doi: 10.5555/3001460.3001507 – volume: 15 start-page: 3884 issue: 15 year: 2023 ident: CR6 article-title: Research on the adaptability of typical denoising algorithms based on ICESat-2 data publication-title: Remote Sens doi: 10.3390/RS15153884 – volume: 15 start-page: 5636 year: 2022 end-page: 5643 ident: CR3 article-title: Impact of Slopes on ICESat-2 elevation accuracy along the CHINARE route in East Antarctica publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2022.3189042 – volume: 61 start-page: 8395 issue: 28 year: 2022 end-page: 8404 ident: CR12 article-title: ICESat-2 laser data denoising algorithm based on a back propagation neural network publication-title: Appl Opt doi: 10.1364/ao.469584 – year: 2019 ident: CR16 article-title: The ice, cloud, and land elevation satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111325 – volume: 10 start-page: 1962 year: 2018 ident: CR27 article-title: A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data publication-title: Remote Sens doi: 10.3390/rs10121962 – volume: 49 start-page: 20200259 issue: 11 year: 2020 ident: CR28 article-title: Research progress of ICESat-2/ATLAS data processing and applications publication-title: Infrared Laser Eng doi: 10.3788/IRLA20200259 – volume: 18 start-page: 1471 year: 2021 end-page: 1475 ident: CR29 article-title: A noise removal algorithm based on OPTICS for photon-counting LiDAR data publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2020.3003191 – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: CR26 article-title: A noise-removal algorithm without input parameters based on quadtree isolation for photon counting LiDAR publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2021.3081721 – volume: 264 year: 2021 ident: CR9 article-title: Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals publication-title: Remote Sens Environ doi: 10.1016/j.rse.2021.112571 – year: 2021 ident: CR13 article-title: Quantifying surface-height change over a periglacial environment with ICESat-2 laser altimetry publication-title: Earth Sp Sci doi: 10.1029/2020EA001538 – volume: 271 year: 2022 ident: CR14 article-title: Evaluating ICESat-2 for monitoring, modeling, and update of large area forest canopy height products publication-title: Remote Sens Environ doi: 10.1016/j.rse.2022.112919 – volume: 92 year: 2020 ident: CR7 article-title: High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with sentinel-1, sentinel-2 and landsat-8 data publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2020.102163 – volume: 13 start-page: 863 issue: 5 year: 2021 ident: CR25 article-title: Signal photon extraction method for weak beam data of ICESat-2 using information provided by strong beam data in mountainous areas publication-title: Remote Sens doi: 10.3390/rs13050863 – volume: 13 start-page: 947 issue: 7 year: 2016 end-page: 951 ident: CR20 article-title: A novel noise filtering model for photon-counting laser altimeter data publication-title: IEEE Geosci Remote S doi: 10.1109/LGRS.2016.2555308 – volume: 14 start-page: 1185 issue: 5 year: 2022 ident: CR4 article-title: Airborne validation of ICESat-2 ATLAS data over crevassed surfaces and other complex glacial environments: Results from experiments of laser altimeter and kinematic GPS data collection from a helicopter over a surging arctic glacier (Negribreen, Svalbard) publication-title: