A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data

Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging Jg. 109; S. 271 - 285
Hauptverfasser: Wang, Zhengxin, Rowe, Daniel B., Li, Xinyi, Brown, D. Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Inc 01.06.2024
Schlagworte:
ISSN:0730-725X, 1873-5894, 1873-5894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation. •Most fMRI studies use real-valued, magnitude only data, ignoring information in the complex part.•Identifying changes in magnitude and phase allows for detection of meaningful neuronal activity that would be missed by studying magnitude alone.•We propose a fully Bayesian model for identifying magnitude and phase changes in task-based BOLD fMRI.•The model accounts for spatial association via sparse Gaussian Markov random fields and is computationally scalable via parcellation.•We demonstrate that the model is able to not only identify task-related changes in BOLD signal, but the type of change (magnitude, phase, or both).
AbstractList Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.
Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.
Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation. •Most fMRI studies use real-valued, magnitude only data, ignoring information in the complex part.•Identifying changes in magnitude and phase allows for detection of meaningful neuronal activity that would be missed by studying magnitude alone.•We propose a fully Bayesian model for identifying magnitude and phase changes in task-based BOLD fMRI.•The model accounts for spatial association via sparse Gaussian Markov random fields and is computationally scalable via parcellation.•We demonstrate that the model is able to not only identify task-related changes in BOLD signal, but the type of change (magnitude, phase, or both).
Author Wang, Zhengxin
Brown, D. Andrew
Rowe, Daniel B.
Li, Xinyi
AuthorAffiliation b Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, 53233, Wisconsin, U.S.A
a School of Mathematical and Statistical Sciences, Clemson University, Clemson, 29634, South Carolina, U.S.A
AuthorAffiliation_xml – name: b Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, 53233, Wisconsin, U.S.A
– name: a School of Mathematical and Statistical Sciences, Clemson University, Clemson, 29634, South Carolina, U.S.A
Author_xml – sequence: 1
  givenname: Zhengxin
  surname: Wang
  fullname: Wang, Zhengxin
  organization: School of Mathematical and Statistical Sciences, Clemson University, Clemson 29634, SC, USA
– sequence: 2
  givenname: Daniel B.
  surname: Rowe
  fullname: Rowe, Daniel B.
  organization: Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee 53233, WI, USA
– sequence: 3
  givenname: Xinyi
  surname: Li
  fullname: Li, Xinyi
  organization: School of Mathematical and Statistical Sciences, Clemson University, Clemson 29634, SC, USA
– sequence: 4
  givenname: D. Andrew
  surname: Brown
  fullname: Brown, D. Andrew
  email: ab7@clemson.edu
  organization: School of Mathematical and Statistical Sciences, Clemson University, Clemson 29634, SC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38537891$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFH8AGeckmwY-8LBaoVDwqFSEhkNhZjnM948Gxg50MzL_Hw7QIuigrP-79zpHOOUMnPnhA6CklJSW0ebEtx2hLRlhVEl4SJh6gFe1aXtSdqE7QirScFC2rv56is5S2hJCa8foROuVdzdtO0BX6cYHN4twev1Z7SFZ5rKYpBqU32ISIdRinCBvwye4Aj3lm_RoHk69rb-dlAKz8gKeNSoD7qGzm9Wx3arbB4_w6CDj4WeyUW2DA5sOnKzyoWT1GD41yCZ7cnOfoy9s3ny_fF9cf311dXlwXuiZsLmjbmB4GM1SVMAw4JZyzrumbgVJDgHGthaBGEN2qnhktdNW2HRG6pvlDU36OXh11p6UfYdDg56icnKIdVdzLoKz8d-LtRq7DTlJKhBBVkxWe3yjE8H2BNMvRJg3OKQ9hSZITWhHKOGF59dnfZn9cbuPOC-1xQceQUgQjtZ1_Z5W9rZOUyEOxcitzsfJQrCRc5mIzSe-Qt-L3MS-PDOSAdxaiTNqC1zDYCHqWQ7D30uIOrZ31Viv3Dfb_YX8BEjTRBw