Remote Sens doi: 10.3390/rs14051185 – volume: 12 start-page: 2084 issue: 13 year: 2020 ident: CR23 article-title: Assessing the performance of ICESat-2/ATLAS multi-channel photon data for estimating ground topography in forested terrain publication-title: Remote Sens doi: 10.3390/rs12132084 – year: 2021 ident: 2071_CR17 publication-title: Earth Sp Sci doi: 10.1029/2020EA001491 – volume: 49 start-page: 20200259 issue: 11 year: 2020 ident: 2071_CR28 publication-title: Infrared Laser Eng doi: 10.3788/IRLA20200259 – volume: 15 start-page: 4260 issue: 17 year: 2023 ident: 2071_CR24 publication-title: Remote Sens doi: 10.3390/RS15174260 – year: 2022 ident: 2071_CR5 publication-title: Geophys Res Lett doi: 10.1029/2021GL097448 – volume: 12 start-page: 2827 issue: 17 year: 2020 ident: 2071_CR19 publication-title: Remote Sens doi: 10.3390/rs12172827 – volume: 12 start-page: 2084 issue: 13 year: 2020 ident: 2071_CR23 publication-title: Remote Sens doi: 10.3390/rs12132084 – volume: 271 year: 2022 ident: 2071_CR14 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2022.112919 – volume: 13 start-page: 863 issue: 5 year: 2021 ident: 2071_CR25 publication-title: Remote Sens doi: 10.3390/rs13050863 – volume: 15 start-page: 3884 issue: 15 year: 2023 ident: 2071_CR6 publication-title: Remote Sens doi: 10.3390/RS15153884 – volume: 15 start-page: 5636 year: 2022 ident: 2071_CR3 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2022.3189042 – volume: 14 start-page: 7604 year: 2021 ident: 2071_CR22 publication-title: Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2021.3094195 – volume: 92 year: 2020 ident: 2071_CR7 publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2020.102163 – volume: 264 year: 2021 ident: 2071_CR9 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2021.112571 – volume: 237 start-page: 01003 year: 2020 ident: 2071_CR21 publication-title: EPJ Web Conf doi: 10.1051/epjconf/202023701003 – volume: 19 start-page: 1 year: 2022 ident: 2071_CR26 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2021.3081721 – year: 2019 ident: 2071_CR16 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111325 – year: 1996 ident: 2071_CR2 publication-title: KDD’96: Proc Second Int Conf Knowlede Disc Data Mining doi: 10.5555/3001460.3001507 – volume: 59 start-page: 8195 issue: 10 year: 2021 ident: 2071_CR18 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2021.3051086 – volume: 10 start-page: 1962 year: 2018 ident: 2071_CR27 publication-title: Remote Sens doi: 10.3390/rs10121962 – volume: 18 start-page: 1471 year: 2021 ident: 2071_CR29 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2020.3003191 – volume: 604 year: 2022 ident: 2071_CR1 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127257 – volume: 13 start-page: 947 issue: 7 year: 2016 ident: 2071_CR20 publication-title: IEEE Geosci Remote S doi: 10.1109/LGRS.2016.2555308 – volume: 266 year: 2021 ident: 2071_CR10 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2021.112711 – volume: 12 start-page: 235 issue: 6 year: 2021 ident: 2071_CR8 publication-title: Inf doi: 10.3390/info12060235 – year: 2021 ident: 2071_CR13 publication-title: Earth Sp Sci doi: 10.1029/2020EA001538 – volume: 251 year: 2020 ident: 2071_CR15 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.112110 – volume: 14 start-page: 1185 issue: 5 year: 2022 ident: 2071_CR4 publication-title: Remote Sens doi: 10.3390/rs14051185 – year: 2021 ident: 2071_CR11 publication-title: Earth Sp Sci doi: 10.1029/2020EA001235 – volume: 29 start-page: 226 year: 2022 ident: 2071_CR30 publication-title: J Cent South Univ doi: 10.1007/s11771-022-4896-x – volume: 61 start-page: 8395 issue: 28 year: 2022 ident: 2071_CR12 publication-title: Appl Opt doi: 10.1364/ao.469584 |