CitedBy_id crossref_primary_10_1016_j_neuroimage_2025_121290
crossref_primary_10_1016_j_sigpro_2025_110004
Cites_doi 10.1214/09-STS282
10.1038/33402
10.1002/hbm.460020402
10.1016/j.mri.2009.05.048
10.1016/j.neuroimage.2004.09.038
10.1093/biostatistics/kxv044
10.1093/brain/60.4.389
10.1089/brain.2014.0278
10.1063/1.1699114
10.1093/biomet/57.1.97
10.1002/mrm.1910340618
10.1111/j.1467-9868.2012.01041.x
10.1016/j.conb.2006.03.005
10.1109/TMI.2003.823065
10.1016/j.neuroimage.2009.04.076
10.1016/j.jneumeth.2006.10.024
10.1002/j.1538-7305.1944.tb00874.x
10.1002/mrm.21882
10.1073/pnas.95.3.773
10.1080/01621459.2018.1476244
10.1016/j.jneumeth.2009.05.007
10.1016/j.neuroimage.2005.01.034
10.1523/JNEUROSCI.16-13-04207.1996
10.1016/j.brainres.2023.148634
10.1111/j.1541-0420.2006.00617.x
10.1198/016214506000001031
10.1214/08-STS257
10.1016/j.mri.2016.03.011
10.1080/01621459.1988.10478694
10.1097/00004647-199611000-00020
10.18637/jss.v044.i10
10.1073/pnas.0603219103
10.1080/01621459.1990.10476213
10.1111/biom.13631
10.1038/382805a0
10.1038/nature06976
10.1016/j.neuroimage.2004.06.042
10.1016/j.neuroimage.2004.12.048
10.1002/mrm.21195
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.mri.2024.03.029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 285
ExternalDocumentID PMC11099946
38537891
10_1016_j_mri_2024_03_029
S0730725X24000857
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM139769
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
G8K
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c502t-176fbedfd449f2e31033286b6d11f0e23cc991f90c7ab2fc9c477809c517abc13
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289120200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0730-725X
1873-5894
IngestDate Tue Sep 30 17:04:20 EDT 2025
Mon Sep 29 02:09:17 EDT 2025
Mon Jul 21 06:06:13 EDT 2025
Tue Nov 18 22:18:58 EST 2025
Sat Nov 29 07:49:14 EST 2025
Sat May 04 15:44:32 EDT 2024
Tue Oct 14 19:40:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spike and slab prior
Parallel computation
Gibbs sampling
Phase analysis
Rowe–Logan
Variable selection
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c502t-176fbedfd449f2e31033286b6d11f0e23cc991f90c7ab2fc9c477809c517abc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Statement
The authors of the manuscript titled, “A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data,” hereby declare no competing interests.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11099946
PMID 38537891
PQID 3014012302
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099946
proquest_miscellaneous_3014012302
pubmed_primary_38537891
crossref_citationtrail_10_1016_j_mri_2024_03_029
crossref_primary_10_1016_j_mri_2024_03_029
elsevier_sciencedirect_doi_10_1016_j_mri_2024_03_029
elsevier_clinicalkey_doi_10_1016_j_mri_2024_03_029
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yu, Prado, Ombao, Rowe (bb0110) 2023; 79
Rowe (bb0065) 2005; 25
Rowe, Logan (bb0060) 2005; 24
Mitchell, Beauchamp (bb0145) 1988; 83
Welvaert, Durnez, Moerkerke, Berdoolaege, Rosseel (bb0190) 2011; 44
Boynton, Engel, Glover, Heeger (bb0010) 1996; 16
Reich, Hodges, Zadnik (bb0165) 2006; 62
Wang, Rowe, Li, Brown (bb0115) 2023
Rice (bb0050) 1944; 23
Wilder Penfield (bb0205) 1937; 60
Hughes, Haran (bb0170) 2013; 75
Culham, Valyear (bb0215) 2006; 16
Brown, Cheng, Haacke, Thompson, Venkatesan (bb0005) 2014
Hastings (bb0180) 1970; 57
Geyer, Ledberg, Schleicher, Kinomura, Schormann, Bürgel (bb0210) 1996; 382
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0040) 1994; 2
Smith, Fahrmeir (bb0150) 2007; 102
Rowe, Logan (bb0030) 2004; 23
Kociuba, Rowe (bb0225) 2016; 34
Rue, Held (bb0120) 2005
R Core Team (bb0195) 2023
Musgrove, Hughes, Eberly (bb0105) 2016; 17
Lee, Shahram, Schwartzman, Pauly (bb0090) 2007; 57
Rowe, Hahn, Nencka (bb0130) 2009; 27
Wei, Zhang, Chang, Zhang, Ma, Wang (bb0220) 2024; 1822
Lindquist (bb0045) 2008; 23
Logothetis (bb0015) 2008; 453
Nenckaa, Hahna, Rowe (bb0135) 2009; 181
Adrian, Maitra, Rowe (bb0085) 2018; 12
Petridou, Plenz, Silva, Loew, Bodurka, Bandettini (bb0025) 2006; 103
Rao, Bandettini, Binder, Bobholz, Hammeke, Stein (bb0155) 1996; 16
Woolrich, Jenkinson, Brady, Smith (bb0100) 2004; 23
Rowe (bb0080) 2009; 62
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bb0175) 1953; 21
Yu, Prado, Ombao, Rowe (bb0095) 2018; 113
Gelfand, Smith (bb0125) 1990; 85
Epstein, Kanwisher (bb0160) 1998; 392
Flegal, Haran, Jones (bb0185) 2008; 23
Feng, Caprihan, K. B. B. c, V. D. Calhoun (bb0035) 2009; 47
Karaman, Nencka, Bruce, Rowe (bb0140) 2014; 4
Gudbjartsson, Patz (bb0055) 1995; 34
Rosen, Buckner, Dale (bb0200) 1998; 95
Rowe (bb0070) 2005; 25
Rowe, Meller, Hoffmann (bb0075) 2007; 161
Rowe (bb0020) 2019
Welvaert (10.1016/j.mri.2024.03.029_bb0190) 2011; 44
Kociuba (10.1016/j.mri.2024.03.029_bb0225) 2016; 34
Wilder Penfield (10.1016/j.mri.2024.03.029_bb0205) 1937; 60
Smith (10.1016/j.mri.2024.03.029_bb0150) 2007; 102
Musgrove (10.1016/j.mri.2024.03.029_bb0105) 2016; 17
Brown (10.1016/j.mri.2024.03.029_bb0005) 2014
Rowe (10.1016/j.mri.2024.03.029_bb0070) 2005; 25
Petridou (10.1016/j.mri.2024.03.029_bb0025) 2006; 103
Wei (10.1016/j.mri.2024.03.029_bb0220) 2024; 1822
Rue (10.1016/j.mri.2024.03.029_bb0120) 2005
Rao (10.1016/j.mri.2024.03.029_bb0155) 1996; 16
Gudbjartsson (10.1016/j.mri.2024.03.029_bb0055) 1995; 34
Hughes (10.1016/j.mri.2024.03.029_bb0170) 2013; 75
Hastings (10.1016/j.mri.2024.03.029_bb0180) 1970; 57
Nenckaa (10.1016/j.mri.2024.03.029_bb0135) 2009; 181
Mitchell (10.1016/j.mri.2024.03.029_bb0145) 1988; 83
Metropolis (10.1016/j.mri.2024.03.029_bb0175) 1953; 21
Boynton (10.1016/j.mri.2024.03.029_bb0010) 1996; 16
Reich (10.1016/j.mri.2024.03.029_bb0165) 2006; 62
Rowe (10.1016/j.mri.2024.03.029_bb0060) 2005; 24
Lindquist (10.1016/j.mri.2024.03.029_bb0045) 2008; 23
Friston (10.1016/j.mri.2024.03.029_bb0040) 1994; 2
Rowe (10.1016/j.mri.2024.03.029_bb0030) 2004; 23
Feng (10.1016/j.mri.2024.03.029_bb0035) 2009; 47
Rowe (10.1016/j.mri.2024.03.029_bb0065) 2005; 25
Rowe (10.1016/j.mri.2024.03.029_bb0130) 2009; 27
Culham (10.1016/j.mri.2024.03.029_bb0215) 2006; 16
Logothetis (10.1016/j.mri.2024.03.029_bb0015) 2008; 453
Wang (10.1016/j.mri.2024.03.029_bb0115)
R Core Team (10.1016/j.mri.2024.03.029_bb0195)
Rice (10.1016/j.mri.2024.03.029_bb0050) 1944; 23
Lee (10.1016/j.mri.2024.03.029_bb0090) 2007; 57
Geyer (10.1016/j.mri.2024.03.029_bb0210) 1996; 382
Epstein (10.1016/j.mri.2024.03.029_bb0160) 1998; 392
Woolrich (10.1016/j.mri.2024.03.029_bb0100) 2004; 23
Rowe (10.1016/j.mri.2024.03.029_bb0075) 2007; 161
Gelfand (10.1016/j.mri.2024.03.029_bb0125) 1990; 85
Adrian (10.1016/j.mri.2024.03.029_bb0085) 2018; 12
Rowe (10.1016/j.mri.2024.03.029_bb0020) 2019
Yu (10.1016/j.mri.2024.03.029_bb0110) 2023; 79
Rowe (10.1016/j.mri.2024.03.029_bb0080) 2009; 62
Rosen (10.1016/j.mri.2024.03.029_bb0200) 1998; 95
Yu (10.1016/j.mri.2024.03.029_bb0095) 2018; 113
Karaman (10.1016/j.mri.2024.03.029_bb0140) 2014; 4
Flegal (10.1016/j.mri.2024.03.029_bb0185) 2008; 23
References_xml – volume: 57
  start-page: 905
  year: 2007
  end-page: 917
  ident: bb0090
  article-title: Complex data analysis in high-resolution SSFP fMRI
  publication-title: Magn Reson Med
– volume: 16
  start-page: 4207
  year: 1996
  end-page: 4221
  ident: bb0010
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J Neurosci