| SSID | ssj0030463 |
| Score | 2.416721 |
| Snippet | The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low energy... Abstract The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has great potential for development due to its advantages of the use of multiple beams, low... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 128 |
| SubjectTerms | 6. Geodesy Algorithms Analysis Background noise Cluster analysis Clustering DBSCAN Digital elevation models Distance statistics Earth and Environmental Science Earth Sciences Elevation Energy consumption Geology Geophysics/Geodesy ICESat-2 Laser altimetry Laser applications Lasers Lidar Mountain regions Mountainous areas Mountains Noise measurement Noise reduction Noise sensitivity Photons Point cloud denoising Random noise theory |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdggMTLgAFaYCALIXiAaIljO8kT6som9lJVFKSJF-P4o6vUNaVJJ_W_585NNk0Te0FKJCs5R3bufHc-278j5L02QhTgpsbGiAQmKImPNYhGDAx2zICDLLwJySby0ag4OyvHXcCt6bZV9joxKGpbG4yRH2Z46DMHAya-LP_EmDUKV1e7FBr3yQNEScDUDWPxq9fEAQ2rPyhTyMMGjBfDVUsON5jWeHPDGAXM_tua-dYSabA8J0_-t81PyW7nc9LBVkiekXtusUf2Bw1GweuLDf1AQ3kb5Gj2yKPxtvSc_D4dHk90GzOKIYW5o8vzGpxFCi63W9FlPVu01MzrtaWgvuoZElE9n0Ib2vMLihbSUiCfhcgFlL8eTYaDEVRZIz4DUL8gP0-Ofwy_xV1Ohhh4ydo4Y9p7ZvIsd2DZk0SX0pqSscKmmeUi9z7LS3CrjJWl51VZMZtyYxMjuRSlMdlLsrOoF26fUKZZXtlCOl9J7mxZGhCVyjoOF-O5jkjaM0eZDrAc82bMVZi4FFJtGaqAoSowVG0i8umqznIL13En9RHy_IoSobbDg3o1Vd3IVUwXgvtcCl8YLlKvyyrJnBapFtxVWRKRdygxCsE0FrhbZ6rXTaNOJ9_VoEhTKRFuKCIfOyJfQx-M7g4_wJ9A_K0blAe9LKlOnTTqWpAi8rmXxuvX_-7hq7u_9po8ZjgcwvacA7LTrtbuDXloLttZs3obBtNfAj0kog priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Kvhy6qlc9ZQgog9ark2TtHncW-_0XpbDVbi3mOZjr7DXLtuusP_9TdL25DgVFFoI6QSamcnM5GN-Qeit0owVEKbGWrMEJiiJixWoRgwCtkRDgMycDpdN5LNZcX4uzoaksHY87T5uSQZLHYZ1wQ9bcD3E7zlSeMExxtu76B5LC-EP8k19jkNvfwMG1pge89t2N1xQQOq_bY9vbYwGf3Py6P_-9DHaHeJLPOkV4gm6Y-s9tD9p_Yp3c7nF73Ao9wsa7R568Dlc7buF0llf9xT9OJ0ez1UXE-wXEpYWry4aCBExBNp2jVdNVXdYL5uNwWC0msoTYbVcNOuqu7jE3i8aDORVWK-A8qej-XQygyYbj8oA1M_Q95Pjb9Mv8XATQwwSJF2cEeUc0XmWW_DnSaIEN1oQUpg0M5TlzmW5gGBKGy4cLUVJTEq1STSnnAmts-dop25qu48wUSQvTcGtKzm1RggNClIaS-EhNFcRSkfhSD3AlPvbMpYyTFcKLnv2SmCvDOyV2wh9uG6z6kE6_kp95GV-TekBtkNFs17IYbxKogpGXc6ZKzRlqVOiTDKrWKoYtWWWROiN1xjpITRqf0ZnoTZtK0_nX-WkSFPOPchQhN4PRK6BPmg1pDwAJzzq1g3Kg1Hz5GBEWpn5POccYjYWoY-jpv36_Ocevvg38pfoIfHKGg7pHKCdbr2xr9B9_bOr2vXrMLiuAJ09HcU priority: 102 providerName: Springer Nature |
| Title | ICESat-2 single photon laser point cloud denoising algorithm based on improved DBSCAN clustering |
| URI | https://link.springer.com/article/10.1186/s40623-024-02071-y https://www.proquest.com/docview/3114270815 https://doaj.org/article/2a854f765f8c451fa9b03ea51a54eb30 |
| Volume | 76 |