– volume: 62
  start-page: 1356
  year: 2009
  end-page: 1360
  ident: bb0080
  article-title: Magnitude and phase signal detection in complex-valued fMRI data
  publication-title: Magn Reson Med
– volume: 34
  start-page: 765
  year: 2016
  end-page: 770
  ident: bb0225
  article-title: Complex-valued time-series correlation increases sensitivity in fMRI analysis
  publication-title: Magn Reson Imaging
– volume: 1822
  year: 2024
  ident: bb0220
  article-title: Analyzing 20 years of resting-state fmri research: trends and collaborative networks revealed
  publication-title: Brain Res
– volume: 103
  start-page: 16015
  year: 2006
  end-page: 16020
  ident: bb0025
  article-title: Direct magnetic resonance detection of neuronal electrical activity
  publication-title: Proc Natl Acad Sci
– volume: 16
  start-page: 1250
  year: 1996
  end-page: 1254
  ident: bb0155
  article-title: Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex
  publication-title: J Cereb Blood Flow Metab
– volume: 16
  start-page: 205
  year: 2006
  end-page: 212
  ident: bb0215
  article-title: Human parietal cortex in action
  publication-title: Curr Opin Neurobiol
– volume: 27
  start-page: 1370
  year: 2009
  end-page: 1381
  ident: bb0130
  article-title: Functional magnetic resonance imaging brain activation directly from k-space
  publication-title: Magn Reson Imaging
– volume: 382
  start-page: 805
  year: 1996
  end-page: 807
  ident: bb0210
  article-title: Two different areas within the primary motor cortex of man
  publication-title: Nature
– year: 2019
  ident: bb0020
  article-title: Handbook of neuroimaging data analysis, chapter 8
– volume: 12
  start-page: 1451
  year: 2018
  end-page: 1478
  ident: bb0085
  article-title: Complex-valued time series modeling for improved activation detection in fMRI studies
  publication-title: Anna Applied Statist
– volume: 44
  start-page: 1
  year: 2011
  end-page: 18
  ident: bb0190
  article-title: neuRosim: an R package for generating fMRI data
  publication-title: J Stat Softw
– volume: 102
  start-page: 417
  year: 2007
  end-page: 431
  ident: bb0150
  article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging
  publication-title: J Am Stat Assoc
– volume: 25
  start-page: 1124
  year: 2005
  end-page: 1132
  ident: bb0070
  article-title: Parameter estimation in the magnitude-only and complex-valued fMRI data models
  publication-title: NeuroImage
– year: 2014
  ident: bb0005
  article-title: Magnetic resonance imaging: Physical principles and sequence design
– volume: 47
  start-page: 540
  year: 2009
  end-page: 548
  ident: bb0035
  article-title: Biophysical modeling of phase changes in BOLD fMRI
  publication-title: NeuroImage
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: bb0180
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 2
  start-page: 189
  year: 1994
  end-page: 210
  ident: bb0040
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
– volume: 181
  start-page: 268
  year: 2009
  end-page: 282
  ident: bb0135
  article-title: A mathematical model for understanding the statistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI
  publication-title: J Neurosci Methods
– volume: 79
  start-page: 616
  year: 2023
  end-page: 628
  ident: bb0110
  article-title: Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions
  publication-title: Biometrics
– volume: 392
  start-page: 598
  year: 1998
  end-page: 601
  ident: bb0160
  article-title: A cortical representation of the local visual environment
  publication-title: Nature
– volume: 161
  start-page: 331
  year: 2007
  end-page: 341
  ident: bb0075
  article-title: Characterizing phase-only fMRI data with an angular regression model
  publication-title: J Neurosci Methods
– volume: 95
  start-page: 773
  year: 1998
  end-page: 780
  ident: bb0200
  article-title: Event-related functional MRI: past, present, and future
  publication-title: Procced National Acad Sci
– volume: 24
  start-page: 603
  year: 2005
  end-page: 606
  ident: bb0060
  article-title: Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model
  publication-title: NeuroImage
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  ident: bb0055
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn Reson Med
– volume: 62
  start-page: 1197
  year: 2006
  end-page: 1206
  ident: bb0165
  article-title: Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models
  publication-title: Biometrics
– volume: 23
  start-page: 250
  year: 2008
  end-page: 260
  ident: bb0185
  article-title: Markov chain Monte Carlo: can we trust the third significant figure?
  publication-title: Statist Sci
– volume: 83
  start-page: 1023
  year: 1988
  end-page: 1032
  ident: bb0145
  article-title: Bayesian variable selection in linear regression
  publication-title: J Am Stat Assoc
– year: 2023
  ident: bb0195
  article-title: R: A Language and Environment For Statistical Computing, R Foundation For Statistical Computing
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: bb0175
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
– year: 2023
  ident: bb0115
  article-title: Efficient fully Bayesian approach to brain activity mapping with complex-valued fMRI data
– volume: 60
  start-page: 389
  year: 1937
  end-page: 443
  ident: bb0205
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
– volume: 25
  start-page: 1310
  year: 2005
  end-page: 1324
  ident: bb0065
  article-title: Modeling both the magnitude and phase of complex-valued fMRI data
  publication-title: NeuroImage
– volume: 23
  start-page: 439
  year: 2008
  end-page: 464
  ident: bb0045
  article-title: The statistical analysis of fMRI data
  publication-title: Statist Sci
– volume: 85
  start-page: 398
  year: 1990
  end-page: 409
  ident: bb0125
  article-title: Sampling-based approaches to calculating marginal densities
  publication-title: J Am Stat Assoc
– volume: 17
  start-page: 291
  year: 2016
  end-page: 303
  ident: bb0105
  article-title: Fast, fully Bayesian spatiotemporal inference for fMRI data
  publication-title: Biostatistics
– volume: 23
  start-page: 1078
  year: 2004
  end-page: 1092
  ident: bb0030
  article-title: A complex way to compute fMRI activation
  publication-title: NeuroImage
– volume: 113
  start-page: 1395
  year: 2018
  end-page: 1410
  ident: bb0095
  article-title: A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI
  publication-title: J Am Stat Assoc
– volume: 23
  start-page: 282
  year: 1944
  end-page: 332
  ident: bb0050
  article-title: Mathematical analysis of random noise
  publication-title: Bell Syst Tech J
– volume: 75
  start-page: 139
  year: 2013
  end-page: 159
  ident: bb0170
  article-title: Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, journal of the Royal Statistical Society
  publication-title: Series B (Statistical Methodology)
– year: 2005
  ident: bb0120
  article-title: Gaussian Markov Random Fields
– volume: 4
  start-page: 649
  year: 2014
  end-page: 661
  ident: bb0140
  article-title: Quantification of the statistical effects of spatiotemporal processing of nontask fMRI data
  publication-title: Brain Connect
– volume: 453
  start-page: 869
  year: 2008
  end-page: 878
  ident: bb0015
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
– volume: 23
  start-page: 213
  year: 2004
  end-page: 231