| WOSCitedRecordID | wos001328504400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030463 issn: 1880-5981 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030463 issn: 1880-5981 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030463 issn: 1880-5981 databaseCode: PCBAR dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030463 issn: 1880-5981 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030463 issn: 1880-5981 databaseCode: PIMPY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1880-5981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0030463 issn: 1880-5981 databaseCode: C24 dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdggLTLBAO0wqgshOAA0RLHduJjWzrRA1W0gjS4GMcfW6WuqZp0Uv97np10ME3ABSmJrPhZiv1e_D5s_x5Cb5RmLAczNdKaxeCgxC5SIBoRMNgSDQYyczokm8im0_z8XBS_pfrye8JaeOB24E6Iyhl1GWcu15QlTokyTq1iiWIUHMHgrceZ2DlT7RwccLB2R2RyflKD2iJ-vZLCDUo12t5SQwGt_-6cfGdxNOic08fooDMW8aD9yCfonl0eoqNB7cPX1dUWv8Wh3EYn6kP0qGhLT9GPyWg8U01EsI8FLCxeXVZg5WGwle0ar6r5ssF6UW0MhnmnmnsirBYX1XreXF5hr9oMBvJ5CDlA-eNwNhpMocnGAysA9TP09XT8ZfQp6pIpRMAE0kQpUc4RnaWZBZUcx0pwowUhuUlSQ1nmXJoJsIe04cLRUpTEJFSbWHPKmdA6fY72ltXSHiFMFMlKk3PrSk6tEUIDj0tjKVyEZqqHkt3YSt0hjfuEFwsZPI6cy5YfEvghAz_ktofe37RZtTgbf6UeepbdUHqM7PACJEd2kiP_JTk99NozXHoUjKXfZnOhNnUtJ7MzOciThHOPE9RD7zoiV0EftOpOLcBIeOCsW5THO8GR3TxQy9QfVc7A7GI99GEnTL-q_9zDF_-jhy_RPvEyH3bfHKO9Zr2xr9BDfd3M63UfPRiOp8VZH90fEdoP_w88C_YdaorJ5-LbT3Z3G74 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4IXLoNphQEW4vIA0RLHzuUBoa7btGpbVdFNGk-e40tXqWtKk4L6p_iNHDvJpmlib3tASiQrObFi-zsXH9vnIPReSMYSMFM9KZkPExTfeAKg4cEAayLBQGZGumQTcb-fnJ6mgxX0pzkLY7dVNjLRCWqVS-sj3wrtoc8YFBj7Nvvp2axRdnW1SaFRweJAL3_DlK342tuB8f1AyN7ucXffq7MKePA3pPRCIowhMg5jDbrJ90UaKZkSkqggVJTFxoRxCoaBVFFqaJZmRAVUKl9GNGKplCHUew-tUgv2Flod9I4GPxrZ7-JvNUdzkmirAHVJ7DophRuUube8pv5cloCbuuDGoqzTdXtP_rdeeooe11Y17lRs8Ayt6Oka2ugU1s-fXyzxR-zKlRunWEMPBlXpOTrrdXeHovQItk6Ticaz8xzMYQyTCj3Hs3w8LbGc5AuFQUDnY0uExWQEbS7PL7C1ARQG8rHzzUB5Z3vY7fThk4WNQAHUL9DJnbR8HbWm-VRvIEwEiTOVRNpkEdUqTSUwQ6Y0hYvQWLRR0ICByzoku80MMuFuapZEvAIQBwBxByC-bKPPl9_MqoAkt1JvW4xdUtpg4u5BPh_xWjZxIhJGTRwxk0jKAiPSzA-1YIFgVGeh30bvLEK5DRcytfuRRmJRFLw3_M47SRBEkQ2o1EafaiKTQxukqI93QE_YCGPXKDcb7PJaYBb8Crht9KVB_9Xrf7fw5e21vUUP94-PDvlhr3_wCj0ilhXdZqRN1CrnC_0a3Ze_ynExf1OzMgbg3TFf_AU6iYIo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgXLgO0wAALcXmAqIkTO8kDQl27imqoqihI016M40tXqWtKk4L61_h1HDvJpmlib3tASiQrObHi5DtX2-cg9FpISlMwU30paQAOSmB8AdDw4QdrIsFApka6YhPJaJQeHWXjLfSn3Qtjl1W2MtEJalVIGyPvRHbTZwIKjHZMsyxi3B98Wv70bQUpO9PaltOoIXKoN7_BfSs_Dvvwr98QMjj41vvsNxUGfHgzUvkREcYQmUSJBj0VBCJjSmaEpCqMVEwTY6IkAyNBKpaZOM9yosJYqkCymNFMygj6vYFuJuBj2uWEY3rcagGXiavdpJOyTgmKk9gZ0xhOUOv-5oIidPUCLmuFS9OzTusN7v_P3-sButfY2rhbM8dDtKUXO2i3W9rof3G6wW-xa9fBnXIH3R7XrUfox7B3MBGVT7ANpcw1Xp4UYCRjcDX0Ci-L2aLCcl6sFQaxXcwsERbzKYy5OjnF1jJQGMhnLmID7f7-pNcdwSNrm5cCqB-j79cy8idoe1Es9C7CRJAkVynTJmexVlkmgUVypWM4SJwID4UtMLhsErXbeiFz7hy2lPEaTBzAxB2Y-MZD78-eWdZpSq6k3rd4O6O0KcbdhWI15Y3E4kSkNDYJoyaVMQ2NyPIg0oKGgsY6jwIPvbJo5TaJyMLCayrWZcmHk6-8m4YhYzbNkofeNUSmgDFI0Wz6gC9h845doNxrccwbMVrycxB76EPLCee3_z3Cp1f39hLdAWbgX4ajw2foLrFc6VYo7aHtarXWz9Et-aualasXjqcxoO6ameIv9ZyJiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ICESat-2+single+photon+laser+point+cloud+denoising+algorithm+based+on+improved+DBSCAN+clustering&rft.jtitle=Earth%2C+planets%2C+and+space&rft.au=Wang%2C+Dong&rft.au=Yu%2C+Jiachen&rft.au=Liu%2C+Fengying&rft.au=Li%2C+Qinghua&rft.date=2024-12-01&rft.issn=1880-5981&rft.eissn=1880-5981&rft.volume=76&rft.issue=1&rft_id=info:doi/10.1186%2Fs40623-024-02071-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40623_024_02071_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-5981&client=summon |