  ident: bb0100
  article-title: Fully Bayesian spatio-temporal modeling of fMRI data
  publication-title: IEEE Trans Med Imaging
– volume: 23
  start-page: 439
  issue: 4
  year: 2008
  ident: 10.1016/j.mri.2024.03.029_bb0045
  article-title: The statistical analysis of fMRI data
  publication-title: Statist Sci
  doi: 10.1214/09-STS282
– volume: 12
  start-page: 1451
  issue: 3
  year: 2018
  ident: 10.1016/j.mri.2024.03.029_bb0085
  article-title: Complex-valued time series modeling for improved activation detection in fMRI studies
  publication-title: Anna Applied Statist
– volume: 392
  start-page: 598
  issue: 6676
  year: 1998
  ident: 10.1016/j.mri.2024.03.029_bb0160
  article-title: A cortical representation of the local visual environment
  publication-title: Nature
  doi: 10.1038/33402
– volume: 2
  start-page: 189
  issue: 4
  year: 1994
  ident: 10.1016/j.mri.2024.03.029_bb0040
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.460020402
– volume: 27
  start-page: 1370
  issue: 10
  year: 2009
  ident: 10.1016/j.mri.2024.03.029_bb0130
  article-title: Functional magnetic resonance imaging brain activation directly from k-space
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2009.05.048
– volume: 24
  start-page: 603
  issue: 2
  year: 2005
  ident: 10.1016/j.mri.2024.03.029_bb0060
  article-title: Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.09.038
– volume: 17
  start-page: 291
  issue: 2
  year: 2016
  ident: 10.1016/j.mri.2024.03.029_bb0105
  article-title: Fast, fully Bayesian spatiotemporal inference for fMRI data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxv044
– volume: 60
  start-page: 389
  issue: 4
  year: 1937
  ident: 10.1016/j.mri.2024.03.029_bb0205
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
  doi: 10.1093/brain/60.4.389
– volume: 4
  start-page: 649
  issue: 9
  year: 2014
  ident: 10.1016/j.mri.2024.03.029_bb0140
  article-title: Quantification of the statistical effects of spatiotemporal processing of nontask fMRI data
  publication-title: Brain Connect
  doi: 10.1089/brain.2014.0278
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.mri.2024.03.029_bb0175
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 10.1016/j.mri.2024.03.029_bb0180
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 34
  start-page: 910
  issue: 6
  year: 1995
  ident: 10.1016/j.mri.2024.03.029_bb0055
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340618
– volume: 75
  start-page: 139
  issue: 1
  year: 2013
  ident: 10.1016/j.mri.2024.03.029_bb0170
  article-title: Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, journal of the Royal Statistical Society
  publication-title: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2012.01041.x
– volume: 16
  start-page: 205
  issue: 2
  year: 2006
  ident: 10.1016/j.mri.2024.03.029_bb0215
  article-title: Human parietal cortex in action
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2006.03.005
– volume: 23
  start-page: 213
  issue: 2
  year: 2004
  ident: 10.1016/j.mri.2024.03.029_bb0100
  article-title: Fully Bayesian spatio-temporal modeling of fMRI data
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.823065
– volume: 47
  start-page: 540
  issue: 2
  year: 2009
  ident: 10.1016/j.mri.2024.03.029_bb0035
  article-title: Biophysical modeling of phase changes in BOLD fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.04.076
– volume: 161
  start-page: 331
  issue: 2
  year: 2007
  ident: 10.1016/j.mri.2024.03.029_bb0075
  article-title: Characterizing phase-only fMRI data with an angular regression model
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2006.10.024
– year: 2014
  ident: 10.1016/j.mri.2024.03.029_bb0005
– volume: 23
  start-page: 282
  issue: 3
  year: 1944
  ident: 10.1016/j.mri.2024.03.029_bb0050
  article-title: Mathematical analysis of random noise
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1944.tb00874.x
– volume: 62
  start-page: 1356
  issue: 5
  year: 2009
  ident: 10.1016/j.mri.2024.03.029_bb0080
  article-title: Magnitude and phase signal detection in complex-valued fMRI data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21882
– volume: 95
  start-page: 773
  year: 1998
  ident: 10.1016/j.mri.2024.03.029_bb0200
  article-title: Event-related functional MRI: past, present, and future
  publication-title: Procced National Acad Sci
  doi: 10.1073/pnas.95.3.773
– year: 2005
  ident: 10.1016/j.mri.2024.03.029_bb0120
– volume: 113
  start-page: 1395
  issue: 524
  year: 2018
  ident: 10.1016/j.mri.2024.03.029_bb0095
  article-title: A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2018.1476244
– volume: 181
  start-page: 268
  issue: 2
  year: 2009
  ident: 10.1016/j.mri.2024.03.029_bb0135
  article-title: A mathematical model for understanding the statistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2009.05.007
– volume: 25
  start-page: 1310
  issue: 4
  year: 2005
  ident: 10.1016/j.mri.2024.03.029_bb0065
  article-title: Modeling both the magnitude and phase of complex-valued fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.034
– volume: 16
  start-page: 4207
  issue: 13
  year: 1996
  ident: 10.1016/j.mri.2024.03.029_bb0010
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– volume: 1822
  year: 2024
  ident: 10.1016/j.mri.2024.03.029_bb0220
  article-title: Analyzing 20 years of resting-state fmri research: trends and collaborative networks revealed
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2023.148634
– volume: 62
  start-page: 1197
  issue: 4
  year: 2006
  ident: 10.1016/j.mri.2024.03.029_bb0165
  article-title: Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00617.x
– volume: 102
  start-page: 417
  issue: 478
  year: 2007
  ident: 10.1016/j.mri.2024.03.029_bb0150
  article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000001031
– year: 2019
  ident: 10.1016/j.mri.2024.03.029_bb0020
– volume: 23
  start-page: 250
  issue: 2
  year: 2008
  ident: 10.1016/j.mri.2024.03.029_bb0185
  article-title: Markov chain Monte Carlo: can we trust the third significant figure?
  publication-title: Statist Sci
  doi: 10.1214/08-STS257
– volume: 34
  start-page: 765
  issue: 6
  year: 2016
  ident: 10.1016/j.mri.2024.03.029_bb0225
  article-title: Complex-valued time-series correlation increases sensitivity in fMRI analysis
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2016.03.011
– volume: 83
  start-page: 1023
  issue: 404
  year: 1988
  ident: 10.1016/j.mri.2024.03.029_bb0145
  article-title: Bayesian variable selection in linear regression
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1988.10478694
– volume: 16
  start-page: 1250
  issue: 6
  year: 1996
  ident: 10.1016/j.mri.2024.03.029_bb0155
  article-title: Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-199611000-00020
– volume: 44
  start-page: 1
  issue: 10
  year: 2011
  ident: 10.1016/j.mri.2024.03.029_bb0190
  article-title: neuRosim: an R package for generating fMRI data
  publication-title: J Stat Softw
  doi: 10.18637/jss.v044.i10
– volume: 103
  start-page: 16015
  issue: 43
  year: 2006
  ident: 10.1016/j.mri.2024.03.029_bb0025
  article-title: Direct magnetic resonance detection of neuronal electrical activity
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0603219103
– volume: 85
  start-page: 398
  issue: 410
  year: 1990
  ident: 10.1016/j.mri.2024.03.029_bb0125
  article-title: Sampling-based approaches to calculating marginal densities
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1990.10476213
– volume: 79
  start-page: 616
  issue: 2
  year: 2023
  ident: 10.1016/j.mri.2024.03.029_bb0110
  article-title: Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions
  publication-title: Biometrics
  doi: 10.1111/biom.13631
– volume: 382
  start-page: 805
  issue: 6594
  year: 1996
  ident: 10.1016/j.mri.2024.03.029_bb0210
  article-title: Two different areas within the primary motor cortex of man
  publication-title: Nature
  doi: 10.1038/382805a0
– volume: 453
  start-page: 869
  issue: 7197
  year: 2008
  ident: 10.1016/j.mri.2024.03.029_bb0015
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
  doi: 10.1038/nature06976
– volume: 23
  start-page: 1078
  issue: 3
  year: 2004
  ident: 10.1016/j.mri.2024.03.029_bb0030
  article-title: A complex way to compute fMRI activation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.06.042
– ident: 10.1016/j.mri.2024.03.029_bb0115
– volume: 25
  start-page: 1124
  issue: 4
  year: 2005
  ident: 10.1016/j.mri.2024.03.029_bb0070
  article-title: Parameter estimation in the magnitude-only and complex-valued fMRI data models
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.048
– volume: 57
  start-page: 905
  issue: 5
  year: 2007
  ident: 10.1016/j.mri.2024.03.029_bb0090
  article-title: Complex data analysis in high-resolution SSFP fMRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21195
– ident: 10.1016/j.mri.2024.03.029_bb0195
SSID ssj0005235
Score 2.4315758
Snippet Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 271
SubjectTerms Bayes Theorem
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
Computer Simulation
Gibbs sampling
Magnetic Resonance Imaging - methods
Parallel computation
Phase analysis
Rowe–Logan
Spike and slab prior
Variable selection
Title A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X24000857
https://dx.doi.org/10.1016/j.mri.2024.03.029
https://www.ncbi.nlm.nih.gov/pubmed/38537891
https://www.proquest.com/docview/3014012302
https://pubmed.ncbi.nlm.nih.gov/PMC11099946
Volume 109
WOSCitedRecordID wos001289120200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6Dk17QXxTPiYj8USVKnHSOn4sMMSQNiE0pIqXyElsmqlNo67d2r-Af5vzV5qu2oAHXqLEid2o98v5fP7dHUJvY576gzRgHqzaIi8iOehBLoUnuGDU5zyQkSk2Qc_O4tGIfW21frlYmKsJLct4tWLVfxU1tIGwVejsP4i7HhQa4ByEDkcQOxz_SvDDrnKpr7vv-VroCEmXNlwzChWFfC7GlrY-5VVlac9TrnhEy9xsJ1RjmN26qaofodNtGMdt15LWJ2LlqSzhYKzK028nXRvgVlu5pzCWMMmhlaWvdEcx1eWQNv57o2N-wJv8XBWNcLRrsYl8b5SE1qSDUVGuix0HwscmK9M6MAARNdGqJ4zSjWno9WNT7LjWyj5r6lVTp2VH3xvXw0VvOi96amydsNa4UBqirqZa1iGYJjRmwWbqqwmJ7tYe2ie0z-I22h-eHI--NNhCYd9timt64I1fPEQHbozbLJzdFcxNIm7Dsjl_gO7bJQkeGig9RC1RPkIHp5Z08RhdD7FGFHaIwg5RGBCFtxCFLaLwTOIaURgQhTWisEYU3iAKw9U2orBCFFaIeoK-fzo-__DZs_U6vKzvk4XKNSpTkcs8ipgkQlWwC0k8SAd5EEhfkDDLYDUimZ9RnhKZsSyiNPZZ1g-gIQvCp6hdzkrxHGHVIU1Z5Ec5UyYnp4TD3JTxXJJgQGkH-e4_TjKbzF7VVJkkjrV4kYCEEiWhxA8TkFAHvau7VCaTy10PEye4xIUow6SaAO7u6hTVnaz9auzSP3V745CRgG5XG3a8FLPlZWLcHyT0SQc9M0ipX92hrYPiLQzVD6i88dt3ymKs88erJMOMRYMXtw76Eh1uvtRXqL2YL8VrdC-7WhSX8yO0R0fxkf1CfgPi2OH_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+Bayesian+approach+for+comprehensive+mapping+of+magnitude+and+phase+brain+activation+in+complex-valued+fMRI+data&rft.jtitle=Magnetic+resonance+imaging&rft.au=Wang%2C+Zhengxin&rft.au=Rowe%2C+Daniel+B&rft.au=Li%2C+Xinyi&rft.au=Brown%2C+D+Andrew&rft.date=2024-06-01&rft.eissn=1873-5894&rft.volume=109&rft.spage=271&rft_id=info:doi/10.1016%2Fj.mri.2024.03.029&rft_id=info%3Apmid%2F38537891&rft.externalDocID=38537891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon